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1 Introduction
We consider the differential equation

y′′ = α0p(t)φ0(y)φ1(y
′), (1.1)

where α0 ∈ {−1; 1}, the functions p : [a;ω[→ ]0;+∞[ (−∞ < a < ω ≤ +∞), and φi : ∆Yi
→ ]0;+∞[

(i ∈ {0, 1}) are continuous, Yi ∈ {0,±∞}, ∆Yi
is either an interval [y0i , Yi[ 1 or an interval ]Yi; y0i ]. We

suppose that φ1 is a regularly varying function of index σ1 as y → Y1 (y ∈ ∆Y1
) [7, pp. 10–15], and

the function φ0 is strongly monotonous on ∆Y0 , twice continuously differentiable on ∆Y0 and satisfies
the following conditions:

lim
y→Y0
y∈∆Y0

φ0(y) ∈ {0,+∞}, lim
y→Y0
y∈∆Y0

φ0(y)φ
′′
0(y)

(φ′
0(y))

2
= 1. (1.2)

The second order differential equations with both power-type and exponential-type nonlinearities
in the right-hand side play an important role in the qualitative theory of differential equations. Such
equations have a lot of applications in practice. The fact takes place, for example, during investigations
of distribution of electrostatic potential in a cylindrical plasma volume of combustion products. The
corresponding equation can be reduced to the following one:

y′′ = α0p(t)e
σy|y′|λ.

This equation is of type (1.1), in which φ1(z) = |z|λ, φ0(z) = eσz. Under some restrictions on the
function p(t), certain results for the asymptotic behavior of all regular solutions of that equation have
been obtained in the papers by V. M. Evtukhov and N. G. Dric (see, for example, [2]).

The differential equation
y′′ = α0p(t)φ(y)

with a rapidly varying function φ has been considered in the paper by V. M. Evtukhov and V. M. Khar-
kov [3]. But in that paper the introduced class of solutions of the equation depends on the function
φ that in most cases not useful for practical applications.

Equation (1.1) is a natural generalization of two previous ones.
The solution y of equation (1.1) defined on the interval [t0, ω[⊂ [a, ω[ is called Pω(Y0, Y1, λ0)-so-

lution (−∞ ≤ λ0 ≤ +∞) if the conditions

y(i) : [t0, ω[→ ∆Yi
, lim

t↑ω
y(i)(t) = Yi (i = 0, 1), lim

t↑ω

(y′(t))2

y′′(t)y(t)
= λ0 (1.3)

are satisfied.
The goal of the present paper is to find for λ0 ∈ R \ {0; 1} the necessary and sufficient conditions

for the existence of Pω(Y0, Y1, λ0)-solutions of equation (1.1) together with asymptotic representations
of those solutions and their first order derivatives as t ↑ ω. According to the definition, such solutions
are the regularly varying functions as t ↑ ω of index 1

λ0−1 .

2 Main results
First of all, we introduce some notations that will be necessary in the sequel. We consider

πω(t) =

{
t, if ω = +∞,

t− ω, if ω < +∞,
θ1(y) = φ1(y)|y|−σ1 ,

1If Yi = +∞ (resp. Yi = −∞), we will take y0i > 0 (resp. y0i < 0).
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Φ0(y) =

y∫
Aω

|φ0(z)|
1

σ1−1 dz, Aω =



y00 , if
Y0∫

y0
0

|φ0(z)|
1

σ1−1 dz = ±∞,

Y0, if
Y0∫

y0
0

|φ0(z)|
1

σ1−1 dz = const,

Z0 = lim
y→Y0
y∈∆Y0

Φ0(y)

y
, Φ1(y) =

y∫
Aω

Φ0(τ)

τ
dτ, Z1 = lim

y→Y0
y∈∆Y0

Φ1(y),

F (t) =
Φ−1

1 (I1(t))Φ
′
1(Φ

−1
1 (I1(t)))

πω(t)I ′1(t)
.

