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ON RECTIFIABLE OSCILLATION

OF EMDEN–FOWLER EQUATIONS



Abstract. We are interested in the oscillatory behavior of solutions of
Emden–Fowler equation

y′′ + f(x)|y|γ−1y = 0, (1)

where γ > 0 and γ 6= 1, f(x) ∈ C1(0, 1] and f(x) > 0 for x ∈ (0, 1].
A solution y(x) is rectifiable oscillatory if the solution curve {(x, y(x)) :
x ∈ (0, 1]} has a finite arc-length. When the arc-length of the solution
curve is infinite, the solution y(x) is said to be unrectifiable oscillatory. We
prove integral criteria in terms of f(x) which are necessary and sufficient
for both rectifiable and unrectifiable oscillations of all solutions of (1). For
a discussion on rectifiable oscillation of the linear differential equation, i.e.
the equation (1) when γ = 1, we refer to Pašić [15], Wong [17].
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1. Introduction

We study the oscillatory behavior of solutions of the Emden–Fowler equa-
tion on a finite interval. Consider the equation

y′′ + f(x)|y|γ−1y = 0, γ > 0, γ 6= 1, (1)

where f(x) ∈ C2(0, 1], f(x) is strictly positive and singular at x = 0, i.e.
lim
x→0

f(x) = ∞. Let I0 and I denote the half-open interval (0, 1] and the

closed interval [0, 1] respectively. Under these assumptions, it is known
from results on the semi-infinite interval [0,∞) that any solution y(x) of
(1) with prescribed initial conditions y(x0) and y′(x0) at some x0 ∈ I0

can be extended throughout the entire interval I0, see, e.g., Hastings [8],
Coffman and Wong [3]. A solution y(x) of (1) is said to be oscillatory if it
has an infinite number of zeros in I = [0, 1] and non-oscillatory if it has only
a finite number of zeros in I . If any one of the solutions of the equation (1)
is oscillatory in I , then f(x) must be singular. The reverse is not necessarily
true as can be seen in the Euler equation,

y′′ + λx−2y = 0, λ ≤ 1

4
. (2)

Here the coefficient is singular and the general solution of the equation (2)
is given by

y(x) = c1

√
x cos(ρ log x) + c2

√
x sin(ρ log x), (3)

where ρ2 = λ− 1

4
. When ρ2 ≤ 0, the solution given by (3) is nonoscillatory.

We are interested in the graph G(y) of a solution y(x) of the equation
(1) where G(y) =

{(

x, y(x)
)

: 0 ≤ x ≤ 1
}

⊆ R
2 is a curve in the plane. The

arc-length of the solution curve G(y), denoted by LG(y), is defined by

LG(y) = sup

{

m
∑

i=1

∥

∥

(

xi, y(xi)
)

−
(

xi−1, y(xi−1)
)∥

∥

2

}

,

where the supremum is taken over all partitions 0 = x0 < x1 < · · · < xm = 1
of I, ‖ ‖2 denotes the Euclidean norm in R

2 and m is any finite number.
A convenient formula of computing LG(y) is the following:

LG(y) = lim
ε→0

1
∫

ε

√

1 + y′2(x)dx. (4)

It is clear that any continuous function on a finite interval can have finite

or infinite length, for example y(x) = x sin
1

x
is a solution of y′′ + x−4y = 0

and its arc-length LG(y), according to the formula (4), is infinite. The well
known example by Weiesstrass of a continuous but nowhere differentiable
function defined on any finite interval also has infinite arc-length .

A curve in R
2 is called rectifiable if it has finite arc-length and is called

unrectifiable if it has infinite arc-length. A solution y(x) of the equation
(1) is called rectifiable oscillatory if its graph G(y) has infinite length, i.e.
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LG(y) is finite, and it is called unrectifiable oscillatory if LG(y) = ∞. The
equation (1) is rectifiable oscillatory if all its solutions are. Likewise for
unrectifiable oscillation.

It is therefore natural to ask under what conditions imposed on a(x), the
solutions of the equation (1) are rectifiable oscillatory, and if not, unrectifi-
able oscillatory. In the linear case, the Euler-type differential equation

y′′ + λx−αy = 0, λ > 0, α > 0 (5)

has been studied by Pašić [15] and Wong [17]. Their main result is the
following.

Theorem A. Solutions of the equation (5) are

(a) rectifiable oscillatory if 2 < α < 4, and

(b) unrectifiable oscillatory if α ≥ 4.

