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1 Introduction

We consider the differential equation

y" = aop(t)po(y) 1 (y), (1.1)

where ag € {—1;1}, the functions p : [a;w[—]0; +00] (—00 < a < w < 400), and ¢; : Ay, —]0; 00|
(i € {0,1}) are continuous, Y; € {0,+00}, Ay, is either an interval [y, Y;[! or an interval |Y;; y?]. We
suppose that ¢ is a regularly varying function of index o1 as y — Y1 (y € Ay,) [7, pp. 10-15], and
the function ¢y is strongly monotonous on Ay, , twice continuously differentiable on Ay, and satisfies
the following conditions:

lim ¢o(y) € {0,400}, lim Po(v)¢6 ()

% % ! 2
yyezyoo yyez;; (e6(y))

=1. (1.2)

The second order differential equations with both power-type and exponential-type nonlinearities
in the right-hand side play an important role in the qualitative theory of differential equations. Such
equations have a lot of applications in practice. The fact takes place, for example, during investigations
of distribution of electrostatic potential in a cylindrical plasma volume of combustion products. The
corresponding equation can be reduced to the following one:

y" = agp(t)e”?|y'|*.

This equation is of type (1.1), in which ¢;(2) = |2|}, ¢o(z) = €”*. Under some restrictions on the
function p(¢), certain results for the asymptotic behavior of all regular solutions of that equation have
been obtained in the papers by V. M. Evtukhov and N. G. Dric (see, for example, [2]).

The differential equation

y" = aop(t)p(y)

with a rapidly varying function ¢ has been considered in the paper by V. M. Evtukhov and V. M. Khar-
kov [3]. But in that paper the introduced class of solutions of the equation depends on the function
 that in most cases not useful for practical applications.

Equation (1.1) is a natural generalization of two previous ones.

The solution y of equation (1.1) defined on the interval [tg,w[C [a,w][ is called P, (Yo, Y1, Ao)-so-
lution (—oo < Ag < 400) if the conditions

WO? _

@) Ay,, limy@ @) =Y; (i=0,1
Y [to,w[— Yis #j}y (t) i (i 1), hw y”(t)y(t)

(1.3)
are satisfied.

The goal of the present paper is to find for A\g € R\ {0;1} the necessary and sufficient conditions
for the existence of P, (Yp, Y1, \g)-solutions of equation (1.1) together with asymptotic representations

of those solutions and their first order derivatives as t T w. According to the definition, such solutions

are the regularly varying functions as ¢ T w of index ﬁ

2 Main results

First of all, we introduce some notations that will be necessary in the sequel. We consider

t, if w=4o0, _
t = 9 = Ul’
T (1) {t_(% i w < oo 1(y) = @1 ()Yl

f Y; = 400 (resp. Y; = —00), we will take 49 > 0 (resp. y? < 0).
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Yo
vy, if /|gpo(z)|ﬁ dz = +o00,
h 1 v
Po(y) = [ lpo(z)|17Tdz, Ay = Yo
Aw Yy, if / |@0(z)|ﬁ dz = const,
Y0
o [ @
Zo= lim 200 g = / o) gr 2= tim @),
y—Yo Yy T y—Yp
YyEAY, A, yEAY,

_ O (L)) (@1 (L (1))
T ()11 ()

F(t)

If o9 lim |, ()| x0T = Y7, we put
tTw

t

16) =0 = 177 -0 [ [m(rip(r) (Ima(r) 570t

BO

w

1
T—oy

dr,

b, if /w ’ﬂw(r)p(r)ﬁl <|7rw(7')\ﬁy?) ’ﬁ dr = 400,
_ b

BO
w, if / (M) (I ()58 ) |7 dr =< oo,
b
| o O,
(Ao = D)y (7)
Il(t):/iAOI(T) dr, Bl= b
2 (Ao — D) (7) " / NolI(7)] - ,
pe w, i 7()\0_1)7%(7_) T = const.

b

Here, the number b € [a,w] is chosen in such a way that y?9|m,(t))| o1 ¢ Ay, as t € [bw].

Note 2.1. From conditions (1.2) it follows that Zg, Z; € {0, +o00} and

5 (y) - Po(y)

lim ————> =1 lim —————= =1.
Yo D/ 2 ’ Y, P 2
y@y"o (25(y)) ;eAOyO (21 (y))
Note 2.2. The following statements are valid:
1)
o1
vo' (y)

o(y) = (01 — 1) [1+o0(1)] when y =Yy (y € Ay,)

©0(y)
and therefore
sign(pp(y)Po(y)) = sign(oy — 1), when y € Ay,.