If y01 lim
t↑ω

|πω(τ)|
1

λ0−1 = Y1, we put

I(t) = |λ0 − 1|
1

1−σ1 · y01 ·
t∫

B0
ω

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 y01

)∣∣∣ 1
1−σ1

dτ,

B0
ω =


b, if

ω∫
b

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 y01

)∣∣∣ 1
1−σ1

dτ = +∞,

ω, if
ω∫

b

∣∣∣πω(τ)p(τ)θ1(|πω(τ)| 1
λ0−1 y01

)∣∣∣ 1
1−σ1

dτ =< +∞,

I1(t) =

t∫
B1

ω

λ0I(τ)

(λ0 − 1)πω(τ)
dτ, B1

ω =


b, if

ω∫
b

λ0I(τ)

(λ0 − 1)πω(τ)
dτ = ±∞,

ω, if
ω∫

b

λ0|I(τ)|
(λ0 − 1)πω(τ)

dτ = const.

Here, the number b ∈ [a, ω[ is chosen in such a way that y01 |πω(t))|
1

λ0−1 ∈ ∆Y1
as t ∈ [b;ω].

Note 2.1. From conditions (1.2) it follows that Z0, Z1 ∈ {0,+∞} and

lim
y→Y0
y∈∆Y0

Φ′′
0(y) · Φ0(y)

(Φ′
0(y))

2
= 1, lim

→Y0
y∈∆Y0

Φ′′
1(y) · Φ1(y)

(Φ′
1(y))

2
= 1. (2.1)

Note 2.2. The following statements are valid:

1)

Φ0(y) = (σ1 − 1)
φ

σ1
σ1−1

0 (y)

φ′
0(y)

[1 + o(1)] when y → Y0 (y ∈ ∆Y0
)

and therefore
sign(φ′

0(y)Φ0(y)) = sign(σ1 − 1), when y ∈ ∆Y0
.

2)

Φ1(y) =
Φ2

0(y)

yΦ′
0(y)

[1 + o(1)], when y → Y0 (y ∈ ∆Y0
)

and therefore
sign(Φ1(y)) = y00 when y ∈ ∆Y0 .
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Note that, by (2.1), the relation

lim
z→Z0

Φ′′(Φ−1
1 (z))z

(Φ′(Φ−1
1 (z)))2

= lim
y→Y0

Φ′′
1(Φ

−1
1 (Φ1(y)))Φ1(y)

(Φ′
1(Φ

−1
1 (Φ1(y))))2

= lim
y→Y0

Φ′′
1(y)Φ1(y)

(Φ′
1(y))

2
= 1

is valid, and from the latter it follows that

lim
z→Z0

z ·
(Φ′

1(Φ
−1
1 (z))

Φ1(Φ
−1
1 (z))

)′
Φ′

1(Φ
−1
1 (z))

Φ1(Φ
−1
1 (z))

= lim
y→Z0

Φ′′
1(Φ

−1
1 (z))z

(Φ′
1(Φ

−1
1 (z)))2

− 1 = 0.

Thus the function Φ′
1(Φ

−1
1 (z))

Φ1(Φ
−1
1 (z))

is slowly varying as z → Z0. The function Φ−1
1 (z) is also slowly

varying as an inverse to the rapidly varying function. So, we have the following

Note 2.3. The function Φ−1(z) · Φ′
1(Φ

−1
1 (z))
z is slowly varying as z → Z1.

Let Y ∈ {0,∞}, ∆Y be some one-sided neighborhood of Y . The continuously differentiable
function L : ∆Y → ]0;+∞[ is called [6, p. 2–3] normalized slowly varying as z → Y (z ∈ ∆Y ), if

lim
y→Y

y∈∆Y

yL′(y)

L(y)
= 0. (2.2)

We say that a slowly varying as z → Y (z ∈ ∆Y ) function θ : ∆Y → ]0;+∞[ satisfies the condition
S as z → Y , if for any normalized slowly varying as z → Y (z ∈ ∆Y ) function L : ∆Yi → ]0;+∞[ the
following equality takes place: z → Y (z ∈ ∆Y )

θ(zL(z)) = θ(z)(1 + o(1)).

We will consider that a slowly varying as z → Y (z ∈ ∆Y ) function L0 : ∆Y → ]0;+∞[ satisfies
the condition S1 as z → Y , if for any finite segment [a; b] ⊂ ]0;+∞[ the inequality

lim sup
z→Y
z∈∆Y

∣∣∣ ln |z| ·
(L(λz)
L(z)

− 1
)∣∣∣ < +∞ for all λ ∈ [a; b]

is true.
Conditions S and S1 are satisfied by the functions ln |y|, | ln |y||µ (µ ∈ R), ln | ln |y|| and by many

others.
The following theorem has been obtained.

