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DIFFERENCE SCHEME FOR AN INTERFACE
PROBLEM FOR SUBDIFFUSION EQUATION

Aleksandra Delié¢, Sandra Hodzi¢ and Bosko S. Jovanovié

Abstract. An implicit finite-difference scheme for numerical approximation of an initial-
boundary value problem with an interface for a two-dimensional subdiffusion equation with vari-
able coefficients is proposed. Its stability is investigated and the corresponding convergence rate
estimate is obtained. In a special case an efficient factorized scheme is proposed and investigated.

1. Introduction

Fractional partial differential equations have become increasingly popular in
recent years. Such equations are used as models for diverse physical and chemical
processes, especially those that exhibit memory type effects: anomalous diffusion,
turbulent flow, chaotic dynamics, processes in media with fractal geometry, disor-
dered materials, viscoelastic media etc. (see [10, 16, 17]).

Interface problems arise in different situations, for example: in the heat transfer
process in composite materials, in transmission and diffraction processes etc. They
are characterized by non-zero jump of the flux across the given interface (line or
surface). Such jumps can be modelled by various types of conjugation conditions
or involving singular distributions in the coeflicients of partial differential equation
(see [12, 14, 18, 21)).

In this article we consider the first initial-boundary value problem for a two-
dimensional fractional in time diffusion equation with variable coefficients. A Dirac
distribution concentrated at the line interface is involved in the coefficient of the
time fractional derivative. We note that the first space derivatives of its solution
may have discontinuities across the given interface. The problem is approximated
by an implicit finite difference scheme and its stability and convergence are inves-
tigated. In the case when the coefficient of the Dirac distribution is constant an
efficient factorized scheme is proposed and investigated.
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The paper is organized as follows. In Section 2 we introduce the notion of frac-
tional derivatives. In Section 3 we define the first initial-boundary value problem
for a two-dimensional fractional in time diffusion equation with variable coefficients
and prove existence and uniqueness of its weak solution. In Section 4 we define the
simplest implicit finite difference scheme approximating the considered problem
and prove its stability. Section 5 is devoted to the investigation of the convergence
of the implicit difference scheme. In Section 6 an efficient factorized difference
scheme for the numerical solution of the considered initial-boundary value problem
is proposed and investigated.

2. Fractional derivatives

Let u be a function defined on a nonempty bounded interval [a,b] and let
k—1<a<k, ke N. The left Riemann-Liouville fractional derivative of order «
is defined as [17]

1 dk [t u(s
Dy u(t) = mﬁ/a (t—sga)“—kds’ t>a, (1)

where the I'(-) is the Gamma function. The right Riemann-Liouville fractional
derivative is defined analogously

o —1)k gk P u(s
Dy u(t) = I‘Ek—)a)dt’“/t (s—tga)*‘l—kds’ t <b.

For a = k—1 from (1) it immediately follows that Dg;l (t) = u*=V(t). Moreover,
under some natural assumptions, lima_x DS, u(t) = u®(t) (see [17]).

The Caputo fractional derivative is obtained by interchanging the derivative
and integral operators in (1)

L )
CDa+u() F(k—a)/a (t—s)“‘“‘kds'

For sufficiently smooth u(t) the following relation holds

k=1 (x —a)i—®
Dy, u(t) = “ D ult) + ;0 U(J)(a)m-
In particular, D2, u(t) = “D& u(t) if u(a) =u'(a) =--- =uk~V(a) = 0.

Let us mention some result that will be used in the sequel.
Fractional derivatives satisfy the semigroup property, unlike classical ones, only
under certain additional assumptions [17]. For example, for continuous functions:
D2, DY u(t) = DI Pu(t) if 0<a,8<1, wua)=0. (2)
Let 0 < a <1, and let u(t) and v(t) be continuously differentiable functions.
Then:
(D;’+u, 'U)Lz(a,b) = (u, Dbai’l))Lz(a’b) . (3)
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Let a > 0 and let v be an infinitely differentiable function in R, with supp u C
(a,b). Then (see [5]):

(DG u, Dy w)p2(qp) = cosma ||Dg+uH%2(a,+oo) . (4)

For functions of several variables, partial fractional derivatives are defined in

an analogous manner, for example

. 1 ok [t u(x,s)
6t7a+u($’t):mw/ mdS, ]{;_1SOK<]€, k‘GN

3. Problem formulation

Let 0 < a <1, Q= (0,1) x (0,1), ' = 9Q and Q = Q x (0,T). We shall
consider the time fractional diffusion equation