2)
)
y®o(y)

@1 (y) [1+o0(1)], when y =Yy (y€ Ay)

and therefore
sign(®1(y)) = y8 when y € Ay,.

(2.1)
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Note that, by (2.1), the relation
@) B (@) )
=20 (1(D71(2))2 woYo (RUDTH(@1()))2 v=Ye (21(y)?

is valid, and from the latter it follows that

I ACRONY B
i o (q>1<<1>;1<z>>> ~ lim (1 '(2))2
/ —1 - —1
=20 21(% (2) y=Zo (01 (07 (2)))2
2,(2,1(2)

—-1=0.

/ -1
Thus the function % is slowly varying as z — Zp. The function <I>1_1(z) is also slowly
1(®] (2

varying as an inverse to the rapidly varying function. So, we have the following

’ -1
Note 2.3. The function ®~!(z) - M is slowly varying as z — Z;.

Let Y € {0,00}, Ay be some one-sided neighborhood of Y. The continuously differentiable
function L : Ay —]0; +oo] is called [6, p. 2-3] normalized slowly varying as z = Y (z € Ay), if

m yL'(y)
=Y L(y)

yE Ay

—0. (2.2)

We say that a slowly varying as z — Y (z € Ay) function 6 : Ay —]0; +o0[ satisfies the condition
S as z = Y, if for any normalized slowly varying as z = Y (z € Ay) function L : Ay, —]0; +oo[ the
following equality takes place: z =Y (2 € Ay)

0(zL(z)) = 6(2)(1 + o(1)).
We will consider that a slowly varying as z — Y (z € Ay) function Ly : Ay —]0; +oo] satisfies
the condition S; as z — Y, if for any finite segment [a;b] C]0; +oo] the inequality
<L()\z)
L(z)

limsup |In |z - — 1)’ < +oo for all A € [a; b

z—=Y
zEAY

is true.

Conditions S and S; are satisfied by the functions In |y, |In]y||* (¢ € R), In|In |y|| and by many
others.

The following theorem has been obtained.

Theorem 2.1. Let for equation (1.1) o1 # 1, the function 61(z) satisfy the condition S as z — Y3

/ —1
(z € Ay,), and the function ®7*(z) - M satisfy the condition S1 as z — Zy. Then for the
existence of P, (Yy, Y1, \o)-solutions of equation (1.1), where Ay € R\ {0, 1}, it is necessary and, if

It (t)Ao(o1 —1) >0 as t€]b,w, (2.3)
and the finite or infinite limits

| Tw (D11 (1) |
T1 ()

lim 7, (¢) F' (¢ d lim —————— ist, 24
e OF W and B e 24
sufficient the fulfilment of the following conditions:
T (ylyNo (Mo — 1) > 0; 7o (t)ydag(ho — 1) >0 as t € [a;w], (2.5)
71 .

yy Aim |, (8)[ 07T =Y, Ly (t) = 2y, (2.6)

. () L(t) . Ao —1
lim 2222 — 1 limF(t) = ———. 2.7
ttw (I{ (t))2 tTw ( ) AQ ( )

Moreover, for each such solution there take place the following asymptotic representations ast 1T w:

wm#mwﬂmvﬂ%wﬂﬁl

[1+o(1)]. (2.8)
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Proof. Necessity. Let the function y : [to,w[— Ay, be a P, (Yy, Y1, Ag)-solution of equation (1.1), for
which Ao € R\ {0,1}. Then, according to the properties of such solutions established by V. M. Ev-
tukhov (see, e.g., [4]), we have
y(t) Ao y"'(t) 1
= 14 o0(1)], = 14+0(1)] as t€|a;w]. 2.9
y® o pmm W e T B W) e releel o 29)
Thus we obtain (2.5).
From (2.9), it also follows that y/(¢) as ¢ € [a;w][ is a regularly varying function of index ﬁ It
can be represented in the form

Y(t) = lme (O™ T Li(t) as t 1w, (2.10)

where Ly () is a regularly varying function as ¢t T w (see [7, p. 10]).

Hence, taking into account the properties of regularly varying functions [7, p. 10-15], we obtain
the first of conditions (2.6).