Theorem 2.1. Let for equation (1.1) σ1 ̸= 1, the function θ1(z) satisfy the condition S as z → Y1

(z ∈ ∆Y1), and the function Φ−1
1 (z) · Φ′

1(Φ
−1
1 (z))
z satisfy the condition S1 as z → Z1. Then for the

existence of Pω(Y0, Y1, λ0)-solutions of equation (1.1), where λ0 ∈ R \ {0, 1}, it is necessary and, if

I(t)I1(t)λ0(σ1 − 1) > 0 as t ∈ ]b, ω[ , (2.3)

and the finite or infinite limits

lim
t↑ω

πω(t)F
′(t) and lim

t↑ω

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

exist, (2.4)

sufficient the fulfilment of the following conditions:

πω(t)y
0
1y

0
0λ0(λ0 − 1) > 0; πω(t)y

0
1α0(λ0 − 1) > 0 as t ∈ [a;ω[ , (2.5)

y01 · lim
t↑ω

|πω(t)|
1

λ0−1 = Y1, lim
t↑ω

I1(t) = Z1, (2.6)

lim
t↑ω

I ′′1 (t)I1(t)

(I ′1(t))
2

= 1, lim
t↑ω

F (t) =
λ0 − 1

λ0
. (2.7)

Moreover, for each such solution there take place the following asymptotic representations as t ↑ ω:

Φ1(y(t)) = I1(t)[1 + o(1)],
πω(t)y

′(t)

y(t)
=

λ0
λ0 − 1

[1 + o(1)]. (2.8)
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Proof. Necessity. Let the function y : [t0, ω[→ ∆Y0 be a Pω(Y0, Y1, λ0)-solution of equation (1.1), for
which λ0 ∈ R \ {0, 1}. Then, according to the properties of such solutions established by V. M. Ev-
tukhov (see, e.g., [4]), we have

y(t)

y′(t)
=

λ0
(λ0 − 1)πω(t)

[1 + o(1)],
y′′(t)

y′(t)
=

1

(λ0 − 1)πω(t)
[1 + o(1)] as t ∈ [a;ω[ . (2.9)

Thus we obtain (2.5).
From (2.9), it also follows that y′(t) as t ∈ [a;ω[ is a regularly varying function of index 1

λ0−1 . It
can be represented in the form

y′(t) = |πω(t)|
1

λ0−1L1(t) as t ↑ ω, (2.10)

where L1(t) is a regularly varying function as t ↑ ω (see [7, p. 10]).
Hence, taking into account the properties of regularly varying functions [7, p. 10–15], we obtain

the first of conditions (2.6).
From (1.1) and (2.9), it follows that as t ↑ ω

|y′(t)|1−σ1 sign y01
φ0(y(t))

= α0(λ0 − 1)πω(t)φ1(y
′(t))|y′(t)|−σ1p(t)[1 + o(1)]. (2.11)

Substituting (2.10) into (2.11), we get as t ↑ ω the equality

y′(t)

|φ0(y(t))|
1

1−σ1

= y01 |λ0 − 1|
1

1−σ1

∣∣∣πω(t)θ1(|πω(t)| 1
λ0−1L1(t)y

0
1

)
p(t)

∣∣∣ 1
1−σ1

[1 + o(1)]. (2.12)

In (2.10), the function L1 is a slowly varying when its argument tends to Y1. The function θ1
satisfies the condition S. So, from (2.12), we have as t ↑ ω

y′(t)

|φ0(y(t))|
1

1−σ1

= y01 |λ0 − 1|
1

1−σ1

∣∣∣πω(t)θ1(|πω(t)| 1
λ0−1 y01

)
p(t)

∣∣∣ 1
1−σ1

[1 + o(1)]. (2.13)

Integrating the relation from t0 to t, we get as t ↑ ω

y(t)∫
y(t0)

dz

|φ0(z)|
1

1−σ1

= y01 |λ0 − 1|
1

1−σ1

t∫
t0

∣∣∣πω(τ)θ1(|πω(τ)| 1
λ0−1 y01

)
p(τ)

∣∣∣ 1
1−σ1

[1 + o(1)] dτ.

