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Abstract. For a nonlinear wave equation occurring in relativistic quan-
tum mechanics we investigate the problem on the global solvability of the
Cauchy characteristic problem in a light cone of the future.
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1. Statement of the Problem. Consider a nonlinear wave equation of
the type

(� + m2)u :=
∂2u

∂t2
−

3
∑

i=1

∂2u

∂x2
i

+ m2u = −λu3 + F, (1)

where λ 6= 0 and m ≥ 0 are given real constants, F is a given and u is
an unknown real function. As is known, the equation (1) arises in the
relativistic quantum mechanics ([1]–[5]).

For the equation (1) we consider the Cauchy characteristic problem on
finding in a frustum of the light cone of the future DT : |x| < t < T ,
x = (x1, x2, x3), T = const > 0, a solution u(x, t) of that equation by the
boundary condition

u
∣

∣

ST
= g, (2)

where g is a given real function on the characteristic conic surface ST :
t = |x|, t ≤ T . When considering the case T = +∞, we assume that
D∞ : t > |x| and S∞ = ∂D∞ : t = |x|.

Note that the Cauchy characteristic problem for the equation (1) with
the boundary conditions u|t=0 = u0, ut|t=0 = u1 has been investigated in
[1]–[5]. For more general semi-linear equations of type (1) the issues of
existence or nonexistence of a global solution of that problem have been
considered and studied in [6]–[21].

In the linear case, that is for λ = 0, the problem (1), (2) is posed correctly
and its global solvability takes place in the corresponding function spaces
([22]–[26]). In the nonlinear case, for the equation �u+m2u = −λ|u|pu+F ,
p = const 6= 0, coinciding with (1) for p = 2, the global solvability of the
Cauchy characteristic problem for λ > 0, m = 0 and 0 < p < 1 in the
Sobolev space W 1

2 (DT ) has been proved in [27]. In the present paper we
prove the global solvability of the problem (1), (2) for λ > 0 in the Sobolev
space W 2

2 (DT ). The uniqueness of a solution of that problem will also be
proved, and a result on the absence of the global solvability of the problem
(1), (2) will be given for the case λ < 0. In this direction the works [28]–[30]
are noteworthy.

2. A Priori Estimate of a Solution of the Problem (1), (2) for λ > 0.
For the sake of simplicity of our exposition, the boundary condition (2) will
be assumed to be homogeneous, i.e.,

u
∣

∣

ST
= 0. (3)

Suppose
◦

W k
2(DT , ST ) = {u ∈ W k

2 (DT ) : u|ST
= 0}, where W k

2 (DT ) is the
well-known Sobolev space, and the condition u|ST

= 0 will be understood
in the sense of the trace theory ([31, pp. 56, 70]).

Definition 1. Let F ∈
◦

W 1
2(DT , ST ). The function u = u(x, t) is said

to be a solution of the problem (1), (3) of the class W 2
2 , if u ∈ W 2

2 (DT ),
it satisfies both the equation (1) almost everywhere in the domain DT and
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the boundary condition (3) in the sense of the trace theory (and hence
◦

W 2
2(DT , ST )).

Definition 2. Let F ∈
◦

W 1
2(DT , ST ). The function u ∈

◦

W 2
2(DT , ST ) is

said to be a strong generalized solution of the problem (1), (3) of the class
W 2

2 , if there exists a sequence of functions un ∈ C∞(DT ) satisfying the
boundary condition (3) and

lim
n→∞

‖un − u‖W 2
2 (DT ) = 0, lim

n→∞
‖Fn − F‖W 1

2 (DT ) = 0, (4)

where

Fn = �un + m2un + λu3
n and supp Fn ∩ ST = ∅. (5)

Remark 1. It can be easily seen that a strong generalized solution of the
problem (1), (3) of the class W 2

2 in the sense of Definition 2 is also a solution
of the problem (1), (3) of the class W 2

2 in the sense of Definition 1, since, as it
will be noted below, the first equality of (4) implies lim

n→∞
‖u3

n−u3‖L2(DT ) =

0. On the other hand, in the next section we will prove that the problem
(1), (3) is solvable in the sense of Definition 2, whereas the uniqueness of
a solution of that problem in the sense of Definition 1 will be proved in
Section 4. This obviously implies that a solution of the problem is unique
in the sense of Definition 2, and the above definitions are equivalent.

Definition 3. Let F ∈ L2,loc(D∞) and F ∈
◦

W 1
2(DT , ST ) for any T > 0.

We say that the problem (1), (3) is globally solvable, if for any T > 0 this
problem has a solution of the class W 2

2 in the domain DT in the sense of
Definition 1.

Lemma 1. Let λ ≥ 0 and F ∈
◦

W 1
2(DT , ST ). Then for any strong

generalized solution u of the problem (1), (3) of the class W 2
2 the following

a priori estimate

‖u‖W 2
2 (DT ) ≤ σ1‖F‖L2(DT ) + λσ2‖F‖3L(DT )+

+ σ3‖F‖W 1
2 (DT ) exp

[

σ4 + λσ5‖F‖2L2(DT )

]

(6)

is valid with positive constants σi = σi(m, T ), i = 1, . . . , 5, not depending

on u and F .