From (1.1) and (2.9), it follows that as ¢ T w

/ 1—01 sien 0
LB — g0 = 1m0/ Ol (O p(0)1 + o(1)]. (.11)

Substituting (2.10) into (2.11), we get as t T w the equality
Yy (t 1
% =yt Ao — 1T
lpo(y ()7
In (2.10), the function L; is a slowly varying when its argument tends to Y;. The function 6;
satisfies the condition S. So, from (2.12), we have as t T w
"(t 1
S |
[po(y(t))[ =1

Integrating the relation from ¢y to t, we get as ¢t T w

1
1—01[

1+ o(1)]. (2.12)

7001 (Ime (057 Ly ()38 ) (1)

ﬁ[1 +o(1)]. (2.13)

m ()61 (7 ()78 ) (1)

y(t) t )
T+ o(1)] dr

Taking into account the choice of A, and that y — Yy (Y € Ay, ), we have
Qo(y(t)) =I(t)[1 +0o(1)] as tTw. (2.14)
From (2.13) and (2.14), according to (2.9), we get

mO (1) YOR0) _ mOLW) | (215)

y(t) Do (y(t)) 1(t)

By conditions (1.2), the function ®¢(y) is rapidly varying as y — Yy (Yo € Ay,). Thus from (2.15) it
follows that

o (OI'(t)
?TIBT 0. (2.16)
Taking into account equalities (2.14) and (2.9), we get
YOR) _ Nol) o
W0 Do D LT s e (247

From here in the same way as equality (2.14) was obtained, we get the equality

Q1(y(t)) =L()[1+0(1)] as tTw. (2.18)
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Thus, the correctness of the first representation of (2.8) and the first equality of (2.6) are justified.
We get the correctness of the second representation of (2.8) as a result of division (2.17) by (2.18).
The second representation of (2.8) can be rewritten in the form

mw()y'(t) YO (y() _ m (1)

[14+0(1)] as t1w.

y) @) L)
With the help of (2.9), from the above representation we get
Aoy () (t)fi( )i+ "
ool aw®) - Lo [140(1)] as t1 w. (2.19)

From conditions (1.2) imposed on the function ¢y (y(t)) and Note 2.2, we find that ®;(y) is a rapidly
varying function as y — Yy (Yo € Ay, ). Then, taking into account (2.19), we get

lim W = 0. (2.20)

By (2.1), (2.15), (2.16) and (2.19), we have

T (1)1 (t) AOLATIO))

ATO4L() Q) TR0)  _ oy, 210 21(y)

lim = = lim = lim — 27 = lim =1. (2.21)
I ()2 ﬂw(t)f’ ® y() 21 (y(?)) — P’ 2

e (11(1) e (1) e 21 (y(1) nyA):% (®:(6)

It means that the first of conditions (2.7) holds.
Note that the function @fl(y) is slowly varying as y — Zjy, since it is inverse to a rapidly varying
as y — Yo (Yo € Ay,) function ®;. Taking into account this fact and (2.18), we get as ¢ T w

y(t) = 7 (L(1))[L + o(1)].

The correctness of the second of conditions (2.6) follows from this fact.
Note that (2.19) can be written in the form

Ao - (27 (L1(1) _ mu(D)Ii(1)
)\0 1 . <I)1 I(Il(tD : (I)i(q)l—lul(t))) - Il(ti

[140(1)] as t1w.

The validity the second of conditions (2.7) is justified, and hence the necessity is proved.

Sufficiency. Let us suppose that conditions (2.3)—(2.7) of the theorem take place.
We apply to equation (1.1) the transformation

@1 (y(t)) = Li(t)[L + v ()],
y't) o 1 (2.22)

i ho-1 m Lt e@

and reduce system (2.22) to the following system of differential equations:

v = 183 [1+vi]- <)\o)\31 CF(t) - M(t,01)[1 + vo] — 1>7
1 ) (2.23)
vh= o L] [Qw )1+ )™ (14 0)" 7 = = .