More recently, Kwong, Pašić and Wong [13] improved the above result
by proving

Theorem B. For the linear equation (1) with γ = 1, if the coefficient

function f(x) satisfies the Hartman–Wintner condition

lim
ε→0

1
∫

ε

f−
1
4 (x)

∣

∣

∣

∣

(

f−
1
4 (x)

)′′
∣

∣

∣

∣

dx < ∞ (H −W )

(see [4] and [7]), then all solutions of (1) with γ = 1 are

(i) rectifiable oscillatory if

lim
ε→0

1
∫

ε

f1/4(x)dx < ∞, (6)

and

(ii) rectifiable oscillatory if

lim
ε→0

1
∫

ε

f
1
4 (x)dx = ∞. (7)

Theorem B is a significant improvement of Theorem A. The question
whether Theorem B can be extended to the more general case of the Emden–
Fowler equation (1) when γ > 0, γ 6= 1, is quite natural, particularly in the
light of the fact that the Sturm Comparison Theorem does not hold for the
Emden–Fowler equation (1) but was used extensively in the proof of The-
orem A. Fortunately, the approach of using asymptotic representation in
proving Theorem B can be modified to the nonlinear Emden–Fowler equa-
tion (1). The purpose of this paper is to prove an analogue of Theorem B
for the equation (1):
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Theorem 1. Suppose that f(x) ∈ C2(0, 1], f(x) > 0 for x ∈ (0, 1],
lim
x→0

f(x) = ∞, and satisfies

lim
ε→0

1
∫

ε

f−1(x)f ′+(x)dx = K0 < ∞, (A0)

where f+(x) = max
(

f(x), 0
)

. If, in addition, f(x) satisfies for 0 < γ < 1

lim
ε→0

1
∫

ε

∣

∣

∣d
(

f ′(x)f−3/2(x)
)∣

∣

∣ < ∞, (8)

and for γ > 1

lim
ε→0

1
∫

ε

∣

∣

∣d
(

f ′(x)f−(γ+2)/γ+1(x)
)∣

∣

∣ < ∞, (9)

then the equation (1) is (i) rectifiable oscillatory if

lim
ε→0

1
∫

ε

f1/γ+3(x)dx < ∞, (10)

and (ii) unrectifiable oscillatory if

lim
ε→0

1
∫

ε

f1/γ+3(x)dx = ∞. (11)

In the special case of the Euler-type coefficient f(x) = λx−α, λ > 0, the
Emden–Fowler equation

y′′ + λx−α|y|γ−1y = 0, λ > 0, γ > 0, (10)

x ∈ (0, 1], admits the following

Corollary.

(i) Equation (10) is rectifiable oscillatory if 2 < α < γ + 3 when 0 <
γ < 1 and γ + 1 < α < γ + 3 when γ > 1;

(ii) Equation (10) is unrectifiable oscillatory if α ≥ γ + 3.

Clearly Corollary above reduces to Theorem A when γ = 1. Theorem
B however does not follow as a corollary of the main Theorem because the
(H −W ) condition is implied by (8) or (9), see Lemma 2 below.

The basis of our proof of the main result is the asymptotic representation
formula for the Emden–Fowler equations developed by Kiguradze [9], [10],
[11] (see Kiguradze and Chanturia [12; pp. 270–275], and Chanturia [5]).
Kiguradze’s results like that of Wintner in the linear case were given on
the semi-infinite interval [0,∞). When compared with the linear case, Kig-
uradze’s results require the additional assumption on the monotonicity of
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f(x) near x = 0, which is provided here by the assumption (A0), a condition
somewhat weaker than f ′(x) ≤ 0, x ∈ (0, ε] for some ε > 0.

2. Auxiliary Lemmas

We first introduce a Lyapunov function V (x) for a given solution y(x) of
the equation (1) by

V (x) = f−2/γ+3(x) |y′(x)|2 +
2

γ + 1
f(x)(γ+1)/γ+3 |y(x)|γ+1

. (12)

Introduce the function g(x) = f ′(x)[f(x)]−(γ+5)/γ+3 which is related to
V (x) by the following identity by (1):

V (x) = V (x0) +
2

γ + 3
[g(x0)y(x0)y

′(x0)− g(x)y(x)y′(x)]−

− 2

γ + 3

x0
∫

x

y(s)y′(s)dg(s). (13)

From (12), we have

|y(x)| ≤
(

γ + 1

2

)1/γ+1

f(x)−1/γ+3V (x)1/γ+1 (14)

and

|y′(x)| ≤ f(x)1/γ+3V (x)1/2. (15)

To develop an asymptotic representation of solutions of (1), Kiguradze
introduces a condition similar to the Hartman–Wintner condition which we
label as (K):

g(x) = [f(x)]−(γ+5)/γ+3f ′(x) ∈ BV (0, 1), and lim
x→0

g(x) = 0, (K)

which is implied by an obvious extension of (H −W ) condition, namely,

lim
ε→0

1
∫

ε

f−1/γ+3(x)

∣

∣

∣

∣

(

f−
1

γ+3 (x)
)′′

∣

∣

∣

∣

dx < ∞. (∗)

Lemma 1. The condition (∗) implies the condition (K).