Taking into account the choice of Aω, and that y → Y0 (Y0 ∈ ∆Y0), we have

Φ0(y(t)) = I(t)[1 + o(1)] as t ↑ ω. (2.14)

From (2.13) and (2.14), according to (2.9), we get

πω(t)y
′(t)

y(t)
· y(t)Φ

′
0(y(t))

Φ0(y(t))
=
πω(t)I

′(t)

I(t)
[1 + o(1)] as t ↑ ω. (2.15)

By conditions (1.2), the function Φ0(y) is rapidly varying as y → Y0 (Y0 ∈ ∆Y0
). Thus from (2.15) it

follows that
lim
t↑ω

πω(t)I
′(t)

I(t)
= ∞. (2.16)

Taking into account equalities (2.14) and (2.9), we get

y′(t)Φ0(y(t))

y(t)
=

λ0I(t)

(λ0 − 1)πω(t)
[1 + o(1)] as t ↑ ω. (2.17)

From here in the same way as equality (2.14) was obtained, we get the equality

Φ1(y(t)) = I1(t)[1 + o(1)] as t ↑ ω. (2.18)



Asymptotic Representations of a Class of Regularly Varying Solutions of Differential Equations . . . 85

Thus, the correctness of the first representation of (2.8) and the first equality of (2.6) are justified.
  We get the correctness of the second representation of (2.8) as a result of division (2.17) by (2.18).

The second representation of (2.8) can be rewritten in the form

πω(t)y
′(t)

y(t)
· y(t)Φ

′
1(y(t))

Φ1(y(t))
=
πω(t)I

′
1(t)

I1(t)
[1 + o(1)] as t ↑ ω.

With the help of (2.9), from the above representation we get

λ0
λ0 − 1

· y(t)Φ
′
1(y(t))

Φ1(y(t))
=
πω(t)I

′
1(t)

I1(t)
[1 + o(1)] as t ↑ ω. (2.19)

From conditions (1.2) imposed on the function φ0(y(t)) and Note 2.2, we find that Φ1(y) is a rapidly
varying function as y → Y0 (Y0 ∈ ∆Y0). Then, taking into account (2.19), we get

lim
t↑ω

πω(t)I
′
1(t)

I1(t)
= ∞. (2.20)

By (2.1), (2.15), (2.16) and (2.19), we have

lim
t↑ω

I ′′1 (t)I1(t)

(I ′1(t))
2

= lim
t↑ω

πω(t)I′(t)
I(t)

πω(t)I′
1(t)

I1(t)

= lim
t↑ω

y(t)Φ′
0(y(t))

Φ0(y(t))

y(t)Φ′
1(y(t))

Φ1(y(t))

= lim
y→Y0
y∈∆Y0

Φ′′
1(y) · Φ1(y)

(Φ′
1(y))

2
= 1. (2.21)

It means that the first of conditions (2.7) holds.
Note that the function Φ−1

1 (y) is slowly varying as y → Z0, since it is inverse to a rapidly varying
as y → Y0 (Y0 ∈ ∆Y0) function Φ1. Taking into account this fact and (2.18), we get as t ↑ ω

y(t) = Φ−1
1 (I1(t))[1 + o(1)].

The correctness of the second of conditions (2.6) follows from this fact.
Note that (2.19) can be written in the form

λ0
λ0 − 1

· Φ−1
1 (I1(t)) ·

Φ′
1(Φ

−1
1 (I1(t)))

Φ1(Φ
−1
1 (I1(t)))

=
πω(t)I

′
1(t)

I1(t)
[1 + o(1)] as t ↑ ω.

The validity the second of conditions (2.7) is justified, and hence the necessity is proved.
Sufficiency. Let us suppose that conditions (2.3)–(2.7) of the theorem take place.

We apply to equation (1.1) the transformationΦ1(y(t)) = I1(t)[1 + v1(x)],
y′(t)

y(t)
=

λ0
λ0 − 1

· 1

πω(t)
[1 + v2(x)]

(2.22)

and reduce system (2.22) to the following system of differential equations:
v′1 =

I ′1(t)

I1(t)
[1 + v1] ·

( λ0
λ0 − 1

· F (t) ·M(t, v1)[1 + v2]− 1
)
,

v′2 =
1

πω(t)
[1 + v2] ·

[
Q(t, v1, v2)(1 + v1)

σ1−1(1 + v2)
σ1−1 − 1

λ0
− v2

]
.