(1+K65) tOjO+u+£u:f(xat)7 x:(x17x2)607 tE(OaT) (5>

subject to homogeneous boundary and initial conditions

u(z,t)=0, zel, te(0,T), (6)
u(z,0) =0, z€Q, (7)
where L is an elliptic operator with variable coefficients
20 ou 2 ou 8(biu)
Lu=—
s (i) B T

and dg(x) = 6(xo — 1/2) is the Dirac distribution concentrated on the straight line
S: To = 1/2

Notice that the presence of the Dirac distribution in equation (5) causes a
discontinuity of the first space derivatives of the solution across the interface S. An
analogous problem for av = 1 is considered in [9].

Let us denote Q= = (0,1) x (0,1/2), @t = (0,1) x (1/2,1) and QF = QF x
(0,T). Using the theory of generalized functions equation (5) reduces to

Ooru+ Lu= f(z,t) in Q and QF, (8)

while on S, in the case when f(xz,t) does not contain a term with dg, we obtain
the following conjugation conditions (comp. [9]):

[u]ls = u(x1,1/2 +0,t) — u(x1,1/2—=0,¢) =0 (9)
and 5
N u
K Ooru 23=1/2 [ Z 925 8xj} (10)

We assume that the coefficients of equation (5) satisfy the standard ellipticity
assumptions
K e LOO(S), K> Ky >0, Q55 b;, c € LOO(Q), c>0, ;5 = Qji,
2 2 5 2 (11)
> oai& >0 & Q. §=(6,8) ERE ¢ >0.
i=1

4,5=1
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In the sequel by C' we shall denote a positive generic constant which does not
depend on the solution of the initial-boundary value problem and the discretization
parameters and which may take different values in different formulas.

As usual, with C*(Q), C*(Q), k € Ny = NU {0}, we denote the spaces of
k-fold differentiable functions, with L?({2), p > 1, the Lebesgue spaces, while with
H*(Q), H*(Q) = H$(Q), o > 0, we denote the Sobolev spaces [1]. For a > 0 we
further set

lulcefay) = [Dasullcay,  luleaiay = D5 ullcra,b),
2 2 2
Hu”C;é[a,b] = ||U’Hcf[a]*[a,b] + |U|C§’;[a,b]7
ulte @b = 1Darullz@e),  lulae@p = 1D ull2(ap),
2 2 2
”u”Hi(a,b) = Hu||H[&]7(a,b) + |U‘H§":(a,b)7

where [a]” denotes the largest integer < «. Then we define C¢[a,b] as the space
of functions u € Cl*" [a,b] with finite norm ullcgap)- The space HE(a,b) is

defined analogously, while the space H¢ (a, b) is defined as the closure of C*(a, b) =
C5°(a, b) with respect to the norm || - [[r¢ (4,p)- Since for a = k € Ny the fractional

derivative reduces to the standard k-th derivative, we have C% [a,b] = C*[a, b] and
HE (a,b) = H*(a,b).
The next result holds:

LEMMA 1. (see [11]) For a > 0, o # k+ 1/2, k € Ny, the spaces Hﬁ(a,b),
H*(a,b) and H*(a,b) are equal and their norms are equivalent.

For vector valued functions mapping a real interval [0,7] or (0,7) into a Ba-
nach space X we introduce the spaces C*([0,T], X), k € Ny and H*((0,T), X),
a > 0, in the usual way [13]. In an analogous manner we define the spaces
Ce(]0,T],X) and H((0,7), X).

Let L?(€2) be the space of functions defined on Q, with the inner product
(0, W) 2 () = (1, W) L2(0) + (0, W) L2(5)-
For functions defined on @ =  x (0,T), we define the space L2(Q) = L*((0,T),
L?(2)), with inner product
(v,w)iz(Q) = (v,w)r2(@) + (v,w)r2(x), Y =5x(0,T).

Finally, for «, 8 > 0, we introduce the anisotropic Sobolev type spaces:

HP(Q) = L*((0,T), H*()) N H?((0,T), L*(%2))
and

$7(Q) = L*((0,T), H*()) N HL((0,T), L* ().
Notice that for 0 < 8 < 1/2: HY?(Q) = H*?(Q) = H*#(Q).

