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Area Preserving Homeomorphisms

of Open Surfaces of Genus Zero

John Franks

Abstract� We show that an area preserving homeomorphism of the open annu	
lus which has at least one periodic point must in fact have in
nitely many interior
periodic points�
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In this paper we investigate area preserving homeomorphisms of the open annu�
lus and their periodic points� The main result is that an area preserving homeo�
morphism of the annulus which has at least one periodic point must in fact have
in	nitely many interior periodic points� This result was claimed in 
F�� but the
proof contained a gap�

�� Chain Recurrence

We brie�y recall the de	nition of chain recurrence due to Charles Conley in 
C��
In the following f 
 X � X will denote a homeomorphism of a metric space X �

����� De�nition� An ��chain for f � from x to y is a sequence x � x�� x�� � � � � xn �
y� in X such that

d�f�xi�� xi��� � � for � � i � n� ��

A point x � X is called chain recurrent if for every � � � there is an ��chain from
x to itself� The set R�f� of chain recurrent points is called the chain recurrent set

of f �

It is easily seen that if the metric space X is compact then the chain recurrent
setR�f� is compact and invariant under f � Moreover it is independent of the choice
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of metric on X � depending only on f and the topology of X � If X is not compact
then R�f� is closed and invariant but it depends on the metric de	ned on X rather
than just the topology�

The following simple result is well known and is valid whether or not X is
compact�

����� Proposition� If R�f� � X �in particular if f preserves a �nite measure

whose support is all of X� and if X is connected then for any � � � and any

x� y � X there is an ��chain from x to y� If K is a compact subset of X then given

� � � there is an N with the property that for any x� y � K there is an ��chain of

length less than N from x to y�

Proof� Note that if f preserves a 	nite measure whose support is all of X then by
Poincar�e recurrence almost every point of X is recurrent from which it follows that
R�f� � X �

We de	ne a relation � on R�f� by x � y if and only if for every � � � there is
an ��chain from x to y and another from y to x� It is clear that � is an equivalence
relation� From the de	nition it is easy to see that each equivalence class for the
equivalence relation � is open� Since equivalence classes are pairwise disjoint it
follows that the complement of an equivalence class is open� Since X is connected
there can be only one equivalence class�

If K � X is compact and x� y � K and there is an ��chain of length N� from
x to y then there is an open neighborhood V of �x� y� � X �X such that for any
�x�� y�� � V there is a ��chain of length N� from x� to y�� Since K �K is compact
it can be covered by 	nitely many such neighborhoods� The maximum of the values
of N� for these neighborhoods is the desired N � �

By an open surface of �nite type we mean a smooth two dimensional mani�
fold obtained by taking a smooth compact surface without boundary and deleting
	nitely many points from its interior� Equivalently it is a surface obtained by tak�
ing a smooth compact surface with boundary and removing all of the boundary
components� A proof of the following result can be found as Lemma ����� of 
F���

����� Lemma� Suppose M is an open surface of �nite type and f 
 M � M is

a homeomorphism homotopic to the identity whose canonical lift to its universal

covering space is F 
 fM � fM � If f is �xed point free� then there is a complete

Riemannian metric on M which when lifted to fM has a distance function d� � �

satisfying d�F �x�� x� � � for all x � fM�

One of the the results which we will use in proving the existence of periodic points

is a generalization of the Poincar�e�Birkho� Theorem� Suppose eA � R���� �� and A

is the quotient of eA under the group generated by �x� t�� �x��� t�� If F 
 eA� eA
is a lift of f 
 A � A we will say that there is a positively returning disk for F if

there is an open disk U � eA such that F �U� � U � 	 and Fn�U� � �U � k� 
� 	
for some integers n� k � �� �here U � k denotes the set f�x � k� t� j �x� t� � Ug��
Thus� U is disjoint from its image� but under iteration by F returns to a positive
translate of itself� A negatively returning disk is de	ned similarly� but with k � ��
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Recall that a point x is non�wandering if for every neighborhood U of x there
is an n � � such that fn�U� � U 
� 	� In particular if f preserves a 	nite measure
which is positive on open sets then every point is non�wandering� A proof of the
following result can be found in 
F���

����� Theorem� Let f 
 A � A be an orientation preserving homeomorphism of

the open annulus A � S� � ��� ��� which is homotopic to the identity and satis�es

the following conditions�

�� Every point of A is non�wandering under f �

�� There is a lift of f to its universal covering space� F 
 eA � eA� which

possesses both a positively returning disk and a negatively returning disk�

Then f has a �xed point�

We shall also need the following lemma which is Lemma ����� of 
F���

���	� Lemma� Suppose f 
M �M is a homeomorphism of a complete Riemann�

ian manifold M and f possesses a periodic ��chain with respect to the metric d�� �
induced by the Riemannian metric� Then there is an isotopy ht 
M �M� t � 
�� ��
such that

i� ht has compact support� and h� � id�
ii� d�ht�x�� x� � � for all t � 
�� �� and all x �M�
iii� Arbitrarily near the periodic ��chain for f is a periodic orbit for g � h� � f�

�� Homological Rotation Vectors

In this section we brie�y recall the de	nition of homological rotation vectors
for surface homeomorphisms isotopic to the identity map from 
F�� and 
F��� Let
M be an open surface of 	nite type and let f 
 M � M be a homeomorphism
isotopic to the identity� We 	x a metric onM of constant negative curvature� Even
more� we assume that one can formM by taking a convex ideal geodesic polygon in
hyperbolic space �vertices of which are points at in	nity� and making identi	cations
on the edges�

Pick a base point b� in the interior of the polygon whose sides are identi	ed to
form M� We want to de	ne a function � which assigns to each x � M a geodesic
segment �x in M from b� to x� in such a way that the correspondence x � �x is
measurable� We do this by letting �x be the unique geodesic segment from b� to x
if x is in the interior of the polygon whose sides are identi	ed to form M � For x on
an identi	ed edge we consider each pair of edges which are identi	ed and pick one�
Then choose �x to be the unique geodesic segment from b� to x which when lifted
back to the polygon ends on the chosen edge�

Let ft�x� be a homotopy from f� � id 
 M � M to f� � f� Because the Euler
characteristic of M is negative� ft is unique up to homotopy� This means that if
gt is another homotopy with g� � id and g� � f � then there is a homotopy from
ft to gt� i�e�� a map H 
 M � 
�� �� � 
�� �� � M such that H�x� t� �� � ft�x� and
H�x� t� �� � gt�x��

For any point x � M we want to construct a path in M from x to fn�x� and
then form a loop with the segments �x and �fn�x�� To do this we observe that

if � 
 fM � M is the universal covering space of M there is a canonical lift of
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f to a homeomorphism F 
 fM � fM � namely� F is that lift obtained by lifting

the homotopy ft from the identity to f to form a homotopy on fM starting at the

identity on fM � The other end of this homotopy is then de	ned to be F � The
uniqueness of ft up to homotopy implies that F does not depend on the choice of
homotopy from the identity to f � Alternatively� F is the unique lift whose extension

to the ideal points at in	nity of fM has all those points as 	xed points�

Consider the path 	�n� x� from x to fn�x� in M which is given by

	�n� x��t� � fnt �x��

Again the homotopy class of this path relative to its endpoints is independent of
the choice of the homotopy ft because of the uniqueness �up to homotopy� of this
homotopy�

For each x � M let hn�x� f� be the closed loop based at b� formed by the
concatenation of �x� the path 	�n� x� in M from x to fn�x� and �fn�x� traversed
backwards� If the homeomorphism f is clear from the context we will abbreviate
hn�x� f� to hn�x��

Let � denote concatenation of based loops and observe that hn�x��hm�fn�x�� is
homotopic to hn�m�x�� Let 
hn�x�� denote the homology class in H��M�R� of the
loop hn�x�� Note that 
hn�m�x�� � 
hn�x�� � 
hm�f

n�x���� We can now formulate
the de	nition of homology rotation vector�

����� De�nition� Let M be an open surface of 	nite type with negative Euler
characteristic� Suppose f 
 M � M is a homeomorphism which is isotopic to the
identity map� The homological rotation vector of x �M � is an element of H��M�R�
denoted R�x� f�� and is de	ned by

R�x� f� � lim
n��


hn�x��

n

if this limit exists�

If the limit in De	nition ����� above does not exist then R�x� f� is unde	ned and
we say x has no homological rotation vector�

Let 
 be an f invariant measure on M which is homeomorphic to Lebesgue
measure� By this we mean there is a homeomorphism h 
 M � M such that
for any Borel set A in M we have 
�A� � m�h�A�� where m� � denotes Lebesgue
measure associated with a hyperbolic metric on M �

The homology classes 
h��x�� � H��M�R� depend measurably on x� In fact there
is a closed set of measure zero in M �consisting of the �edges� of the polygon and
their inverse images under f� on the complement of which the function 
h��x�� is
locally constant�

We observe that since M is not compact� the function 
h��x�� might not be
bounded� In fact it is easy to construct a di�eomorphism of the disk punctured at
its center which has the property that as one approaches the central puncture the
di�eomorphism rotates around that puncture an arbitrarily large amount� One can
construct such a di�eomorphism for which 
h��x�� is not integrable�
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Much of this article deals with the case when 
h��x�� is not integrable� In the case
that it is integrable we can apply the Birkho� ergodic theorem� Since 
hn�m�x�� �

hn�x�� � 
hm�f

n�x����
n��X
i��


h��f
i�x��� � 
hn�x���

Hence by the Birkho� ergodic theorem� for 
�almost all x the limit

lim
n��

�

n

n��X
i��


h��f
i�x��� � lim

n��


hn�x��

n
� R�x� f�

exists� Thus in this case the homological rotation vector exists for 
�almost all x�
The Birkho� ergodic theorem also asserts that R�x� f� is a 
�measurable func�

tion of x and that Z
R�x� f�d
 �

Z

h��x� f��d
�

����� De�nition� Let M be an open surface of 	nite type with negative Euler
characteristic� Suppose f 
 M � M is a homeomorphism of the surface M which
is isotopic to the identity map and preserves a 	nite measure 
 homeomorphic to
Lebesgue measure� The mean rotation vector of f � if it exists� is an element of
H��M�R� denoted R��f�� and is de	ned by

R��f� �

Z
R�x� f�d
�

when this integral exists� If the integral does not exist then the mean rotation
vector is unde	ned�

����� Proposition� Suppose f and g are homeomorphisms ofM which are isotopic

to the identity and preserve a �nite measure 
 homeomorphic to Lebesgue measure�

Then

R��f � g� � R��f� �R��g��

if all these integrals exist�

Proof� The loop h��x� f �g� is homotopic to the concatenation of the loops h��x� f�
and h��f�x�� g� so 
h��x� f � g�� � 
h��x� f�� � 
h��f�x�� g��� ThusZ


h��x� f � g��d
 �

Z

h��x� f��d
 �

Z

h��f�x�� g��d
�

Since f preserves 
� we have that
R

h��f�x�� g��d
 �

R

h��x� g��d
� Hence

R��f � g� � R��f� �R��g��

�

The following result is due to Bestvina and Handel� A proof can be found in
����� of 
F��� It is based on an important 	xed point theorem of Handel 
H���

���	� Proposition 
BH�� Suppose f is a homeomorphism of M � an oriented sur�

face of �nite type with genus � and Euler characteristic � �� If f is isotopic to the

identity and f has no interior �xed points then every periodic point x in the interior

of M has a non�zero homological rotation vector R�x� f� � H��M�R�� The same

conclusion is valid if the canonical lift F 
 fM � fM has no interior �xed points�
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�� The Mean Rotation Vector Relative to a Subset

In this section we consider the mean rotation vector of f restricted to a subset
of an open surface� In particular we consider the implications of its non�existence�
Suppose M is an open surface of 	nite type and f 
 M �M is a homeomorphism
leaving invariant a measure 
 which is homeomorphic to Lebesgue measure�

If K � M is a set of positive measure then the �rst return map g 
 K � K is
de	ned by g�x� � fn�x� where n is the smallest positive integer such that fn�x� �
K� By the Poincar�e recurrence theorem it is well de	ned for x in a subset of K of
full measure� We will use g to de	ne the mean homological rotation vector of f
relative to K� Note that we do not assume that K is invariant� For a subset of
full measure of K we can de	ne the loop hK�x� � hn�x� where n is the smallest
positive integer such that fn�x� � K� As before let 
hK�x�� denote the homology
class of hK�x��

����� De�nition� LetM be an open surface of 	nite type with non�positive Euler
characteristic� Suppose f 
M �M is a homeomorphism of the surfaceM which is
isotopic to the identity map and preserves a measure 
� The mean rotation vector
of f � relative to a Borel subset K � M � if it exists� is an element of H��M�R�
denoted R��f�K�� and is de	ned by

R��f�K� �

Z
K


hK�x��d
�

when this integral exists� If the integral does not exist then the mean rotation
vector relative to K is unde	ned�

In the case that M is an annulus it is necessary for a lift F of f to be chosen
in order for this mean rotation vector to be well de	ned� In this case will will
write R��F�K� �

R
K

hK�x� F ��d
� with the F added to 
hK�x� F �� to indicate the

dependence on this lift�
It is clear from the comments before ����� that ifK �M this reduces to the usual

de	nition since hK�x� � h��x� in this case� However� the following proposition
better illustrates the connection between this de	nition and ������

����� Proposition� Suppose f�K� and 
 are as in ����� and R��f� exists� If

B � 
�n��f
n�K�� then

R��f�K� �

Z
B

R�x� f�d
�

Proof� Let Un � K be the set of x � K such that n is the smallest positive integer
with fn�x� � K� De	ne a partition of B by

Vn � 
n��j�� f
j�Un��

The set B is invariant under f modulo a set of measure zero� by the Poincar�e
recurrence theorem� and B � 
�n��Vn� up to sets of measure zero� We can apply
the Birkho� ergodic theorem to f restricted to B and obtainZ

B

R�x� f�d
 � R��f jB� �

Z
B


h��x� f��d
�
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Since the sets Vn are pairwise disjoint and their union is B �up to measure zero��
we have Z

B


h��x� f��d
 �

�X
n��

Z
Vn


h��x� f��d
�

Since
n��X
j��


h��f
j�x��� � 
hn�x���

we conclude

Z
Vn


h��x� f��d
 �

n��X
j��

Z
fj�Un�


h��x� f��d


�

n��X
j��

Z
Un


h��f
j�x�� f��d


�

Z
Un


hn�x� f��d
�

It follows that

Z
B

R�x� f�d
 �

�X
n��

Z
Un


hn�x� f��d


�

Z
K


hK�x��d


� R��f�K��

�

The next result shows the existence of many 	xed points if there is a compact

subset K for which R��f�K� does not exist�

����� Proposition� Let M be an open surface of �nite type with negative Euler

characteristic and genus zero� Suppose f 
 M � M is a homeomorphism of the

surface M which is isotopic to the identity map and preserves a �nite measure 

homeomorphic to Lebesgue measure� If there is a compact subset K � M with


�K� � � such that R��f�K� fails to exist then f has in�nitely many �xed points�

In fact f has �xed points in in�nitely many Nielsen classes�

Proof� We 	rst observe that if R��f�K�� fails to exist then
R
K

hK�x��d
 must fail

to exist� M is a sphere with at least three punctures� Choose a basis for H��M�
represented by loops around all but one of the punctures� Since the vector function

hK�x�� is not integrable it must be the case that one of its component functions
with respect to the chosen basis is not integrable� Form an annulus A by 	lling in
all the punctures ofM except two � the one without a loop around it representing a
basis element� and the one whose loop corresponds to a non�integrable component
function of 
hK�x���
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There is a natural extension of f to f 
 A � A which 	xes the points added
at punctures and it is clear that if we consider 
 to be a measure on A then this
extended f preserves 
� Let p be one of the 	xed points added at a puncture and

let F 
 eA � eA be the lift of f to its universal covering space which 	xes ����p�
pointwise�

Note that for the annulus A we can de	ne the loop h��x� F � to be the image under
the inclusion i 
 M � A of the loop h��x� in M � We indicate the dependence on
F because when the mean rotation number exists for an annulus homeomorphism�
it depends on a choice of lift to the universal covering space� In our setting this
mean rotation number R��F � is equal to

R

h��x� F ��d
 if this integral exists� and

we identify H��A�R� with R�

Hence we have the measurable function 
h��x� F �� � H��A� and� as before� we can
de	ne 
hn�x� F �� and 
hK�x� F ��� We then have 
hK�x� F �� � i��
hK�x��� � H��A��
where i 
 M � A is the inclusion� so that

R
K

hK�x� F ��d
 fails to exist� because

i� is essentially projection onto the component of H��M� for which
R
K

hK�x��d


fails to exist� Since K � M � A has 	nite 
 measure this implies that 
hK�x� F ��
is essentially unbounded�

We can consider the other lifts of f 
 A � A to the universal covering space�

These are de	ned by Fm � Tm � F where T 
 eA � eA is a generator of the group
of covering transformations� Recall that the loop hn�x� F � in A is formed by the
paths �x and �fn�x� together with an arc from x to fn�x� which is the image under

� 
 eA � A of an arc from a point x� � ����x� to Fn�x��� We can de	ne a similar
loop using the lift Fm instead of F � More precisely let hn�x� Fm� denote the closed
loop in A obtained by concatenating the arc from the basepoint to x followed by

an arc from x to fn�x� which lifts to an arc in eA from y to Fn
m�y� followed by the

arc �fn�x� traced backwards from fn�x� to the basepoint�

For a full measure subset of the set K we can de	ne hK�x� Fm� to be hn�x� Fm��
where n is the least positive integer such that fn�x� � K� The function 
hK�x� Fm��
is then measurable and we will need the fact that it is integrable over K if and only
if hK�x� F � is� To establish this fact we consider the sets Un � K consisting of all
x in K with the property that n is the smallest positive integer with fn�x� � K�
Since they form a partition of K up to measure zero� to check integrability over K
it su�ces to consider it over each Un and show that the sum over n of the integrals
converges absolutely�

We note that

Z
Un


hK�x� Fm��d
 �

Z
Un


hn�x� Fm��d


�

n��X
j��

Z
fj�Un�


h��x� Fm��d
�

since

n��X
j��


h��f
j�x�� Fm�� � 
hn�x� Fm���
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Hence

Z
Un


hK�x� Fm��d
 �

n��X
j��

Z
fj�Un�


h��x� Fm��d


�

n��X
j��

Z
Un


h��f
j�x�� Fm��d


�

n��X
j��

Z
Un

�
h��f
j�x�� F �� �m�d


� nm
�Un� �

n��X
j��

Z
Un


h��f
j�x�� F ��d


� nm
�Un� �

Z
Un


hn�x� F ��d


� nm
�Un� �

Z
Un


hK�x� F ��d
�

Since the sets f j�Un�� for � � j � n� � are pairwise disjoint we conclude that
the sum

P
n n
�Un� converges �in fact to the measure of 
i��f i�K��� Hence it

follows that
R
K

hK�x� F ��d
 exists if and only if

R
K

hK�x� Fm��d
 exists� In the

instance at hand our hypothesis is that the 	rst of these integrals fails to exist
from which we conclude that

R
K

hK�x� Fm��d
 fails to exist for all m� In particular

the functions 
hK�x� Fm�� are unbounded� For de	niteness we suppose they are
unbounded above� The other case can be treated similarly�

We will use this fact to conclude that for in	nitely many m the lift Fm 
 eA� eA
possesses a 	xed point� The image of these points in A are all 	xed and are all in
di�erent Nielsen classes for f 
 A� A�

Suppose to the contrary that Fm has a 	xed point for only 	nitely many m� This
implies that some lift f� 
 A� � A� of the homeomorphism f to a 	nite cover is

	xed point free� This is because the 	nite cover A� is the quotient of eA by some
covering translation T k and if f� is the lift to A� corresponding to Fp then a 	xed

point for f� would correspond to a point z � eA such that F �z� � T ik�p�z� for some
i and hence would be a 	xed point of F�ik�p� Clearly no such z exists if p is chosen
so that Fp has no 	xed points and k is chosen so large that Fjk�p has no 	xed
points for any j�

Choose a negative value m� less than any m for which Fm has a 	xed point
and so that m� is a multiple of k� Let G � Fm�

� By Lemma ����� �applied to
f� 
 A� � A� which is 	xed point free� there is a complete Riemannian metric on

A� which lifts to a metric on eA with the property that d�x�G�x�� � � for all x � eA�
Let � � � be less than ���� Since K is compact by Proposition ������ there is an
N � � with the property that for each x � A there is a ��chain of length less than
N from the basepoint b� to x and a ��chain of length less than N from x to b�� Let
p be a 	xed point of f 
 A � A� for example one of those which were inserted at
a puncture� Then perhaps enlarging N we can assume there is a ��chain of length
less than N from the basepoint b� to p and a ��chain of length less than N from p
to b��
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Choose b � ����b��� If � is su�ciently small each ��chain in A will lift to a unique

��chain in eA for G� For any compact set J in A there is a uniform upper bound� say
D� for the distance between the start and end of such a lift of an ��chain for f of
length at most N which begins in J � We will consider the case that J � K
fp� b�g�

We wish to construct two ��chains for G
 one from b to T r�b� for r � � and one
from b to T s�b� for s � �� Let D� be an upper bound for the length of the arcs �x
for x � J� There is a constant C � � such that every loop in A of length D �D�

represents a homology class with size less than C �if we identify H��A�R� with R��

To construct the 	rst of the two desired ��chains choose a point x � K for which

hK�x�G�� � �C� Lift an ��chain from b� to x to one from b to a point y � ����x��
Now hK�x�G� � ��Gn�y�� for some n and we extend the ��chain by letting it be
the G orbit of y from y to Gn�y�� Finally we extend the ��chain further by lifting
an ��chain from ��Gn�y�� to b� to one starting at Gn�y� and ending at a point in
����b��� i�e�� T

r�b� for some r� Since 
hK�x�G�� � �C and the two segments of
��chain on the two ends of the G orbit can each alter this homology class by at
most C we can conclude that r � C � ��

The second desired ��chain is easier to construct� Recall that G � Fm�
and

m� � � is less than any m for which Fm has a 	xed point� Since p is a 	xed point
for f it follows that if q � ����p� then G�q� � T a�q� for some a� If m� is su�ciently
negative� a � �� Hence Gn�q� � T an�q� for all n� For n su�ciently large that the
integer an is less than ��C we can use the G orbit of a point in ����p� for an
iterates together with ��chains for G lifted from ��chains from b� to p and from p
to b�� to create a ��chain from b to T s�b� where s � ��

Concatenating jsj translates of copies of the 	rst we can construct an ��chain from
b to T rjsj�b�� Similarly using r translates of copies of the second we can construct

an ��chain from T rjsj�b� to b� This is then a periodic � chain for G 
 eA � eA� It
then follows from Lemma ����� that we can alter f� by an isotopy which can be

lifted to eA giving a new map G� 
 eA� eA which has a periodic point� Since G� has

a periodic point and eA is homeomorphic to R� it follows that G� has a 	xed point
by the Brouwer plane translation theorem �
F�� for example�� But this gives rise
to a contradiction since �also by Lemma ������ d�G�x�� G��x�� � ��� for all x so a
	xed point z for G� would satisfy

d�G�z�� z� � d�G�z�� G��z�� � d�G��z�� z� � ����

And this clearly contradicts the property that d�G�x�� x� � � for all x established
above�

Thus we have contradicted the assumption that Fm 
 eA � eA has a 	xed point
for only 	nitely many m� Hence there is an in	nite collection of 	xed points for

these lifts� These 	xed points project under � 
 eA� A to 	xed points for f � These
	xed points are all in di�erent Nielsen classes for f 
 A � A as di�erent lifts of f
	x their inverse image under �� Hence they are distinct points� In	nitely many of
them must be in M � A as A nM is 	nite� These will be 	xed points in distinct
Nielsen classes for f 
M �M�

�
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����� Theorem� Let M be an open surface of �nite type with negative Euler char�

acteristic and genus zero� Suppose f 
M �M is a homeomorphism of the surface

M which is isotopic to the identity map and preserves a �nite measure 
 homeo�

morphic to Lebesgue measure� If there is a compact subset K �M with 
�K� � �
such that R��f�K� is non�zero then f has in�nitely many periodic points�

Proof� The surface M is topologically a sphere with at least three punctures� We
want to construct a homeomorphism of an annulus A by compactifying all but two
of the punctures� i�e�� to remove all but two of the punctures by adding a point
at each puncture to be removed� The homeomorphism f can be extended to a
homeomorphism g of A by making each of the added points be a 	xed point� If P is
the set of these added 	xed points then g 
 A� A is isotopic to the identity relative
to the set P � Clearly g preserves a measure 
 on A homeomorphic to Lebesgue
measure� It su�ces to 	nd in	nitely many periodic points for the homeomorphism
g 
 A� A�

If K is a compact set with R��f�K� non�zero then there is a choice of the set
of punctures to 	ll in with the property that i��R��f�K�� 
� � � H��A�R� where
i 
 M � A is the inclusion� Moreover i��R��f�K�� � R��g�K�� We need to make
a comment about the de	nition of R��g�K�� since g is de	ned on the annulus A
and there is not a canonical isotopy from g to the identity �which was used in the
de	nition of rotation vector�� Clearly the one to use is the extension to A of the
isotopy on M from f to the identity� or� in fact� any isotopy relative to P of g to
the identity�

Assume now that R��g�K� is positive �we identify H��A�R� with R�� Then since
R��g�K� �

R
K

hK�x��d
 � � it follows from the ergodic decomposition theorem

that there is a Borel measure � on A which is ergodic with respect to g and withR
K

hK�x��d� � ��
Let T 
 K � K be the 	rst return map under g� Then by the Birkho� ergodic

theorem


� � lim
m��

�

m

m��X
i��


hK�T
i�x��� ���

exists and is independent of x for � almost all x � K� Also this theorem asserts
that