Proof. Let k(x) = f−
1

γ+3 (x). It is easy to verify the identity

− 1

γ + 3
g′(x) =

(

k(x)k′(x)
)′

= k(x)k′′(x) + k′(x)2. (16)

The condition (∗) implies for all s ∈ (0, 1]

1
∫

s

k(x)k′′(x)dx = k(1)k′(1)− k(s)k′(s)−
1

∫

s

k′(x)2dx ≥ −C0, (17)
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where C0 =
1
∫

0

|k(x)k′′(x)|dx. Since k(0) = 0 and k(x) > 0 for all x ∈ (0, 1],

it follows from the mean value theorem that there exists a sequence of points
sn ≥ 0, sn → 0, such that k′(sn) > 0. Using this in (17), we have

1
∫

sn

k
′2(x)dx ≤ C0 + |k(1)k′(1)| − k(sn)k′(sn) ≤ c1, (18)

where C1 = C0 + |k(1)k′(1)|. Letting sn → 0 in (18), we conclude that
k′(x) ∈ L2(0, 1). Returning to (16) and noting the condition (14), i.e.
k(x)k′′(x) ∈ L1(0, 1), we deduce that g′(x) ∈ L1(0, 1) which implies
lim
x→0

g(x) = c.

From (17) we note that for all s ∈ (0, 1) we have k(s)k′(s) ≤ C1, which
upon integrating from s = 0 to s = x gives k2(x) ≤ 2C1x. Observe that

lim
ε→0

1
∫

ε

1

k2(x)
dx = lim

ε→0

1
∫

ε

1

2C1x
dx = ∞. (19)

Now if lim
x→0

g(x) = k(x)k′(x) = c 6= 0, then there is a neighborhood [0, x1]

of x = 0, x1 > 0, such that |k(s)k′(s)|−1 ≤ B0 for s ∈ [0, x1]. Now from
(19) we obtain

∞ = lim
ε→0

x1
∫

ε

ds

k2(s)
=

x1
∫

0

(k′(s))2

(k(s)k′(s))2
ds ≤ B2

0

x1
∫

0

(k′(s))2ds,

which contradicts the fact that k′(x) ∈ L2(0, 1). Thus lim
x→0

g(x) = 0, proving

that the condition (∗) implies (K). �

We note that the condition (∗) alone is not sufficient to prove the required
asymptotic representation formula for the equation (1) as in the case of the
linear equation. Results of Kiguradze suggested that the stronger conditions
(8) in case 0 < γ < 1 and (9) in case γ > 1 plus the monotonicity condition
(A0) would suffice. We will prove these observations in the lemmas to follow.

Lemma 2. The condition (8) in case 0 < γ < 1 and the condition (9)
in case γ > 1 imply the condition (∗) hence the condition (K).

Proof. The condition (8) implies that the limit f−3/2(x)f ′(x) as x → 0 exist

and is finite, so for 0 < γ < 1 the expression g(x)=f−3/2(x)f ′(x)[f(x)]
γ−1

2(γ+3)

tends to zero as x → 0. Now consider the identity

1
∫

x

dg(s) =

1
∫

x

f(s)(γ−1)/2(γ+3)d
(

f ′(s)f−3/2(s)
)

+
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+
(1− γ)

2(γ + 3)

1
∫

x

|f−
(γ+4)
γ+3 (s)f ′(s)|2ds =

= I1(x) +
1− γ

2(γ + 3)
I2(x), (20)

where I1(x), I2(x) denote the first and second integrals on the right hand
side of (20), respectively. The integral I1(x) converges as x → 0 because of
(8) and lim

x→0
g(x) = 0, so the integral I2(x) also converges as x → 0. Now

the condition (8) implies that there exists B1 > 0 such that |I1(x)| ≤ B1.
We can now estimate (20) and obtain

1
∫

x

|dg(s)| ≤ |I1(x)| + (1− γ)/2(γ + 3)I2(x) ≤ B1 +
(1− γ)

2(γ + 3)
I2(x). (21)

The convergence of I2(x) as x → 0 shows by (21) that g(x) ∈ BV (0, 1).
Since f(x) ∈ C2(0, 1], this proves g′(x) ∈ L1(0, 1), so the condition (7)
implies (K). Returning to (16), we note that k′(x) ∈ L2(0, 1) from |I2(x)| ≤
B1. This together with g′(x) ∈ L1(0, 1) implies by (16) the validity of (∗).