Here,
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0 oy S v) (Y () 1 mt
(T o M) = IGIHG +G(t))> ’
01 (s - [1 4 va)) L(t) (1)
N(t,v1,v2) = G(t):m, ()Zm-

6 (| (1) sign )
From the first of conditions (2.7) we have

lim G(t) = 0. (2.24)

tTw

We have already proved that the function ®'(z) is slowly varying as z — Z;. So, taking into
account the second of conditions (2.6), we have

1

l*iTmY(t,vl) =Yy uniformly by vy : |v1| < 7 (2.25)
By Note 2.3, we have
1
%iTmM(t,vl) =1 uniformly by vy : |v1]| < 7 (2.26)
From the second of conditions (2.7), we get
Ao
lim F'(t) = . 2.27
i F(t) = 575 (227)
Now, we can prove that
. . 1 . 1
£1TmN(t,U1,v2) =1 uniformly by v : |v1| < 3 and uniformly by vy : |vg| < 7 (2.28)
From (2.26) and (2.27), it follows that
— !
( 2 (L) ) w(t)
lim I (D] 20 = lim ! — Ao =0
tw 2, (h(8) ttw F()M(t,v1)  (1—v)(Ao—1)

o (8)] %01
Hence 1
(‘51 (11(1)) )
20
| ()] 3=
is a normalized slowly varying function as ¢ T w. Statement (2.28) follows from the above according
to the fact that the function <I>1_1 is slowly variable as its argument tends to Z;, and the function 6,

satisfies condition S.
Taking into account the first of conditions (2.7), we have

lim L(1) = 0. (2.29)
From (2.24)—(2.29), it follows that
. 1 . 1 . 1
ltleQ(t,vl,vg) = uniformly by vy : |v1| < 3 and uniformly by wvs : vg| < 7 (2.30)
w 0

By (2.6), from the fact that the function <I>f1 is slowly varying as the argument tends to Z7, it
follows that there exists a number ¢y € [a,w| such that

DN | =

SN L ()L +1v1)) €Ay, as t€ [to,w[, v <
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Further, we consider the system of differential equations (2.23) on the set

1
Q = [to, w[ %D, D:{(Ul,vg): ol < 5, @':1,2}

and rewrite the system in the form

I (t
v = 10 {All(t)vl + Arz(z)ve + Ry (2, v1,v2) + Rz(ﬂf,vhvz)}
Ii(t) (2.31)
) .
vy = 0 {A21U1 + Aggvs + R3(w,v1, 22) + R4($,01»U2)},
where
)\0 )\0
A (t) = F(t)—1 Aa(t) = F(t
11(?) o1 (t) =1, Aw(t) o1 (t),
Ao Ao
Ry (t,v1,v2) Fit)—1+ F@)(M(t,v1) — 1)(1 + vy + va),
Mo —1 Mo —1
A
Ry (t,v1,v9) O F(t)M(t, v1)v1vs,
Ao —1
g1 — 1 g1 — 1— )\0
Ay = Agy =
21 N 22 " )
1
R3(t,v1,22) = " (1+ (o1 — Vo1 + o1v2) - (AoQ(E, v1,v2) — 1),
R4(t71}1,’02) = Q(t,vl,vg) |:(1 + 0'1112)((1 + 01)0171 —1-— (O’l — 1)’01)
+o1(o1 — Dvyve + ((1 +v) —1— 0'1’02)(1 + Ul)ﬂ — v3.
By virtue of equalities (2.24)—(2.29), for k € {2,4}, we get
Ry (t
im Bilt,v1,va) = 0 uniformly by t as t € [to,w][, (2.32)
|v1|+|v2|—0 |’l}1| =+ |’L)2‘
and for k € {1, 3},
%ﬁiTmRk(t,zl,zg) = 0 uniformly by vy, vs as (vy,v3) € D. (2.33)
w
At the next stage of the proof we apply to system (2.31) the following transformation:
U1 =T,
2.34
{UQZTQ—H(t). ( )
Here,
Ao F(t) — 1
H(t) = %
oot F (1)
By (2.27), we have
lim H (1) = 0. (2.35)
Thus get a system
THO R
= 1lf) o F(t)[ra +rira + R(t;r157m2)]
Li(t) Ao —1 (2.36)
) )
rhy = [Ag1r1 4 Agara + Va(t,r1,72) + Va(t,71,72)]

T (1)
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where

R(t,r1,m2) = (M(t,m1) — )X +71)(1 + 72 — H(t)),
Va(t,r1,m9) = Ra(t,r1,m2 — H(t)) — Ra(t,r1,72) + 1y (t) H'(t) — A2 H(t) + Ra(t, 71,72 — H(t)),
V4(t,7"177’2) = R4(t,’l"1,7"2).
Let us show that
ltimew(t)H’(t) =0. (2.37)