� � 
� �

Z
K


hK�x��d� � 
hK�x���

for � almost all x � K�
Now for each x � K for which the limit above exists and equals 
� we can

consider the integer valued function n�m� de	ned by gn�m��x� � Tm�x�� It depends
on x� Note that if EK is the characteristic function of K then

n�m�X
i��

EK�g
i�x�� �

mX
j��

EK�T
j�x�� � m�

Hence

�

n�m�

n�m�X
i��

EK�g
i�x�� �

m

n�m�
�
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Another application of the Birkho� ergodic theorem tells us that

lim
n��

�

n

nX
i��

EK�g
i�x�� � ��K�

for � almost all x and consequently

lim
m��

m

n�m�
� ��K� ���

for � almost all x� We now de	ne 
hK�y�� to be � for y �� K �it is already de	ned
for y � K� and observe that for a 	xed x for which equations ��� and ��� above are
valid� we have

lim
n��

�

n

n��X
i��


hK�g
i�x��� � lim

m��

�

n�m�

m��X
i��


hK�T
i�x���

� lim
m��

m

n�m�

�

m

m��X
i��


hK�T
i�x���

� ��K�
� � �

for � almost all x � A�
Note that whenever y� gj�y� � K and gi�y� �� K for � � i � j we have


hK�y�� �

j��X
i��


h��g
i�x����

From this it follows that whenever x� gn�x� � K we have

n��X
i��


hK�g
i�x��� �

n��X
i��


h��g
i�x����

Thus if we de	ne

��x� n� g� �

n��X
i��


h��g
i�x�� g��

and consider any subsequence nj satisfying g
nj �x� � K we observe that for � almost

all x � A

lim
j��

�

nj
��x� nj � g� � ��K�
� �

Of course the subsequences fnjg would be di�erent for di�erent values of x� but
such subsequences exist for � almost all values of x�

There is a geometric interpretation of the quantity ��x� n� g�� Let G 
 eA� eA be
the lift of G to its universal covering space obtained by lifting our chosen isotopy
from g to the identity� i�e�� G is the lift which 	xes the lifts of the puncture points
we added to M to get A� Then ��x� n� g� is equal to �Gn�x�� � x��� where the
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subscript � indicates the 	rst component in eA � R � ��� �� and x� is a lift of the
point x�

Suppose now that p is a positive integer such that p��K�
� � � and fnjg is a
sequence satisfying gpnj �x� � K� Then

lim
j��

�

nj
��x� nj � g

p� � lim
j��

p
�

pnj
��x� pnj � g� � p��K�
� � ��

Hence

lim
j��

�

nj
�Gpnj �x��� x��� � p��K�
� � ��

If we de	ne H 
 eA � eA to be the lift of gp given by H�t� s� � Gp�t� s� � ��� �� for

�t� s� � R � ��� �� � eA then

lim
j��

�

nj
�Hnj �x��� x��� � p��K�
� � � � �� ���

If z� � �t�� s�� is one of the 	xed points of G in eA then H�t�� s�� � �t� � �� s���
Thus any su�ciently small disk around z� will be a negatively returning disk for
H � Also if x was chosen to be a recurrent point for gp and the sequence nj chosen
so that lim gpnj �x� � x then it follows from equation ��� that any su�ciently small
disk containing x� will be a positively returning disk for H �

It then follows from Theorem ����� that H has a 	xed point and hence that g
has a periodic point� Clearly the rotation number with respect to g of this periodic
point is ��p� Since p was any su�ciently large positive integer we conclude that g
has in	nitely many distinct periodic points�

�

The mean rotation relative to a compact set K satis	es a result analogous to
Proposition ������ if we assume that one of the homeomorphisms is supported on
K�

���	� Proposition� Suppose f and � are homeomorphisms ofM which are isotopic

to the identity and preserve a �nite measure 
 homeomorphic to Lebesgue measure�

Suppose that K is a compact subset of M with 
�K� � � and ��x� � x for all

x �M nK� Then

R��� � f�K� � R����K� �R��f�K��

if the two integrals in the right hand side of this equation exist�

Proof� Let g 
 K � K be the 	rst return map with respect to f � It is de	ned for
a subset of K of full measure� Then the 	rst return map for � � f is � � g since �
is the identity outside K and ��K� � K�

Note that if x � K and n is the smallest positive integer such that fn�x� � K�
�i�e�� if fn�x� � g�x�� then

�� � f�n�x� � � � fn�x� � � � g�x��
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The loop hK�x� � � f� is equal to hn�x� � � f�� It is homotopic to the concatenation
of the loops hn�x� f� and h��f

n�x�� ��� which is the same as the concatenation of
the loops hK�x� f� and h��g�x�� ���

Thus 
hK�x� � � f�� � 
hK�x� f�� � 
h��g�x�� ���� and

Z
K


hK�x� � � f��d
 �

Z
K


hK�x� f��d
 �

Z
K


h��g�x�� ���d
�

Since g preserves 
� we can conclude that
R
K

h��g�x�� ���d
 �

R
K

h��x� ���d
� Also


h��x� ��� � 
hK�x� ���� since the 	rst return map for K under � is � itself� Hence

Z
K


hK�x� � � f��d
 �

Z
K


hK�x� f��d
�

Z
K


hK�x� ���d
�

or

R��� � f�K� � R����K� �R��f�K��

�

�� The Open Annulus

In this section we prove our main result� Theorem ����� below� that an area
preserving homeomorphism of the open annulus which is isotopic to the identity
and has at least one 	xed point must have in	nitely many�

We will consider the vector space H��M�R� and arbitrarily choose a norm k k

on it� If fM is the universal covering space of M we denote by F 
 fM � fM the

canonical lift of f which 	xes the �ends at in	nity� of fM� We will identify ���M�
with the group of covering transformations for the universal cover� For any element
	 � ���M� we will denote the homology class it determines by 
	��

����� Lemma� Let M be a surface obtained by deleting k points from a sphere

where k � �� Let 
 be a �nite measure homeomorphic to Lebesgue measure on M �

Suppose f 
 M � M is a homeomorphism which is isotopic to the identity and

preserves the measure 
� Suppose � is an oriented embedded simple closed curve in

M� Let � 
 fM �M be the universal covering of M and let x� � fM� Given �� � � �
then either

i� f has a periodic point� or

ii� there exists a positive integer P � an element 	 � ���M�� and an ��chain

for F 
 fM � fM from x� to 	�x�� satisfying

����
��� 
	�

P

���� � ��

The ��chain can be with respect to any metric on fM obtained by lifting a

complete Riemannian metric on M�
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Proof� Let K be an annulus which is a tubular neighborhood of the embedded
curve �� Construct a 
 preserving �ow �t on M supported in the interior of K and
with each non�trivial orbit a circle �parallel� to � and oriented the same as �� The
existence of such a �ow is a consequence of the fact that up to homeomorphism 

on K is equivalent to Lebesgue measure on a standard annulus of the same area�
It is then clear from the de	nition that R���t� � R���t�K� � H��M�R� is equal
to tk
�� for some positive constant k�

We note that by Proposition ������ if R��f�K� does not exist� then f has in	n�
itely many 	xed points so option i� of our conclusion holds� Hence we may assume
that R��f�K� exists� Then by Theorem ������ if R��f�K� 
� � it follows that f
has in	nitely many periodic points so again option i� holds� Hence without loss of
generality we may assume that R��f�K� � ��

Choose s � � su�ciently small that d��s�x�� x� � ��� for all x � M� Note
R���s� � R���s�K� � sk
���

By Proposition ������ if g � �s � f � then R��g�K� � sk
�� �R��f�K� � sk
���
Also d�g�x�� f�x�� � d��s�f�x��� f�x�� � ���� In other words any orbit segment for
g is a ��chain for f�

The remainder of the argument is almost the same as the proof of ����� of 
F���
We give it for completeness and because the minor but frequent changes in the
proof would be di�cult to enumerate� If we let T denote the 	rst return map for
K under g and de	ne

RK�x� g� � lim
N��

�

N

N��X
i��


hK�T
i�x���

then the Birkho� ergodic theorem asserts that RK�x� g� exists for 
 almost all
x � K and Z

K

RK�x� g�

sk
�K�
d
 � 
���

This integral �like any integral� can be approximated by a weighted average of
values of the integrand� That is� there exist m points x�� x�� � � � � xm � M and
positive constants bi such that�����
���

mX
i��

biRK�xi� g�

����� � �

�
� ���

We can� of course� assume that each bi is rational� Moreover� we can assume
that each xi is recurrent under T �and hence g� since by the Poincar�e recurrence
theorem this is true for a set of full measure in K�

It follows then that for any yi � ����xi� there is an arbitrarily long ��chain for F
from yi to some translate 	i�yi�� 	i � ���M�� This ��chain is obtained by lifting g

to G 
 fM � fM and de	ning the ��chain to be yi� G�yi�� G
��yi�� � � � � G

k���yi�� 	i�yi��
where k is chosen so that d�gk�xi�� xi� � ��� and the last point on the chain� 	i�yi��
is within ��� of Gk�yi� and so that gk�xi� � K so gk�xi� � T j�xi� for some j� We
denote this ��chain by Di�

If j �and hence k� the length of Di� is su�ciently large then���� 
	i�j �RK�xi� g�

���� � �

�mbi
�
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If we concatenate Di with an appropriate translate of itself n times we obtain an
��chain for F � denoted Di�n�� from yi to 	

n
i �yi�� with length nk and such that

���� 
	ni �jn
�RK�xi� g�

���� � �

�mbi

or� ���� qi
	
n
i �

len�Di�n��
�RK�xi� g�

���� � �

�mbi
� ���

where qi � k�j�
If x� is any point in K then by ����� there is an ��chain for f from x� to xi and

one from xi to x�� Choosing lifts of these to ��chains for F in fM we can obtain
an ��chain from some point zi � ����x�� to yi and from 	ni �yi� to some covering
translate of zi� Since the choice of the starting point yi � ����xi� of Di and Di�n�
was arbitrary� we can assume they were chosen so that zi � y� for some y� � ����x��
independent of i� If we concatenate the ��chain from y� to yi with Di�n� and then
with the ��chain which is a lift of the one for f from xi to x� we obtain an ��chain
for F which we denote Ci�n�� from y� to a translate of y� �say by the element
�i�n� � ���M��� with several desirable properties� First len�Ci�n��� len�Di�n�� is
bounded above by a constant independent of n and i� since this di�erence is just
the sum of the lengths of the ��chain for f from x� to xi and the one from xi to
x�� Thus from the de	nition of �i�n� it follows that k
�i�n�� � 
	ni �k has an upper
bound independent of n and i� From these two facts it follows that

lim
n��


�i�n��

len�Ci�n��
� lim

n��


	ni �

len�Di�n��
�

It then follows from ��� that if we choose n� su�ciently large� then

���� 
qi�i�n���

len�Ci�n���
�RK�xi� g�

���� � �

�mbi
� ���

for all � � i � m�
Let P be a large integer chosen so that Bi � Pbiqi�len�Ci�n��� is an integer for