(2.23)

Here,

M(t, v1) =
Y (t, v1)

Φ′
1

Φ1
(Φ−1

1 (Y (t, v1)))

Φ−1
1 (I1(t))

Φ′
1

Φ1
(Φ−1

1 (I1(t)))
, Y (t, v1) = Φ−1

1

(
I1(t)[1 + v1]

)
,

Q(t, v1, v2) =
N(t, v1, v2)

λ0

(
F (t)

( λ0
λ0 − 1

)2

·M(t, v1)
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×
( L(t)

1 + L(t)
+ F (t)M(t, v1) ·

Φ′′
1(Y (t, v1))Φ1(Y (t, v1))

(Φ1(Y (t, v1)))2
· 1

I1(t)I′′
1 (t)

(I′
1(t))

2 +G(t)

))σ1−1

,

N(t, v1, v2) =
θ1
( λ0Y (t,v1)
(λ0−1)πω(t) · [1 + v2]

)
θ1(|πω(t)|

1
λ0−1 sign y01)

, G(t) =
I1(t)

πω(t)I ′1(t)
, L(t) =

I ′1(t)

πω(t)I ′′1 (t)
.

From the first of conditions (2.7) we have

lim
t↑ω

G(t) = 0. (2.24)

We have already proved that the function Φ−1
1 (z) is slowly varying as z → Z1. So, taking into

account the second of conditions (2.6), we have

lim
t↑ω

Y (t, v1) = Y0 uniformly by v1 : |v1| <
1

2
. (2.25)

By Note 2.3, we have

lim
t↑ω

M(t, v1) = 1 uniformly by v1 : |v1| <
1

2
. (2.26)

From the second of conditions (2.7), we get

lim
t↑ω

F (t) =
λ0

λ0 − 1
. (2.27)

Now, we can prove that

lim
t↑ω

N(t, v1, v2) = 1 uniformly by v1 : |v1| <
1

2
and uniformly by v2 : |v2| <

1

2
. (2.28)

From (2.26) and (2.27), it follows that

lim
t↑ω

(
Φ−1

1 (I1(t))

|πω(t)|
λ0

λ0−1

)′
· πω(t)

Φ−1
1 (I1(t))

|πω(t)|
λ0

λ0−1

= lim
t↑ω

1

F (t)M(t, v1)
− λ0

(1− γ0)(λ0 − 1)
= 0.

Hence (
Φ−1

1 (I1(t))

|πω(t)|
λ0

λ0−1

)
is a normalized slowly varying function as t ↑ ω. Statement (2.28) follows from the above according
to the fact that the function Φ−1

1 is slowly variable as its argument tends to Z1, and the function θ1
satisfies condition S.

Taking into account the first of conditions (2.7), we have

lim
t↑ω

L(t) = 0. (2.29)

From (2.24)–(2.29), it follows that

lim
t↑ω

Q(t, v1, v2) =
1

λ0
uniformly by v1 : |v1| <

1

2
and uniformly by v2 : |v2| <

1

2
. (2.30)

By (2.6), from the fact that the function Φ−1
1 is slowly varying as the argument tends to Z1, it

follows that there exists a number t0 ∈ [a, ω[ such that

Φ−1
1

(
I1(t)(1 + v1)

)
∈ ∆Y0

as t ∈ [t0, ω[ , |v1| ≤
1

2
.
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Further, we consider the system of differential equations (2.23) on the set

Ω = [t0, ω[×D, D =
{
(v1, v2) : |vi| ≤

1

2
, i = 1, 2

}
and rewrite the system in the form

v′1 =
I ′1(t)

I1(t)

[
A11(t)v1 +A12(x)v2 +R1(x, v1, v2) +R2(x, v1, v2)

]
,

v′2 =
1

πω(t)

[
A21v1 +A22v2 +R3(x, v1, z2) +R4(x, v1, v2)

]
,

(2.31)

where

A11(t) =
λ0

λ0 − 1
F (t)− 1, A12(t) =

λ0
λ0 − 1

F (t),

R1(t, v1, v2) =
λ0

λ0 − 1
F (t)− 1 +

λ0
λ0 − 1

F (t)(M(t, v1)− 1)(1 + v1 + v2),

R2(t, v1, v2) =
λ0

λ0 − 1
F (t)M(t, v1)v1v2,

A21 =
σ1 − 1

λ0
, A22 =

σ1 − 1− λ0
λ0

,

R3(t, v1, z2) =
1

λ0

(
1 + (σ1 − 1)v1 + σ1v2

)
·
(
λ0Q(t, v1, v2)− 1

)
,

R4(t, v1, v2) = Q(t, v1, v2)
[
(1 + σ1v2)

(
(1 + v1)

σ1−1 − 1− (σ1 − 1)v1
)

+ σ1(σ1 − 1)v1v2 +
(
(1 + v2)

σ
1 − 1− σ1v2

)
(1 + v1)

σ
1

]
− v22 .