We assume that the condition (9) holds for γ > 1. Consider instead of
(20) the following identity

1
∫

x

dg(s) =

1
∫

x

f(s)(1−γ)/(γ+1)(γ+3)d
(

f ′(s)f−
γ+2
γ+1 (s)

)

+

+
(γ − 1)

(γ + 1)(γ + 3)

1
∫

x

|f−
(γ+4)
γ+3 (s)f ′(s)|2ds =

= I3(x) +
γ − 1

(γ + 1)(γ + 3)
I2(x), (22)

where I3(x) denotes the first integral of the right hand side of (22) and
I2(x) denotes the second integral of the right hand side of (22) which is the
same as the second integral of the right hand side of (20). The condition
(9) implies that I3(x) converges as x → 0. Also write

g(x) = f−(γ+5)/γ+3(x)f ′(x) = f−
γ+2
γ+1 (x)f ′(x)f (1−γ)/(γ+1)(γ+3)(x). (23)

the condition (9) implies that |f−(γ+2)/γ+1(x)f ′(x)| is bounded, so γ > 1 in
(23) implies that lim

x→0
g(x) = 0. We estimate (22) by the following inequality

1
∫

x

|dg(s)| ≤ |I3(x)|+ γ − 1

(γ + 1)(γ + 3)
I2(x). (24)

The condition (9) implies the convergence of I3(x) which in turn implies by
(22) that I2(x) also converges and hence is bounded. These two statements
prove that g(x) ∈ BV (0, 1) or g′(x) ∈ L1(0, 1). Thus the condition (9)
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implies (K). Now the boundedness of I2(x), which is similar to k′(x) ∈
L2(0, 1), plus g′(x) ∈ L1(0, 1) prove by (16) that k(x)k′′(x) ∈ L1(0, 1).
Hence the condition (8) implies (∗). �

Lemma 3. Assume that the condition (K) holds. Then for every solution

y(x) of the equation (1) the following hold:

(i) For γ > 1, V (x) is bounded and lim
x→0

V (x) = c0 ≥ 0,

(ii) For 0 < γ < 1, if V (x) is bounded, then lim
x→0

V (x) = c0 > 0.

Proof. (i) Suppose that V (x) is unbounded. Then there exists a sequence
{sk : lim

k→∞
sk = 0} such that V (sk) = sup

sk≤x≤1
V (x) form a non-decreasing

sequence and lim
k→∞

V (sk) = ∞ as k → ∞. By the condition (K), g′(x) ∈
L1(0, 1), so we can estimate V (sk) using (13), (14) and (15):

V (sk) 5 V (x0) +
2

γ + 3

(

γ + 1

2

)1/γ+1

V (γ+3)/2(γ+1)(sk)×

×
{

|g(x0)|+ |g(sk)|+
x0
∫

sk

|dg(s)|
}

. (25)

For γ > 1, (γ + 3)/2(γ + 1) < 1, so (25) yields that V (x) is bounded. By
(13), lim

x→0
V (x) = c0 exists and is non-negative by (12).

(ii) For 0 < γ < 1, we assume that V (x) is bounded but lim
x→0

V (x) = 0.

We want to show that the condition (K) leads to a contradiction. For any
x1 ∈ (0, 1], we can find x3 < x2 ≤ x1, such that

{

2V (x3) = V (x2) = V (x1),

V (x3) ≤ V (x) ≤ V (x2), where x ∈ (x3, x2).
(26)

Now putting x = x3 and x0 = x2 in (13), we find

1

2
V (xs) ≤

2

γ + 3

(

γ + 1

2

)1/γ+1

×

×







x2
∫

x3

|dg(s)|+ |g(x3)|+ |g(x2)|







V (x2)
γ+3/2(γ+1),

from which it follows

V (x1)
(γ−1)/2(γ+3) ≤ 12

γ + 3

(

γ + 1

2

)1/γ+1
x1
∫

0

|dg(s)| < ∞, (27)

because g′(x) ∈ L1(0, 1). Since x1 is chosen arbitrarily and 0 < γ < 1, so
lim
x→0

V (x) = 0 implies that the left hand side of (27) tends to ∞ as x1 → 0.

This contradiction proves that lim
x→0

V (x) = c0 > 0. �
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Lemma 2 shows that Kiguradze’s condition (8) for 0 < γ < 1 and condi-
tion (9) for γ > 1 are stronger than the corresponding Hartman–Wintner’s
condition (∗). Indeed, Lemma 3 shows that if only the condition (K) holds,
then V (x) may tend to 0 as x → 0 in case γ > 1 and V (x) may be un-
bounded in case 0 < γ < 1. However, under the monotonicity assumption
(A0), i.e. when f(x) is basically non-increasing, then conditions the (8)
and (9) imply that the Lyapunov function V (x) of any nontrivial solution
satisfies lim

x→0
V (x) = c0 > 0 as x → 0 as given by Lemma 4 and Lemma 5

below.

Lemma 4. For 0 < γ < 1, if f(x) satisfies (A0) and the condition

(8), then for every nontrivial solution y(x) of (1), its associated Lyapunov

function V (x) is bounded.