According to condition (2.4) of the theorem, there exists the following finite or infinite limit

ltITIB 7o (t) H' ().
Let
m.(t)H'(t) = q(t) and ltlTrB q(t) # 0. (2.38)
Then )
ey 4
H@®) = Ty (t) '

As a result of integration of the above equality from tg to ¢, we have

t

H(t) — H(to) = / ar) 4. (2.39)

7w (T)

to

From (2.35) and (2.39), it follows that the integral [ WQ((TT)) dr must be finite. But this is possible
to

only if
limg(t) = 0.

Thus, taking into account (2.38), we have proved the correctness of statement (2.37).
Owing to the properties of the function Ry, by (2.28) and (2.35), it follows that

1
ltiTm [Ru(t,r1,72 — H(t)) — Ry(t,r1,72)] = 0 uniformly by ry and ro as |r;| < 3 i=1,2. (2.40)
w

Applying the transformation

{rz — VG 241

where

v =pI|L(t)], B=

1, if lm I (t) = oo,
e 0 (2.42)

-1, if LI
, i ltlTrBh(t) )

to system (2.31) and taking into account (2.3), we obtain the system

wh = V1G] [ Ft)wa + 32 Flt()wrws + Wlziwiiws)],

wh = Bv/[GEH@))] [ sign G(t(x)) Az, (2.43)
+( |G (t(x))] sign G(¢(x)) Aza(z) — ]V(x))wg + Ws(z, wy,ws) + Way(x,wr, ’U}g)},

where
W (a5 wys ) = )\O/\ilF(t(x)) W“Tg;‘(’;i)l— D (14 ) (14 VIGE@ w2 — H(H)))



Asymptotic Representations of a Class of Regularly Varying Solutions of Differential Equations ... 89

Note that

Niz) = sign(G(t(2)))G' (t(x))I(¢(z)) _ sign(G(t(2)))G"(#(z))m (t(z))
2G(4(2)) VG (8(2)) [ I (t(x)) 2y/1G(t(x))]

At the same time, the equality

Q) 1) gy (BGOLEDREGOL D)y S om
1G(t(x))] S (L)Y (@~ (11(1))) In |13 (t)]
is true. Next, let us prove that
W
lim =0. (2.44)

ttw In |Il (t) ‘
By de L’Hospital rule we have

mw (017 (t)

=@ | 1., G'(t)me(t)
m-——-——=—— 1l ——.
ttw  In|Iy(2)] 2 ttw /|G(1)]

The last limit has a finite or infinite boundary, since the second limit in (2.4) exists.
Now let us prove that

/
im G')m(t) _ (2.45)
e \/1G(1)]
According to condition (2.4), there exists the following finite or infinite limit
!
Gt
e /IG(1)]
Suppose that
G' ()7 (t) :
——=——= =¢q1(t) and limgq(¢)#0. 2.46
0] a1 (t) lim qu (1) # (2.46)
Then
¢ al
G@)]  mw(t)
As a result of integration of this equality from t¢g to ¢, we have
t
2160 - 2v[a) = [ LD ar (2.47)
T (T)

to

From (2.24) and (2.47), it follows that the integral [ gi((:)) dr must be finite. But this is possible
to
only if

%iTm q1(t) =0. (2.48)

The last one is in contradiction with assumption (2.46). So, statement (2.44) is true.
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Let us now prove that ~
lim N(z)=0. (2.49)

r—+0o0

The function ®~1(z) - w satisfies condition B, hence

o7 (L ()] o7 (L ()]
1n|]1(t(m))| . ( 1 ( 1( ),[1 +v1])’¢)( 171( 1( )[ +U1])) _ 1)‘ < 0.
=1L () p(~H (11 (t)))
From the above equality and statement (2.49), it follows that
1
Erf_l W (x;w1;wse) = 0 uniformly towards wy and wy if |w;| < 3 i=1,2. (2.50)
Note that the characteristic equation of a matrix
0 B
Bsign()\o(ol - 1))A21 0
has the form | n
2 _ 191~
- =0.
Aol
This equation has no roots with real part equal to zero. Let us consider [ G(t(z))dz. Taking into
o

account the presentation G(t(x)) = %, we have

[ee] oo w

_ L (t(x)) _ L) L), w
/G(t(x))dx/71w5(:n))li(1§(zv))dx / T OL® L) dt =In|m,(t)|q, — 00 as t = w.

xo xo t(wo)

Since in some neighborhood of zero the inequality
[ ViGE@ ds = sign(Git(@) [ Gle(w))do
X0 Zo

takes place, it is true that

/\/|G(t(ac))| dor —> +o.