By virtue of equalities (2.24)–(2.29), for k ∈ {2, 4}, we get

lim
|v1|+|v2|→0

Rk(t, v1, v2)

|v1|+ |v2|
= 0 uniformly by t as t ∈ [t0, ω[ , (2.32)

and for k ∈ {1, 3},

lim
t↑ω

Rk(t, z1, z2) = 0 uniformly by v1, v2 as (v1, v2) ∈ D. (2.33)

At the next stage of the proof we apply to system (2.31) the following transformation:{
v1 = r1,

v2 = r2 −H(t).
(2.34)

Here,

H(t) =
λ0

λ0−1 F (t)− 1
λ0

λ0−1 F (t)
.

By (2.27), we have
lim
t↑ω

H(t) = 0. (2.35)

Thus get a system
r′1 =

I ′1(t)

I1(t)

λ0
λ0 − 1

F (t)
[
r2 + r1r2 +R(t; r1; r2)

]
,

r′2 =
1

πω(t)

[
A21r1 +A22r2 + V3(t, r1, r2) + V4(t, r1, r2)

]
,

(2.36)
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where

R(t, r1, r2) = (M(t, r1)− 1)(1 + r1)(1 + r2 −H(t)),

V3(t, r1, r2) = R4(t, r1, r2 −H(t))−R4(t, r1, r2) + πω(t)H
′(t)−A22H(t) +R3(t, r1, r2 −H(t)),

V4(t, r1, r2) = R4(t, r1, r2).

Let us show that
lim
t↑ω

πω(t)H
′(t) = 0. (2.37)

According to condition (2.4) of the theorem, there exists the following finite or infinite limit

lim
t↑ω

πω(t)H
′(t).

Let
πω(t)H

′(t) = q(t) and lim
t↑ω

q(t) ̸= 0. (2.38)

Then
H ′(t) =

q(t)

πω(t)
.

As a result of integration of the above equality from t0 to t, we have

H(t)−H(t0) =

t∫
t0

q(τ)

πω(τ)
dτ. (2.39)

From (2.35) and (2.39), it follows that the integral
ω∫
t0

q(τ)
πω(τ) dτ must be finite. But this is possible

only if
lim
t↑ω

q(t) = 0.

Thus, taking into account (2.38), we have proved the correctness of statement (2.37).
Owing to the properties of the function R4, by (2.28) and (2.35), it follows that

lim
t↑ω

[
R4(t, r1, r2 −H(t))−R4(t, r1, r2)

]
= 0 uniformly by r1 and r2 as |ri| <

1

2
, i = 1, 2. (2.40)

Applying the transformation {
r1 = w1,

r2 =
√

|G(t(x))|w2,
(2.41)

where

x = β ln |I1(t)|, β =

1, if lim
t↑ω

I1(t) = ∞,

−1, if lim
t↑ω

I1(t) = 0,
(2.42)

to system (2.31) and taking into account (2.3), we obtain the system
w′

1 = β
√

|G(t(x))|
[ λ0
λ0 − 1

F (t(x))w2 +
λ0

λ0 − 1
F (t(x))w1w2 +W (x;w1;w2)

]
,

w′
2 = β

√
|G(t(x))|

[
signG(t(x))A21w1

+
(√

|G(t(x))| signG(t(x))A22(x)− Ñ(x)
)
w2 +W3(x,w1, w2) +W4(x,w1, w2)

]
,

(2.43)

where

W (x;w1;w2) =
λ0

λ0 − 1
F (t(x)) · (M(t(x), w1)− 1)√

|G(t(x))|
(1 + w1)

(
1 +

√
|G(t(x))|w2 −H(t(x))

)
,
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W3(x,w1, w2) = V3

(
t(x), w1,

√
|G(t(x))|w2

)
,

W4(x,w1, w2) = V4

(
t(x), w1,

√
|G(t(x))|w2

)
,

Ñ(x) =
sign(G(t(x)))G′(t(x))I(t(x))

2G(t(x))
√
|G(t(x))| I ′(t(x))

.