Taking the inner product of equation (5) with a test function v and formally
applying partial integration and relations (2)—(4) one obtains the following weak
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formulation of the problem (5)-(7): find u € H“/2(Q) = L*((0,T), H*()) N
H/2((0,T), L?(Q)) such that

a(u,v) =1(v), Yo € szl’a/Q(Q)7

where
2 ou Ov
_ 8&/2 8a/2 Kaa/Z 8&/2 i 2
a(u,v) (t’0+u’ t’T’v)L"’(Q)—i_( Lo+ t’Tiv)LQ(E)—i_i,jZ::l aJ@xj’@fvi L2(Q)
2 ou ov
+ —, b — [ =, b + ,
Z;K@xz W>L2(Q) <5$¢ zu) L2(Q):| (e U)LQ(Q)
and

l(v) = (f, ”)L2(Q) :
It is easy to check that the problem (8)—(10), (6), (7) has the same weak for-
mulation. In such a manner, problems (5)—(7) and (8)—(10), (6), (7) are equivalent.

LEMMA 2. Let a € (0,1), f € L?(Q) and let the assumptions (11) hold. Then

=~ 1l,a/2
the problem (5)—(7) is well posed in H (Q) and its weak solution satisfies a
priort estimate

lull .20y < Clllz2()- (12)

The proof follows immediately using relations (2)—(4), (11) and the Lax-
Milgram lemma.

It immediately follows from (12) that the a priori estimate

[ull 1.ar2(g) < CllflIL2@)

in the weaker norm [13] is

T
o = / (@ = ) )22 gy + I )]

4. Finite difference approximation — implicit scheme

In the area Q = Q x [0,7], we define the uniform mesh Qp, = Qp, x Q,,
where Q) = {(z1;,22;) = (ih,jh)|i,7 = 0,1,...,2n; h = 1/2n} and Q, = {t; =
kr|k = 0,1,...,m; 7 = T/m}. We also define Q;, = Q, N Q, Ty, = Qp \ O,
Qup = Q,N(0,1]%x(0,1), Qo = 2,N(0,1)x(0,1], S, = Q,NS, S, = SL,U{(0,1/2)},
Q, =0, n(0,7), Q- =0, N[0,T), 2F =Q, N(0,T] and Sy, = Sy x Q. We will
use standard notation from the theory of the finite difference schemes (see [19]):

’U:’U(Z‘,t), ’lA}:’U(Z‘,t—FT), ’Uk:’U(Z‘,tk), -1::(-/1313332) tha tEQT,

hi7t - 7t ..
vmi:v(m—i— ¢ h) vl ):vfi(a;—hei,t), e, =(2—-1,1—1).
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For a function u defined on @) which satisfies a homogeneous initial condition,
we approximate the left Riemann-Liouville fractional derivative Of',u(z,tx) by
(see [4]):

1
I'2—-a)

k—1
(0704 ,u) = lzo(t};? — 47 b

The next result holds:

LEMMA 3. (see [20]) Suppose that u € C?([0,T],C(Q)), t € QF and u(z,0) =
0. Then
O*u

1 11—« 22—«
w(%s)

11—« 12 +2—a

10701t — 0oy +ul < i@ —(1+ 2‘“)} max )

0<s<t

We approximate the initial-boundary value problem (5)—(7) with the following
implicit finite difference scheme:

(14 K6s,) (000, 0) + Liob = f5, 2€Q, k=1,2,...m,  (13)
subject to homogeneous boundary and initial conditions:
v(z,t) =0, (z,t) €T xQF,

(@.) =0, (a.t) €Ty »

v(z,0) =0, z€Q,

where it is denoted

2
> [bivfi +b;v, + (biv)z, +(biv)zi] +cv
i=1

N |

1 2
Lpo==5 3 [(@ijvz;)e; +(aijva;)z ] +

ij=1

and 0 0\ S
) T €y \ Op,

1) =4 —1/2) =
s, (%) = o (2 — 1/2) {1/h7 s € Sh.

When the right-hand side f is a continuous function, we set f = f, otherwise
we must use some averaged value, for example f = TZT3f, where Ty and Ty are
Steklov averaging operators:

1/2
Tif(x,t) = T; f(x+0.5he;, t) = T;F f(x—0.5he;, t) = f(z+hse;,t)ds, i=1,2.
—1/2

Analogously, we set ¢ = c or ¢ = TT3c.