Proof. Suppose that V (x) is unbounded. Then for any x1 ∈ (0, 1] we can
find x3 < x2 ≤ x1 such that

{

1
2V (x3) = V (x2) = V (x1),

V (x2) ≤ V (x) ≤ V (x3), where x ∈ (x3, x2).
(28)

Substituting x2 for x0 and x3 for x in (13), we obtain similarly to (27) the
following estimate

V (x3)
(γ−1)/2(γ+1) ≤ 12

γ + 3

(

γ + 1

2

)1/γ+1
x2
∫

x3

|dg(s)|. (29)

Using (28), (29) and 0 < γ < 1, we can find a lower bound for V (x1):

V (x1) ≥ Mγ





x1
∫

0

|dg(s)|





2(γ+1)/γ−1

, (30)

where Mγ = 2(12/γ + 3)2(γ+3)/γ−1

(

γ + 1

2

)2/γ−1

. Since x1 is arbitrary,

(30) holds for all x ∈ (0, 1].

Define W (x) = f(x)−(γ+1)/γ+3V (x) = f−1(x)y
′2(x) + 2

γ+1 |y(x)|γ+1.

Using (1), we find

W ′(x) = −f−2(x)f ′(x)y
′2(x) ≥ −f−1(x)f ′+(x)W (x). (31)

Integrating (31) from x to x0 ∈ (0, 1], we obtain by (A0)

W (x) ≤ W (x0) exp





x0
∫

x

f−1(s)f ′+(s)ds



 ≤ eK0W (x0). (32)

Lemma 2 allows us to rewrite (20) as

g(x) =

x
∫

0

dg(s) =

x
∫

0

f(s)(γ−1)/2(γ+3)d
(

f ′(s)f−3/2(s)
)

+
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+
1− γ

2(γ + 3)

x
∫

0

|f−(γ+4)/γ+3(s)f ′(s)|2ds =

= J1(x) +
1− γ

2(γ + 3)
J2(x), (33)

where J1(x) and J2(x) denote the first and second integrals on the right
hand side of (33). We can estimate (33) from above by

x
∫

0

|dg(s)| ≤ f(x)(γ−1)/2(γ+3)

x
∫

0

∣

∣

∣d
(

f ′(s)f−3/2(s)
)∣

∣

∣ +
1− γ

2(γ + 3)
J2(x). (34)

Using (33) in (34), we obtain

x
∫

0

|dg(s)| ≤ 2(f(x))(γ−1)/2(γ+3)

x
∫

0

∣

∣

∣
d

(

f ′(x)f−3/2(x)
)∣

∣

∣
+ g(x). (35)

Note that

|g(x)| ≤ (f(x))
(γ−1)/2(γ+3)

x
∫

0

∣

∣

∣d
(

f ′(x)f−3/2(x)
)∣

∣

∣ . (36)

Substituting (36) into (35), we find





x
∫

0

|dg(s)|





2(γ+1)/γ−1

≥ f(x)
γ+1
γ+3



3

x
∫

0

∣

∣

∣d
(

f−3/2(s)f ′(s)
)∣

∣

∣





2(γ+1)
γ−1

. (37)

Replace x1 by x in (30) since x1 is arbitrary, and use the definition W (x) =
f(x)−(γ+1)/γ+3V (x) to obtain from (30)

W (x) ≥ Mγ



3

x
∫

0

∣

∣

∣
d

(

f−3/2(s)f ′(s)
)∣

∣

∣





2(γ+1)/γ−1

. (38)

Because of the condition (8) and 0 < γ < 1, the right hand side of (38)
tends to ∞ as x → 0, which contradicts (32). This proves Lemma 4. �

Lemma 4 and Lemma 3 (ii) together show that for every nontrivial solu-
tion y(x) its Lyapunov function V (x) as defined by (11) satisfies lim

x→0
V (x) =

c0 > 0. We now wish to show that the condition (9) in the case where γ > 1
also gives the same conclusion.

Lemma 5. For γ > 1, if f(x) satisfies (A0) and the condition (9), then

for every nontrivial solution y(x) of (1) its associated Lyapunov function

V (x) satisfies lim
x→0

V (x) = c0 > 0.
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Proof. Lemma 3 has already established the fact that V (x) is bounded and
lim
x→0

V (x) exists as a non-negative number c0. To show that c0 > 0, we

assume that V (x) → 0 as x → 0. Then for any x1 ∈ (0, 1] we can find
x3 < x2 ≤ x1 such that

{

2V (x3) = V (x2) = V (x1),

V (x3) ≤ V (x) ≤ V (x2), where x ∈ (x3, x2).
(39)

Now putting x = x3 and x0 = x2 in (13), we can estimate V (x2) by (39) as
follows