Note that

Ñ(x) =
sign(G(t(x)))G′(t(x))I(t(x))

2G(t(x))
√

|G(t(x))| I ′(t(x))
=

sign(G(t(x)))G′(t(x))πω(t(x))

2
√
|G(t(x))|

.

At the same time, the equality

(M(t, w1)− 1)√
|G(t(x))|

= ln |I1(t)| ·
(Φ−1

1 (I1(t)[1 + v1])ψ(Φ
−1
1 (I1(t)[1 + v1]))

Φ−1(I1(t))ψ(Φ−1(I1(t)))
− 1

)
·

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

is true. Next, let us prove that

lim
t↑ω

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

= 0. (2.44)

By de L’Hospital rule we have

lim
t↑ω

√
|πω(t)I′

1(t)
I1(t)

|
ln |I1(t)|

= −1

2
lim
t↑ω

G′(t)πω(t)√
|G(t)|

.

The last limit has a finite or infinite boundary, since the second limit in (2.4) exists.
Now let us prove that

lim
t↑ω

G′(t)πω(t)√
|G(t)|

= 0. (2.45)

According to condition (2.4), there exists the following finite or infinite limit

lim
t↑ω

G′(t)πω(t)√
|G(t)|

.

Suppose that
G′(t)πω(t)√

|G(t)|
= q1(t) and lim

t↑ω
q1(t) ̸= 0. (2.46)

Then
G′(t)√
|G(t)|

=
q1(t)

πω(t)
.

As a result of integration of this equality from t0 to t, we have

2
√
|G(t)| − 2

√
|G(t0)| =

t∫
t0

q1(τ)

πω(τ)
dτ. (2.47)

From (2.24) and (2.47), it follows that the integral
ω∫
t0

q1(τ)
πω(τ) dτ must be finite. But this is possible

only if
lim
t↑ω

q1(t) = 0. (2.48)

The last one is in contradiction with assumption (2.46). So, statement (2.44) is true.
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Let us now prove that
lim

x→+∞
Ñ(x) = 0. (2.49)

The function Φ−1(z) · Φ′
1(Φ

−1(z))
z satisfies condition B, hence∣∣∣∣ ln |I1(t(x))| ·
(Φ−1

1 (I1(t)[1 + v1])ψ(Φ
−1
1 (I1(t)[1 + v1]))

Φ−1(I1(t))ψ(Φ−1(I1(t)))
− 1

)∣∣∣∣ <∞.

From the above equality and statement (2.49), it follows that

lim
x→+∞

W (x;w1;w2) = 0 uniformly towards w1 and w2 if |wi| <
1

2
, i = 1, 2. (2.50)

Note that the characteristic equation of a matrix(
0 β

β sign(λ0(σ1 − 1))A21 0

)
has the form

µ2 − |σ1 − 1|
|λ0|

= 0.

This equation has no roots with real part equal to zero. Let us consider
∞∫
x0

G(t(x)) dx. Taking into

account the presentation G(t(x)) = I(t(x))
πω(t(x))I′(t(x)) , we have

∞∫
x0

G(t(x)) dx =

∞∫
x0

I1(t(x))

πω(t(x))I ′1(t(x))
dx =

ω∫
t(x0)

I1(t)

πω(t)I ′1(t)

I ′1(t)

I1(t)
dt = ln |πω(t)|ωd1

−→ ∞ as t→ ω.

Since in some neighborhood of zero the inequality
∞∫

x0

√
|G(t(x))| dx ≥ sign(G(t(x)))

∞∫
x0

G(t(x)) dx

takes place, it is true that
∞∫

x0

√
|G(t(x))| dx −→ +∞.

We have got that for the system of differential equations (2.43) all conditions of Theorem 2.2 from
[5] are fulfilled. According to this theorem, system (2.43) has a one-parameter family of solutions
{wi}2i=1 : [x1,+∞[→ R2 (x1 ≥ x0, x0 = β ln |I1(t0)|) that tend to zero as x→ +∞. By (2.42), (2.22)
these solutions correspond to those solutions y of equation (1.1) that admit asymptotic representations
(2.8) as t ↑ ω.

By representations (2.8) and inequality (2.3) it is clear that the obtained solutions are indeed the
Pω(Y0, Y1, λ0)-solutions. The theorem is proved completely.