We define the following discrete inner products and norms:

(”U,”LU)h = (vaw)LQ(Qh) = h2 Z vw, ||UH}2L = ”UH%Z(Q,L) = (Uav)ha

TEQY,
(U7w)ih = (v7w)L2(Qz‘h) = h? % vw, ||v||12h = ||U||%2(Qih) = (U7U)iha i=1,2,
r€8in
(U’w)L2(Sh) =h E vw, HU”QL?(Sh) = (U7U)L2(Sh)a
xGSh

[o(x) — v(a")|?

|1 — @2

‘Uﬁqlm(sh) =h* Y >

z€S, z'€S, , v'#x

)



304 A. Deli¢, S. Hodzié¢, B.S. Jovanovié

(an>f,2(52h) = <U7w)L2(Qh) + (’va)LQ(Sh)v ||U||%2(Qh) = (va)f,Q(Qh)a
|’U|12L11(Qh) = [lvz, 1T + vz, 135, HU”%P(Qh) = |U|?L11(Qh) + [l
m m
01172 = Tk; [0*117, 1ollF2 g,y = T’; [[0* 13,

m
2 _ k|2
012,y =7 X 10413
H 2 _ - k|2 2 _ s k|2
U”L?(Eh,) - Tkgl HU HLZ(Sh)7 |U|L2(Q,;H1/2(Sh)) - Tkzl |U |H1/2(Sh)’

m m k
HUH%L‘””(QM—) - Tkz1 Hvkllip(gh) + Tk¥1 ( SOJF’T(HUHLZ Qh))> ’

For every function v(-,t) defined on the mesh €., which satisfies the initial
condition v(-,0) = 0, the following equality is valid (see [4])

1 i 11—« l—a k\2
21 (tm7k+1 - tmfk) (v%)%.

k
TZ(tO+T( )) :1“(27

— Q) =
In particular, from here it follows that the norm [[v[|g1.a/2(q, ) is well defined. It
can be treated as the discrete analogue of || - || g1.a/2(g), since
(L—a)T(T — 1) @ < th % =t S < (L= a)r(T —t),) ™
LEMMA 4. (see [2, 7]) For 0 < a < 1 and any function v(-,t) defined fort € Q,
the following inequality is valid
o k 1 o k 7_2704(1 — 27&) —
v (Ofoy..v)" 2 5 (0F0r (")) +w(vf D2 k=1,2,...,m. (15)

THEOREM 1. Let a € (0,1), f € L*(Q) and let the assumptions (11) hold. Let
also a;;, b; and K be continuous functions. Then the finite difference scheme (13)-
(14) is absolutely stable and its solution satisfies the following a priori estimate:

HUHBW/Z(Q,”) < C”JFHLZ(Qm)' (16)
Proof. Taking the inner product of (13) with v*, we obtain
(v’“7 (1+ K(Sgh)agwﬁvk)h + (U’“,Evk)h = (vk, fk)h
From inequality (15) it follows that
(0%, (1 + K05,)0804,,v%), = (v, 0504, 0%),, + (KV", 004 ") 1

1 o k K() p k
> 5 (G0~ (0ID) " + 52 (OF0s ()2, )

Using partial summation and assumptions (11) we obtain
E pok k2
(’U ,,C’U )h Z Co"U |H1(Qh)

while the right-hand side we estimate by applying the Cauchy-Schwarz and the
e-inequality

_ 1
(%, 7%, < 0¥l + - 13-
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In such a way, the result follows by taking a sufficiently small e, applying the
discrete Poincaré inequality (see [19])

1
lolln < 1 ol (1)
and summing obtained inequalities for k =1,2,...,m. m

We also need the following assertion.

LEMMA 5. (see [8]) Let the function v be defined on the mesh Qy, v =0 on T},
and let the function w be defined on the mesh S, . Then

(v, wz,) 280y | < Cllollar Wl airzgs,)-

5. Convergence of implicit scheme

Let u be the solution of the initial-boundary value problem (5)-(7) and v the
solution of the finite difference scheme (13)—(14), where f = T¢T3 f and ¢ = T Tsc.
The error z = u — v satisfies the finite difference scheme