1

2
V (x2)≤

2

γ + 3

(

γ + 1

2

)1/γ+1






x2
∫

x3

|dg(s)|+|g(x3)|+|g(x2)|







V (x2)
γ+3

2(γ+1) ,

which reduces to

V (x)(γ−1)/2(γ+3) ≤ 12

γ + 3

(

γ + 1

2

)1/γ+1 x
∫

0

|dg(s)|. (40)

Since lim
x→0

g(x) = 0 and g′(x) ∈ L1(0, 1), we rewrite (22) as

g(x) =

x
∫

0

dg(s) =

x
∫

0

f(s)(1−γ)/(γ+1)(γ+3)d
(

f ′(s)f(s)−
γ+2
γ+1

)

+

+
γ − 1

(γ + 1)(γ + 3)

x
∫

0

∣

∣

∣f ′(s)f−
γ+4
γ+3 (s)

∣

∣

∣

2

ds =

= J3(x) +
γ − 1

(γ + 1)(γ + 3)
J2(x), (41)

where J3(x) is the first integral on the right hand side of (41) and J2(x)
represents the second integral. Note that J2(x) is the same as the second
integral of (33). Using an argument similar to (33), (34), (35), (36) and
(37), we obtain

x
∫

0

|dg(s)| ≤ f(x)(1−γ)/(γ+1)(γ+3)

x
∫

0

∣

∣

∣d
(

f ′(s)f(s)−
γ+2
γ+1

)∣

∣

∣ . (42)

Define H(x) = f2/γ+3(x)V (x) = y
′2(x)+ 2

γ+1f(x)|y|γ+1. By (1), we find

H ′(x) =
2

γ + 1
f ′(x)|y|γ+1 ≤ f ′+(x)f−1(x)H(x). (43)

Integrating (43) we obtain H(x) ≥ H(x0)e
−K0 for all x ≤ x0, x0 ∈ (0, 1],

with K0 given by (A0). Returning to (40) and noting that H(x) is bounded
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below by a positive constant, we obtain by (42)

H(x)=f2/γ+3(x)V (x)≤K
2(γ+3)

γ−1
γ







x
∫

0

∣

∣

∣d
(

f ′(s)f−
γ+2
γ+1 (s)

)∣

∣

∣







2(γ+3)
γ−1

, (44)

where Kγ =
12K0

γ + 3

(

γ + 1

2

)1/γ+1

. By (9) and γ > 1, we note that the right

hand side of (44) tends to 0 as x → 0 but H(x) is bounded below by the
positive constant H(x0)e

−K0 . This is a contradiction proving lim
x→0

V (x) =

c0 > 0. �

3. Proof of the Main Theorem

Under the assumption (A0), (8) for 0 < γ < 1 and (9) for γ > 1 of
the Theorem, we know that the condition (K) holds. For every nontrivial
solution y(x) of the equation (1), the associated Lyapunov function V (x)
given by (11) satisfies lim

x→0
V (x) = c0 > 0 which is proved in Lemma 4 and

Lemma 5. The asymptotic representation formula developed by Kiguradze
[12] on the semi-infinite interval [0,∞) can also be formulated on the finite
interval (0, 1] as described below. Given a nontrivial solution y(x), we rep-
resent it and its derivative y′(x) by the introduction of two functions h(x)
for x ∈ (0, 1] and w(t) for t ∈ [0,∞) where t = h(x), namely

y(x) = f(x)−
1

γ+3 V
1

γ+1 (x)w
(

h(x)
)

(45)

y′(x) = −f(x)
1

γ+3 V
1
2 (x)w′

(

h(x)
)

. (46)

The functions h(x) and w(t) satisfy lim
x→0

h(x) = ∞ and

ẅ(t) + |w(t)|γ−1
w(t) = 0, t ∈ [0,∞), (47)

where “dot” denotes differentiation with respect to t and w(t) satisfies the
initial condition w(0) = 0, ẇ (0) = 1.

Note that the equation (47) is in the form of the equation (1) with f(x) ≡
1 but is defined over the semi-infinite interval [0,∞). All solutions of (47)
are periodic and have the period T given by

T = 4

(

γ + 1

2

)1/γ+1
1

∫

0

dξ
√

1− ξγ+1
. (48)

Denote the zeros of w(t) and ẇ(t) by {tn} and {τn} which satisfy for all n

w(tn) = ẇ(τn) = 0 and |w(τn)| =
(

γ + 1

2

)1/γ+1

. (49)

To show the validity of the asymptotic representation formulas (45), (46),
we need to establish the existence of h(x) such that upon differentiating (45)
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we would obtain (46). This means that h(x) must satisfy the following

w′
(

h(x)
)

[

h′(x)f(x)−2/γ+3 + V (x)(γ−1)/2(γ+1)
]