3 Illustration of the results
To illustrate the results obtained above, we consider the following differential equation for t ∈ [2,+∞[

y′′ = ψ(t) exp
(

exp(|y|a)− exp(td)
)
|y|σ0 |y′|σ1 . (3.1)

Here, σ0, σ1 ∈ R, σ1 > 1, a, d ∈ ]0,+∞[ , the function ψ : [2,+∞[→ ]0,+∞[ is continuous, regularly
varying at infinity of index γ, γ ∈ R.
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This equation is of type (1.1) for which

α0 = 1, p(t) = ψ(t) exp
(
− exp(td)

)
, φ0(y) = |y|σ0 exp

(
exp(|y|a)

)
, φ1(y

′) = |y′|σ1 .

Using the above proven theorem, let us investigate the question of the existence and asymptotic
behavior as t→ +∞ of P+∞(∞, Y1, λ0)-solutions of equation (3.1) for which λ0 ∈ R \ {0, 1}.

In our case,
πω(t) = t, θ1(y) = 1.

Thus the function θ1 satisfies condition S.
Taking into account the choice of B0

+∞, as t→ +∞, we have

I(t) = |λ0 − 1|
1

1−σ1 · y10 ·
σ1 − 1

d
· t1−d+ 1

1−σ1 · |ψ(t)|
1

1−σ1 · exp
(exp(td)
σ1 − 1

− td
)
[1 + o(1)].

In the same way, as t→ +∞, we have

I1(t) = |λ0 − 1|
1

1−σ1 · y10 ·
(σ1 − 1

d

)2

· t1−2d+ 1
1−σ1 · |ψ(t)|

1
1−σ1 · exp

(exp(td)
σ1 − 1

− 2td
)
[1 + o(1)].

In addition, in our case, since Y0 = ∞, taking into account the choice of A0
∞, we get

Φ0(y) =
σ1 − 1

a
· y

σ0
σ1−1+1−a · exp

(exp(|y|a)
σ1 − 1

− |y|a
)
[1 + o(1)] as y → ∞.

Similarly, we have

Φ1(y) =
(σ1 − 1

a

)2

· y
σ0

σ1−1+1−2a · exp
(exp(|y|a)
σ1 − 1

− 2|y|a
)
[1 + o(1)] as y → ∞. (3.2)

We have
lim

t↑+∞
F (t) =

a

d
. (3.3)

From (3.3) and the second condition of (2.7), it follows that equation (3.1) may have only
P+∞(∞, Y1, λ0)-solutions with

λ0 =
d

d− a
.

Taking into account asymptotic representations for functions I, I1, Φ0, Φ1, Φ−1
1 , we get

lim
t→+∞

tF ′(t) = 0.

So, the first condition of (2.4) is valid.
Note that √

|πω(t)I′
1(t)

I1(t)
|

ln |I1(t)|
=

√
d(σ1 − 1)

t
d
2

exp( td2 )
[1 + o(1)] as t→ ∞,

from which the second condition of (2.4) takes place.
At the same time,

Φ−1
1 (y) · Φ

′
1(Φ

−1
1 (y))

y
=

(σ1 − 1)2

a
ln y ·

(
ln((σ1 − 1) ln y)

) σ0
σ1−1

−2a+1

a [1 + o(1)] as y → ∞.

This means that condition S1 is satisfied.
Thus, all conditions of Theorem 2.1 are satisfied. By virtue of this theorem, equation (3.1) may

have only P+∞(+∞,+∞, d
d−a )-solutions. From Theorem 2.1 it also follows that equation (3.1) has

one-parameter family of P+∞(+∞,+∞, d
d−a )-solutions.
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Also, using the known asymptotic behavior of the function Φ−1
1 , it is easy to find that every

P+∞(+∞,+∞, d
d−a )-solution of equation (3.1) and its derivative satisfy the following asymptotic

representations

(y(t))
σ0

σ1−1+1−2a · exp
(exp(|y(t)|a)

σ1 − 1
− 2|y(t)|a

)
=

∣∣∣ a

d− a

∣∣∣ 1
1−σ1 ·

(a
d

)2

· t1−2d+ 1
1−σ1 · ψ

1
1−σ1 (t) · exp

(exp(td)
σ1 − 1

− 2td
)
[1 + o(1)] as t→ +∞,

y′(t) =
y(t)

t
[1 + o(1)] as t→ +∞.
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