We have got that for the system of differential equations (2.43) all conditions of Theorem 2.2 from
[5] are fulfilled. According to this theorem, system (2.43) has a one-parameter family of solutions
{wi}2_, : [x1, +oo[ = R? (21 > mo, 7o = BIn|I1(to)]) that tend to zero as z — +oo. By (2.42), (2.22)
these solutions correspond to those solutions y of equation (1.1) that admit asymptotic representations
(2.8) as t T w.

By representations (2.8) and inequality (2.3) it is clear that the obtained solutions are indeed the
P, (Yy, Y1, \g)-solutions. The theorem is proved completely. O

3 Illustration of the results
To illustrate the results obtained above, we consider the following differential equation for ¢ € [2, +o0]
y" = v(t) exp (exp(ly|*) —exp(th)) [y 7|y’ (3.1)

Here, 09,01 € R, 01 > 1, a,d €]0,+o0], the function v : [2,400[—]0, +00[ is continuous, regularly
varying at infinity of index ~, v € R.
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This equation is of type (1.1) for which

ag =1, p(t) =vp(t)exp (—exp(t?)), @o(y) = ly|”exp (exp(ly|*)), ¢1(¥) =1y

Using the above proven theorem, let us investigate the question of the existence and asymptotic
behavior as t — 400 of Py (00, Y1, Ag)-solutions of equation (3.1) for which Ag € R\ {0, 1}.
In our case,

Thus the function 6 satisfies condition S.
Taking into account the choice of BS_OO, as t — 400, we have

0'1—].

d

exp(td)
g1 — 1

1 — 1 —1
1) = Do — 1757 -y - s T () e (SR — a1+ (1),

In the same way, as t — +00, we have

T Sy Tl S B P AR S ST exp(t?) 4
L(0) = [P = 1= -y - (=) -t ()] -exp (TP~ 267) 1+ o(1)]

In addition, in our case, since Yy = oo, taking into account the choice of A% , we get

o —1 0 L1_q exp(|y|®
(bo(y)zli.yo‘l—l—"_l exp (M_
g1 —1

a |y|a) [140(1)] as y — oo.

Similarly, we have

o1 —1\2 _e 1 o, ex @ o
B (y) = ( 1a ) LT IT20 e (% — 2|y )[1+0(1)] as y — oo. (3.2)
We have a
lim F(t)=—. .
tT1+H;o ®) d (3:3)

From (3.3) and the second condition of (2.7), it follows that equation (3.1) may have only
P (00, Y7, Ag)-solutions with
d

Ao = .
T d—a

Taking into account asymptotic representations for functions I, I, ®¢, @4, <I)1_1, we get

lim ¢F'(t) = 0.
t—+oo
So, the first condition of (2.4) is valid.
Note that

‘ e, (8)11(1) ‘
I (t)

In |1 (t)]

+9

VY e
2

[1+40(1)] as t— oo,
from which the second condition of (2.4) takes place.
At the same time,
_ —70 . _2q
B0 ) (o1 — 1) G

o7 (y) y = ” Iny- (In((c; —1)Iny)) = [L+o(1)] as y— oo.

This means that condition S; is satisfied.

Thus, all conditions of Theorem 2.1 are satisfied. By virtue of this theorem, equation (3.1) may

have only Py (400, +00, d%'la)—solutions. From Theorem 2.1 it also follows that equation (3.1) has

one-parameter family of Pj (400, +00, d%‘ia)-solutions.
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Also, using the known asymptotic behavior of the function <I>;1, it is easy to find that every
Py oo (400, 00, d%'la)—solution of equation (3.1) and its derivative satisfy the following asymptotic
representations

()2 (SROE) oy )

a 1—101 a 2 1—2d+—L 1 exp(td) d
f— . — . 1—0o . 1—0o . J—
’d—a (d) t 1 pT=a1 (t) exp(gl_1 2t>[1—|—0(1)] as t — 400,
t
y'(t) = @ [1+0(1)] as t — +oo.
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