(14 Kés,) 0001 r24+ Loz =14 inQxQf,
z=0 onTy xQf, (18)
z(z,0) =0 on Qp,

where
2 2 2
= > Mgz + 2 Mz + 2 G+ntXx+ds,u,
i,=1 =1 =1
ou 1
1
i = 5| biu| — T TR (i),
m=g G| ] TETE (i)
1 ou
G = 5 (bous, +bius,) = TPT3 (bi 37)
n = (T{Tic)u — T T3 (cu),
X = 830+,'ru - TlQT22 (3ﬁ0+u),
p= Koo, ;u—TEHKO u).
Let us set
mj =y + s, gy m =11 +3s, i, =+ 0s, G
n=1+0ds,M, X=X+0s,X:
where

h2
~ _ T+ _
i 6 1 <[a11 8.1318$2 + 3332 633‘1

82U 8@11 8u} )
S )
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. h? . 0%y Odais Ou h? " 0 ou
7“6ﬂ<%w@+%awjg‘4ﬂ<bm@%mﬂgv
A h2 4 8(b1u)
nliiHTl ([ Oz ]S)’
. % (1 O ou
@—‘6ﬂ(bm@uhﬂh>

a= ()], - 5 22 (o e ).

2715

o=t |t ge)] |

R 10@)
X_FTI <[ Dxo L*)

THEOREM 2. Under the assumptions of Theorem 1 the finite difference scheme
(18) is absolutely stable and its solution satisfies the following a priori estimate:

2

Iell 120y < O X (Imsllz2@ann) + I lz2 @1y
pa

gl + 16 z2@un + 162 )
+ m2ll2(@anny + 1 ll2(@une) + 1 lL2(0, m1/2(50)) + il 2(@r)
il z2sa) + ¥l 2@ + 1Kl 22y + Mol 2,y f- - (19)

The proof is analogous to the proof of Theorem 1, while the right-hand side
terms are estimated using summation by part, Lemma 5 and the discrete trace
theorem [19]

[0llL2(sn) < 21z, l2n-

In such a way, in order to estimate the rate of convergence of the finite difference

scheme (13)-(14) it is sufficient to estimate the right-hand side terms of (19).

THEOREM 3. Let the assumptions of Theorem 1 hold, ai;,b; € H2(O%), c e
HY(Q%), K € H?(S), and let the solution u of initial-boundary value problem (5)-
(7) belong to the space C2([0,T],C(Q))NC([0,T], H3(Q*)) N C ([0, T], H*(QF)) N
C([0,T), H*(S)). Then the solution v of finite difference scheme (13)~(14) with
¢ = TT2c and f = TPT2f converges to u and the following convergence rate
estimate holds:

lu—=vllgraszq,,) = O(h* +779).

P?”OOf. The terms 125 771]‘, ﬁlj; 2, ’f]l, 771, @‘, éj, ’ﬁ and ’ﬁ are estimated in [9]
for fixed t = ty:

105511 20y < CR? ([lazsl 20— llul ti)ll g o) + llaz; || g2 llul, i)l g 0+))

17551 22 (20) < CR? (llavs |l m2—y lul te) |z -y + laxsll 2 llu to)llms @)
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1055 1205,y < CB? (llaxsllzrzo-y luls ti)llmee-) + lay a2 1w te) g @),

2

17511 22(020) < CR? (162l 520 [[uCs ta) lmraga-) + b2l 2 @) llu(s ti) a0+

175 22000y < CR2 (b1l 2 1w te) | oy + b1l 2oy luls ti) sy »

(
( (-
( (-5 t) (> tx) )
115 iz s,y < Ch2 (1012 u( te) L -y + 11l 2 o) 1w ) [ s )
187 1 2@n) < CR (1051l 2 ) 1wl te) |3y + 1051 2 lu (s i) s o+)),
1CF 1125y < CR2(IIbs ]| 2@ 1w, t)llms -y + 1bs ]| a2 lul )l a3 @)
17" 22 ,) < Ch* (el @) l[uls t) | as@-y + el @ luC te)llas @+ )

17 22(s) < CB? ([lell o) lluC te) | o) + el o lu te) e ) -
From these inequalities we immediately obtain the following bounds:

12511 22(Qanry < CR? (llazsll 2@l co,r1 13- )

Fllagi 20 llullego.r,m3@+)) ) » (20)
1715122 (@unn)s 1M5lL2(0, ar172(80y) < CP? (lavjll 2 lulleo,r),m3@-))
Fllarjllzz o) llulleqo.r,ms @) (21)
1121122 (@anr) < CR2([Ib2]l 112 () 1ull e o,71, 3 (2 )
b2l 220y lull o, m3 2+ ) (22)
17111 22(@1rys 12 smr2(s)) < OB (101l 20 lull oo, 71, 53 -
+b1l g2y lulloqo,rrm3@ ) (23)
16 22(@nnys 1612220y < CR2(Ib5ll 2 ) lell oo, 77, 20 ))
10511 2 ) llull e o.ry, 53 (0+)) ) (24)

and

173l 22 (@urys Nl L2 20y < CR2 (el lull e om0
+lell ar ooy lulleqo,r,m 0+ ) (25)