=

=w
(

h(x)
)

[

1

γ + 3
f(x)−(γ+5)/γ+3f ′(x) − 1

γ + 1
f(x)−2/γ+3V −1(x)V 1(x)

]

=

=
w(h(x))

γ + 3

(

f(x)−(γ+5)/γ+3f ′(x)
)

×

×
{

1 +

(

2

γ + 1

)

[

w
′2(h(x)) − wγ+1(h(x))

]

}

. (50)

Note that w(t) satisfies the identity

w
′2(t) +

2

γ + 1
wγ+1(t) = 1. (51)

Thus when w′
(

h(x)
)

6= 0, (50) implies by (51) that h(x) satisfies the differ-
ential equation

h′(x) = −f(x)2/γ+3V (x)(γ−1)/2(γ+1)+

+
1

γ + 1
f−1(x)f ′(x)w

(

h(x)
)

w′
(

h(x)
)

. (52)

On the other hand, when w′
(

h(x)
)

= 0, we know that
∣

∣wγ+1
(

h(x)
)∣

∣ =
γ + 1

2
by (49), which shows that the last term under brackets in (50) is also zero.
This establishes the validity of (50), hence that of (52).

Turning to the differential equation (52), we can rewrite it as

−h′(x)=f(x)2/γ+3

{

V (x)(γ−1)/2(γ+1)− 1

γ+3
g(x)w

(

h(x)
)

w′
(

h(x)
)

}

. (53)

Since g(x) → 0 as x → 0 and lim
x→0

V (x) = c0 > 0, we obtain from (53)

t = h(x) =
1

2
c
(γ−1)/2(γ+1)
0

1
∫

x

f2/γ+3(s)ds →∞ (54)

as x → 0. Here we set h(1) = 0. The existence of a solution h(x) of
the first order nonlinear differential equation (52) (or (53)) satisfying the
initial condition h(1) = 0 follows from classical existence results except to
note that the initial conditions are set at the right hand end point of the
interval. This proves the validity of the asymptotic representation formula

(45), (46). The divergence of
1
∫

x

f(s)2/γ+3ds follows from (19) in Lemma 1.

Let y(x) be a nontrivial oscillatory solution of the equation (1) and {ak}
be the decreasing sequence of consecutive zeros of y(x), i.e. y(ak) = 0,
ak+1 < ak, k = 0, 1, . . . , lim

k→∞
ak = 0 and a0 ∈ (0, 1]. Consider the segment
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of the solution curve Γk =
{(

x, y(x)
)

: ak+1 ≤ x ≤ ak

}

. Denote the arc-
length of Γk by L(Γk) and let sk be the extremum point of y(x) between
ak+1 and ak, i.e. y′(sk) = 0. Note that

2|y(sk)| ≤ L(Γk) ≤ 2|y(sk)|+ (ak − ak+1). (55)

Piecing together the segments Γk over the entire interval (0, 1], we note that
the arc-length of the graph of the solution curve satisfies

LG(y) =
∞
∑

k=0

L(Γk) + arc-length
{(

x, y(x)
)

: a0 ≤ x ≤ 1
}

. (56)

Combining (55) and (56), we obtain

2

∞
∑

k=0

|y(sk)| ≤ LG(y) ≤ 2

∞
∑

k=0

|y(sk)|+ M0 + a0, (57)

where M0 is the arc-length of the solution curve on the interval [a0, 1] which
is finite. We note also that

1
∫

0

|y′(x)| dx =

∞
∑

k=0

|y(sk)|+
1

∫

a0

|y′(x)|dx, (58)

so the solution is rectifiable oscillatory or unrectifiable oscillatory depending
whether or not y′(x) ∈ L1(0, 1).

We return to (46) and recall that w(t) is a periodic hence bounded func-
tion. Furthermore, lim

x→0
V (x) = c0 > 0, so the condition (10) implies that

y(x) is rectifiable oscillatory.
On the other hand, we denote by τk the zeros of ẇ(t) which correspond

to the zeros sk of y′(x) by the asymptotic formula (46). We first note that
for x close to 0 h′(x) is strictly negative by (53), so t = h(x) has an inverse
x = h−1(t) on the sub-interval (0, ak0), where k0 is sufficiently large. Now
we use the asymptotic formula (45) to estimate

∞
∑

k=k0

∣

∣y
(

h−1(τk)
)∣

∣ ≥ 1

2
c0

∞
∑

k=k0

f−
1

γ+3
(

h−1(τk)
)

|w(τk)| . (59)

By (57), we will show that y(x) is unrectifiable oscillatory if we will show
that the series in (59) is divergent. The periodicity of w(t) shows by (49)

that |w(τk)| =
(

γ+1
2

)1/γ+1
, so the series on the left hand side of (59) will

be divergent if we show that
∞
∑

k=k0

f−1/γ+3
(

h−1(τk)
)

is divergent.