� � i � m� Then multiplying the inequality ��� by Pbi gives

kBi
�i�n���� PbiRK�xi� g�k �
P�

�m
�

for all � � i � m�
Hence �����

mX
i��

Bi
�i�n���� P

mX
i��

biRK�xi� g�

����� � P�

�
� ���

If we concatenate each of the ��chains Ci�n�� with themselves Bi times and con�
catenate the resulting ��chains in order as indexed by i� we obtain an ��chain for F
from y� to 	�y�� where

	 � �m
i���i�n��

Bi �
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so 
	� �
Pm

i��Bi
�i�n���� Dividing equation ��� by P we get

����� 
	�P �
mX
i��

biRK�xi� g�

����� � �

�
�

which together with equation ��� implies

����
��� 
	�

P

���� � ��

�

����� Lemma� Let M be a surface obtained by deleting k points from a sphere

where k � �� Let 
 be a �nite measure homeomorphic to Lebesgue measure on

M � Suppose f 
 M � M is a homeomorphism which is isotopic to the identity

and preserves the measure 
� Let fM be the universal covering space of M and let

x� � fM� Given �� � � �� then either

i� f has a periodic point� or

ii� there exists an element 	 � ���M�� and an ��chain for F 
 fM � fM from

x� to 	�x�� satisfying 
	� � � � H��M�� The ��chain can be with respect to

any metric on fM obtained by lifting a complete Riemannian metric on M�

Proof� Choose a set of oriented embedded simple closed curves f�ig such that �
is in the interior of the convex hull of f
�i�g in H��M�R�� By Lemma ������ applied
to each �i� either f has a periodic point or there exist Pi and 	i with an ��chain for
F from x� to 	i�x�� such that � is in the interior of the convex hull of f
	i��Pig in
H��M�R�� From this it follows that � is in the interior of the convex hull of f
	i�g
or equivalently there are positive integers ni such that

X
i

ni
	i� � ��

We now concatenate n� translates of the ��chain corresponding to 	� to give
an ��chain from x� to 	n�� �x��� We follow this with n� translates of the ��chain
corresponding to 	� �starting at 	n�� �x�� and ending at 	n�� 	n�� �x��� etc� When
this is all done we have a ��chain from x� to 	�x�� where

	 � �i	
ni
i

and hence

	� �

X
i

ni
	i� � ��

�

We can now state and prove our main result�
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����� Theorem� Let 
 be a �nite measure homeomorphic to Lebesgue measure on

the open annulus A � S� � ��� ��� Suppose f 
 A � A is a homeomorphism which

preserves the measure 
� If f has one periodic point then in fact it has in�nitely

many periodic points�

Proof� Since some power of f will be isotopic to the identity and proving this result
for f is the same as proving it for some positive iterate� we can assume without loss
of generality that f is isotopic to the identity map on A�

We will argue by contradiction� assuming f has 	nitely many periodic points
and then proving the existence of at least one more� If f has 	nitely many periodic
points then there is a positive integer n such that fn has 	nitely many 	xed points
�at least one� and no other periodic points�

Since proving our theorem is equivalent to proving it for fn we can� without loss
of generality� assume that f has a 	nite� non�empty 	xed point set and no other
periodic points�

Let M denote A with all these 	xed points deleted� M is topologically a sphere
with 	nitely many �at least three� punctures� Both the measure 
 and the home�
omorphism f restrict to M and will be denoted in the same way they were for A�
Clearly any periodic points of f 
 M �M are periodic points for f 
 A� A�

It follows from Proposition ����� of 
F�� that there is an m so that fm 
M �M
is isotopic to the identity� So� again replacing f with fm� we may assume without
loss of generality that f is isotopic to the identity on M�

Using Lemma ������ choose a Riemannian metric so that d�F �x�� x� � � for all

x and choose � � �� where F 
 fM � fM is the canonical lift of f to its universal
cover�

By Lemma ����� either f has a periodic point �a contradiction� or for this Rie�
mannian metric onM and this � there exists an element 	 � ���M�� and an ��chain

for F 
 fM � fM from x� to 	�x�� satisfying 
	� � � � H��M�� We will show that
this also leads to a contradiction�

Clearly the projection of the ��chain for F into M via the covering map gives
an ��chain for f 
 M � M� Applying Lemma ����� to this� we obtain a new

map g � h� � ef with the property that the canonical lift G 
 fM � fM satis	es

Gn�y�� � 	�y�� for some n � � and y� � fM near to x��
This implies that y� the projection of y� inM � is a periodic point of of g of period

n� The homeomorphism G has no 	xed points since by the triangle inequality

d�G�z�� z� � d�F �z�� z�� d�G�z�� F �z�� � �� � � �

for all z � fM� Also since 
	� � � � H��M� it follows that the homological rotation
vector R�y� �� � � � H��M�R�� But this contradicts Proposition ������ �

Theorem ����� was claimed in 
F�� for both the open and closed annulus� But the
proof given there contained a gap in the case of the open annulus� It was valid for the
closed annulus� The error in that proof was the assumption that the mean rotation
vector for an annulus homeomorphism always exists �this assumption is true for the
closed annulus�� The author also wishes to take this opportunity to point out that
the same error occurs in Corollary ����� of 
F�� which claims that given any area
preserving homeomorphism of the open annulus isotopic to the identity there is a
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dense set of rigid rotations such that the given composition of one of these rotations
followed by the given homeomorphism will have a periodic point� The proof given
is valid only if the mean rotation vector of the given homeomorphism exists and
the validity of the general case is unknown to the author�
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