Let us set x = x1 + X2, where
X1 = o4 1 — 9oy,
N2 = 0P oyu— TET300 0 u, @€\ So,
X2 =Xas + X3, *€Sy,

1/ o h (9 u)
Xéc =3 <3t,0+“ - T12T22i3t,o+“ + §T12 <8m2)>

b
22=1/240

1
Tiu = / (1 = s)u(xy,x2 + hs,t)ds.
0
Using Lemma 3 we immediately obtain the bound:

X122 (@) < CT2ull c2(o.1),0(0)) - (26)
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For z € Q4 \ Sa, X2 is a linear bounded functional of 87, u € H?(e), e = e(x) =
(x1 — h,z1 + h) X (x2 — h, 2 + h), which vanishes on first order polynomials in z
and zo. Using the Bramble-Hilbert lemma [3], we obtain

X2(z, )] < Ch|F0 ul, ) 12 (e)-
Analogous result holds for 3
Xz (@,)] < Ch 070 ul Olma(ex), o= (21,1/2) € S,

where we denoted et = (z1 — h,z1 + h) x (1/2,1/2+ h) and e~ = (z1 — h, 21 +
h) x (1/2 — h,1/2). Summing these inequalities over the mesh Q. we obtain the
bound:

IXallz2(@ur) < CP* (lullog oy, m20)) + lulleg oy m2@ry) - (27)
The term x can be estimated directly, using the trace theorem for Sobolev spaces [1]:
IXllz2(2n,) < CR* (lulleg o2y + lelleg oz m20+))) - (28)
Let us set u = py + po, where
1 = K (0704 1u — 0oy u),
pe = Koy u—TPT5 (Koo u) .

Using Lemma 3 we immediately obtain the bound:

lrallzz,) < CT* 7K o llull o2 o.r.00)- (29)

Using the Bramble-Hilbert lemma and properties of multipliers in Sobolev spaces
[15] we obtain:

12l L2(s0,) < Chigfg% 1020 ull m2(s) < CR2|K || m2s) [ullce o, 52 (sy) - (30)
The result follows from (19)—(30). m

6. Factorized scheme

The finite difference scheme (13)—(14) is not efficient, because a discrete elliptic
problem has to be solved at every time level ¢ = t;. In this Section, assuming for
the sake of simplicity that K = const > 0, we propose the following factorized
difference scheme approximating the initial-boundary value problem (5)—(7):

(I+07%A1)(B+OTN2) (Or 04 +0) "+ Ly L= fF 2 € Qp, k=1,2,...,m, (31)

subject to homogeneous boundary and initial conditions (14). Here I is the identity
operator, Ajv = —vg,z,, Bv = (1 + Kdg,)v and 6 is a real positive parameter.
Obviously, when the values v = v¥~1 are known, for the determination of values
v = v* on the next time level t = ¢}, we need to invert the operators I+67A; and B+
0TA5. Both operators can be represented by tridiagonal matrices and consequently
the required values of the solution may be obtained by two applications of the
Thomas algorithm. In this sense the finite difference scheme (31), (14) is efficient.
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Notice that the scheme (31), (14) can be regarded as a kind of alternating-direction-
implicit (ADI) scheme (see [19]). In [6, 22], analogous schemes are constructed for
the subdiffusion equation with constant coefficients, without an interface.

THEOREM 4. Let K = const > 0 and let the assumptions of Theorem 1 hold.
Then, for sufficiently large 0, the finite difference scheme (31), (14) is absolutely
stable and its solution satisfies the a priori estimate (16).