By assumption (A0), we note that for 0 < x1 < x2 ≤ 1 we have

log
f(x2)

f(x1)
=

x2
∫

x1

f ′(s)

f(s)
ds ≤

1
∫

0

f ′+(s)

f(s)
ds = K0. (60)
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Denote F (t) = f−1/γ+3
(

h−1(t)
)

and Jk = [τk , τk+1] which for each k has

the fixed length T/2 by (48). Since h−1(t) ≥ h−1
(

τk+1

)

for all t ∈ [τk, τk+1],

h−1(τk) = sk and y′(sk) = 0, by (60) and (53) we obtain

2

T

n
∑

k=k0

F (τk) ≥ e−K0

n
∑

k=k0

h−1(τk+1)
∫

h−1(τn)

F (t)dt =

= e−K0

n
∑

k=k0

sk+1
∫

sk

f−1/γ+3(s)h′(s)ds ≥

≥ c
(γ−1)/2(γ+1)
0 e−K0

sk0
∫

sn+1

f1/γ+3(s)ds. (61)

Now sn tends to zero as n →∞, so the condition (11), i.e.
1
∫

0

f1/γ+3(x)dx =

∞, implies by (61) that y(x) is unrectifiable oscillatory. This completes the
proof of the theorem.

4. Remarks and Open Problems

We begin with comments about the assumptions (A0), (8) and (9) and
key steps of the proof of the main Theorem.

1. let f(x) = x−4(2 + sinx). It is easy to verify that f ′+(x)/f(x) ≤
(cos x)+ which is integrable on (0, 1), so the assumption (A0) is
satisfied.

2. Both conditions (8) and (9) reduce to g1(x) = f−3/2(x)f ′(x) when
setting γ = 1. In this case the condition (K) is equivalent to the
original Hartman–Wintner condition (H −W ).

3. It is interesting to note that the proof of the asymptotic formula
(45), (46) is not valid when γ = 1. The key estimates (37), (38)
when 0 < γ < 1 and (40), (43) when γ > 1 become meaningless if
γ = 1. The original proof of Hartman–Wintner asymptotic formula
in the linear case was based upon variation of parameters formula
which is valid only for linear equations.

4. We refer to Corollary (i) stated in Section 1 and in particular to the
lower bounds for α > 0 which are different for 0 < γ < 1 and for γ >
1. These requirements are imposed to ensure that the equation (10)
is oscillatory. When γ = 1, this is the same as Theorem A(a) where
the oscillation follows from the Sturm Comparison Theorem. For
the Emden–Fowler equation (1), we can use the integral oscillation
criteria of Atkinson [1] and Belohorec [2] which give necessary and
sufficient conditions for the oscillation of all solutions of (1). Their
results, when converted to the finite interval [0, 1], are as follows:
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(i) (Belohorec) For 0 < γ < 1,
1
∫

0

xf(x)dx = ∞,

(ii) (Atkinson) For γ > 1,
1
∫

0

xγf(x)dx = ∞.

When f(x) = λx−α, λ > 0, the above criteria require (i) α > 2
for 0 < γ < 1 and (ii) α > γ + 1 for γ > 1. In fact, (i) and (ii) also
follow directly from the conditions (7) and (8).

We conclude our discussion by posting three open problems which
are of independent interest:
(a) When γ = 1, the linear equation (1) can have a coefficient f(x)

which allows co-existence of both rectifiable and unrectifiable
oscillatory solutions. The proof depends on the Wronskian
of two linearly independent solutions, see [13]. An example
showing co-existence of rectifiable and unrectifiable oscillatory
solutions for the nonlinear equation (1) is still at large;

(b) Curves confined in a bounded domain in R
2 and having infi-

nite arc-length are known as fractals. In the special case of the
equation (5), it is known that when α ≥ 4, the fractal dimen-

sion is
3

2
− 2

α
, see Falconer [6], Pašić [14], [16]. Here the proof

depends heavily on the Sturm Comparism Theorem which is
not available for the Emden–Fowler equation (1). It will be
of great interest to prove similar results for the equation (10)
with λ > 0, α ≥ γ + 3.

(c) The linear equation (5) when α ≤ 2 may possess both oscil-
latory and non-oscillatory solutions for different values of α,
but we know that in both cases all solutions are rectifiable.
For the Emden–Fowler equation (1) with f(x) = λx−α, λ > 0,
when 0 < α ≤ 2, we also know that it may possess both oscilla-
tory and nonoscillatory solutions even for the same α. Clearly,
bounded non-oscillatory solutions are rectifiable but we have no
knowledge about those oscillatory ones for the Emden–Fowler
equation (1). Must they also be rectifiable?
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