Proof. Let us denote B = (I+67*A;)(B+67%Ay). The operators B and B
are positive and selfadjoint, so the corresponding energy norms (see [19]) ||v||z =

(BU,’U),ll/2 and [jv||5 = (Bv,’u)}l/2 are well defined. Further:
B =B+ 07%A1 4+ Ay) + 0K7%g, Ay + 6272 A1 A,
whereby it follows that
lllg > ol + 07%vlR, 14, = 01172, + 070l @) (32)
Taking the inner product of equation (31) with v* we obtain
(B@ross0),0") + (Lnt* 0D = 7(Lavk ™ 0 )0+ (7% 0
From Lemma 4 and inequality (32) it follows that
3 ko k 1 2 k a2-al=27% k1

(B(at,0+,TU) U )h > 9 (at,O"!‘,T(H’UHEQ(Qh)) ) +0rr m Vg H'(Q)"

Using (11) and (17) we obtain
(ﬁhvk,ﬂk)h > C()|Uk‘%1(gh’),

k— €o
UkHHl(Q;L) < eor? g 1\@11(9,1) + 1 ||’Uk||§11(9h)a

T(Lyof )< arllof i )

where ¢, and ¢y are computable constants, and
Tk k €o . k|2 Lok2
(f* 0" < 1 V¥ 2 ) + T6co IF5 115
Setting 6 > c2I'(2 — a)/(1 — 27%) we obtain the desired result after summation
through £k =1,2,...,m. m
Let u be the solution of the initial-boundary value problem (5)—(7) and v the

solution of the finite difference scheme (31), (14). The error z = u — v satisfies the
finite difference scheme
(I—&-HTQAl)(B+97“A2)(8t70+,7z)k+£h Pl=gF o eQy k=1,2,...,m, (33)
subject to homogeneous boundary and initial conditions
z(x,t) =0, (x,t)el ><Qj_',
(@) =0, (2.1) €T, "
2(2,0) =0 x € Qp,
where

2 2 2 _
p=p+ Z ﬁwyﬁ—’_Z(ﬁl,iq +€i,fi)+£fz+zg+ﬁ+6shyv
=1 ]

ij=1 i=1
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 is the same as before and

_ T
Mij =5 [aijut’wj + (aij“t’@) ’(;c+he,-,,t)]’

-

-3 [Bi1) | (g e, oy + Do),
z

G =~ (b, + )

7= —1(I¢T5c)uz

&- = _97—0‘82‘0+77_um,

_ 02 2aqa
6_9 T at,OJr;ruElilIQv

(63 (6%
v=—01"K0 o, ;Uzz,-

S
=
Il

THEOREM 5. Under the assumptions of Theorems 1 and 4 the finite difference
scheme (33)—(34) is absolutely stable and its solution satisfies the following a priori
estimate:

12l 510720,y < C{ Z 175122 Qunry + Z (17251l 22(@anr)
i,j=1
+ 17151l L2(Qunn) + |771j\L2(Q,;H1/2<sh>> + 1€l 22 (@) + 1751 2 (@50
+ 16l z2@nny + 161 22(@nn) + 16 L2500)) + 1€ L2(@an) + 721 L2(Qanr)
+ 1 ll2(@unry + 1M le2 o, w20y + lillez@u.y + iz (@ny)

+illez s,y + IXl2@ury + X222y + 1Kl 2 (s, + ||V||L2(2;w)}~ (35)

The proof is similar to the proof of Theorem 4.

THEOREM 6. Let the assumptions of Theorem 1 hold, a;;,b; € H*(QF), ¢ €
HY(OF), K = const > 0, and let the solution u of the initial-boundary value problem
(5)—(7) belong to the space C*([0,T],C())NC2([0,T], H‘S(Qi)). Then the solution
v of finite difference scheme (33)—(34) with ¢ = T¢Tgc, f = TET2f and sufficiently
large 6 converges to u and the following convergence rate estimate holds:

lu = vl g1ar2(q,.) = Oh* +7%).
Proof. The terms containing in ¢ were estimated in (20)-(30) while 7;;, 7, 7,

G, &, € and v can be estimated directly. For example, from the definition of 7;; it
follows that

)

L2((z1,z1+h) X (t—T,t))

z,t)| < — max a1 (zy, @ , T2, -
el € o (el | e )
whereby, after summation over the mesh 15, x QF and using the trace theorem for
Sobolev spaces [1], one obtains

9%u

lla11 (-, 2)ll o, m(',xzw)

”7_711 ”LQ(QULT) =T

ma.
1€l (@) L2((0,1)x(0,T))

< C7 ([lavt o) lull e o.r), m20-)) + llari o lull a0y, m204)) -
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Analogous bounds hold for the other #;;, 7;, 77 and G

175 L2(Qinry < CT(lasjllco—) lull zro,m), m2(0-)

+llaijle@olull g o,0),m22@+))) (36)
17l 22 (@inry < CT(Iillc@—) lullar(0,7), 520
+bille@nylull a0,y m2204))) (37)
1Giillz2(@nr) < CT (bl ey 1wl 10,7y, H2(0-))
+bille@ny lull a0y, m2204))) (38)
17l 22 (@nry < CT(lell2@) lull o), 5207
+llellz2 @y lull g 0,1y, 121 )) - (39)
Let us set & = &1 + iz = =070 Ua, + 07 (O, Uz, — Oy ;Ua, ). Then,

similarly as in the previous cases:
€iallz2(@inny < CT (10201 ullcqo, 1y, m2(0-)) + 1080 ullcqo, 1), m2(0+)))
< CTa(HUHC’fi([O,T],HZ(Q*)) + ||U||c$([o,T],H2(Q+)))-
The second term we estimate using Lemma 3:
€021l 2(@unr) < CTOT2 (lullez 0,71, 52(0-)) + [ullez 0,7y, H2(0+)) -

Hence, after obvious majorization, we obtain:

1€l 2(@unr) < CT* (lulle2(o,7),m20-)) + lulle2qo,7,m2(0+)) - (40)
The terms £ and v can be estimated in analogous manner:

1€l 22 (@anr) < CT* (lulle2 (0,11, 532 + [wlle2 0,1, )) (41)

IVllz2 () < CT* (lullezqo,r),m30-y) + lullo2o.01.530+))) - (42)

Finally, the result follows from (35), (20)—(30) and (36)—(42). m

7. Numerical experiment

We consider the problem (5)—(7) in the domain Q x (0,7 with forcing term
t27a

L op??
T(3—a) " )

. £2-2a 5r2gi—a
+2 [sin(27x2)| <F(3 — 2a) + I3 - Oé)ﬂ ’

ai; =1, asj,b;,c=0for 4,5 = 1,2, K = 4w and T' = 1. The exact solution is

F(x1, 22, t) = sin(ry) [sin(wxg) <

2t2—a
uw(z1,w2,t) = sin(mxy) (sin(mcg) t2 + |sin(2mz2)| F(S—a)) .

We compute the problem using the factorized scheme (31), (14). We test
the temporal errors and convergence orders by letting 7 vary and fixing h = 278.
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Exact solution

255 N
AKX N\
A5

TRy
'I;,"Of‘:,‘/‘// AN X
L s
LS

Fig. 1. The exact solution for a« =0.9 and t =1

Table 1 presents the computational results. It shows that the proposed factorized
scheme generates temporal convergence rate .

Table 1. The experimental error results and temporal convergence orders for the factorized scheme

when 6 = % and h = 278 is fixed
2l g1,a/2
a |7 2lgrer . | los |||LBQ//<;Qh/))
09 | 27° 1.62311806 - 107! 0.7931
276 | 9.36718006 - 10~2 0.8391
2=7 | 5.23618878 - 1072 0.8614
28 2.88210355 - 102 0.8709
279 1.57594461 - 102 /
04 | 27° 1.54556906 0.3577
26 1.20613588 0.3783
2=7 | 9.27935048 - 107! 0.3887
28 7.08795916 - 10~* 0.3901
279 5.40849987 - 10~ ! /

The computational results for the spatial errors and convergence orders are
given in Table 2. We fixed 7 sufficiently small to make sure that the dominant
error is from the space discretization. It can be seen that the factorized scheme
achieves second order spatial accuracy.

In Figure 2 we have displayed the exact and numerical solutions on the last
time level for comparison.
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Table 2. The experimental error results and spatial convergence orders for the factorized scheme

when 0 = % and 7 = 2714 is fixed

HZHBL&M(Qh_T)
«Q h ||Z||Blva/2(QhYT) log, |‘z‘|31*“/2<Qh/§,7)

0.9 272 7.20603969 - 10~ 2.0100

3 1.78901098 - 10! 2.0009

—4 4.46971707 - 1072 1.9017

5 1.12387233 - 102 1.9317

26 | 2.04593731 1073 /

3 —#+— approximation 3 —+— approximation
exact solution exact solution

N
u(x,,05,1)
N

o

P
al o

o
o
o
o

02 0.4 06 08 0.2 0.4 06 08
XZ X!

Fig. 2. Solution behavior for « =0.9, T =1, h =275 and 7 = 278.
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