Proof. By Definition 2 of strong generalized solution u of the problem
(1), (3) of the class W 2

2 , there exists a sequence of functions un ∈ C∞(DT )
satisfying the conditions (3), (4) and (5), and hence

�un + m2un = −λu3
n + Fn, un ∈ C∞(DT ), (7)

un

∣

∣

ST
= 0. (8)

The proof of the lemma runs in several steps.
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10. Assuming Ωτ := D∞ ∩ {t = τ}, we first show that the a priori
estimate

∫

Ωt

[

u2
n +

(

∂un

∂t

)2

+

3
∑

i=1

(

∂un

∂xi

)2
]

dx ≤ c

∫

Dt

F 2
n dx dt, 0 < t < T, (9)

is valid with a constant c not depending on un and Fn. Indeed, multiplying
both sides of the equation (7) by ∂un

∂t
and integrating over the domain Dτ ,

0 < τ ≤ T , we obtain

1

2

∫

Dτ

∂

∂t

(

∂un

∂t

)2

dx dt−
∫

Dτ

∆un

∂un

∂t
dx dt +

m2

2

∫

Dτ

∂

∂t
(un)2 dx dt+

+
λ

4

∫

Dτ

∂

∂t
(un)4 dx dt =

∫

Dτ

Fn

∂un

∂t
dx dt . (10)

By ν = (ν1, ν2, ν3, ν0) we denote the unit vector of the outer normal to
ST \ {(0, 0, 0, 0)}. The integration by parts with regard for the equality (8)
and ν|Ωτ

= (0, 0, 0, 1) results in
∫

Dτ

∂

∂t

(

∂un

∂t

)2

dx dt=

∫

Dτ

(

∂un

∂t

)2

ν0 ds =

∫

Ωτ

(

∂un

∂t

)2

dx +

∫

Sτ

(

∂un

∂t

)2

ν0 ds,

∫

Dτ

∂

∂t
(un)2k dx dt =

∫

∂Dτ

(un)2kν0 ds =

∫

Ωτ

(un)2k dx, k = 1, 2,

∫

Dτ

∂2un

∂x2
i

∂un

∂t
dx dt =

∫

∂Dτ

∂um

∂xi

∂um

∂t
νi ds− 1

2

∫

Dτ

∂

∂t

(

∂un

∂xi

)2

dx dt =

=

∫

∂Dτ

∂un

∂xi

∂un

∂t
νi ds− 1

2

∫

∂Dτ

(

∂un

∂xi

)2

ν0 ds =

∫

∂Dτ

∂un

∂xi

∂un

∂t
νi ds−

− 1

2

∫

Sτ

(

∂un

∂xi

)2

ν0 ds− 1

2

∫

Ωτ

(

∂un

∂xi

)2

dx, i = 1, 2, 3,

whence by virtue of (10) we obtain

∫

Dτ

Fn

∂un

∂t
dx dt =

∫

Sτ

1

2ν0

[

3
∑

i=1

(

∂un

∂xi

ν0 −
∂un

∂t
νi

)2

+

+

(

∂un

∂t

)2(

ν2
0 −

3
∑

j=1

ν2
j

)

]

ds +
1

2

∫

Ωτ

[

(

∂un

∂t

)2

+

3
∑

i=1

(

∂un

∂xi

)2
]

dx+

+
λ

4

∫

Ωτ

u4
n dx +

m2

2

∫

Ωτ

u2
n dx. (11)
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Since Sτ is a characteristic surface, we have

(

ν2
0 −

3
∑

j=1

ν2
j

)∣

∣

∣

∣

Sτ

= 0. (12)

Taking into account that (ν0
∂

∂xi
− νi

∂
∂t

), i = 1, 2, 3, is the interior dif-

ferential operator on Sτ , owing to (8) we find
(

∂un

∂xi

ν0 −
∂un

∂t
νi

)∣

∣

∣

∣

Sτ

= 0, i = 1, 2, 3. (13)

With regard for (12) and (13), the equation (11) yields

∫

Ωτ

[

(

∂un

∂t

)2

+

3
∑

i=1

(

∂un

∂xi

)2
]

dx +
λ

2

∫

Ωτ

u4
n dx + m2

∫

Ωτ

u2
n dx =

= 2

∫

Dτ

Fn

∂un

∂t
dx dt . (14)

Since λ ≥ 0, m2 ≥ 0, by the Cauchy inequality 2Fn
∂un

∂t
≤ F 2

n +
(

∂un

∂t

)2

it follows from (14) that

∫

Ωτ

[

(

∂un

∂t

)2

+
3

∑

i=1

(

∂un

∂xi

)2
]

dx ≤
∫

Dτ

(

∂un

∂t

)2

dx dt+

∫

Dτ

F 2
n dx dt . (15)

Reasoning in a standard way, from the equalities un|Sτ
= 0 and un(x, τ)=

τ
∫

|x|

∂un(x,t)
∂t

dt, x ∈ Ωτ , 0 < τ ≤ T , we arrive at the inequality ([31, p. 63])

∫

Ωτ

u2
n dx ≤ T

∫

Dτ

(

∂un

∂t

)2

dx dt. (16)

Adding the inequalities (15) and (16), we obtain

∫

Ωτ

[

u2
n +

(

∂un

∂t

)2

+

3
∑

i=1

(

∂un

∂xi

)2
]

dx ≤

≤ (1 + T )

∫

Dτ

(

∂un

∂t

)2

dx dt +

∫

Dτ

F 2
n dx dt . (17)

Introduce the notation

w(δ) =

∫

Ωδ

[

u2
n +

(

∂un

∂t

)2

+
3

∑

i=1

(

∂un

∂xi

)2
]

dx.
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Then by virtue of (17) we have

w(δ) = (1 + T )

∫

Dτ

[

u2
n +

(

∂un

∂t

)2

+

3
∑

i=1

(

∂un

∂xi

)2
]

dx dt +

∫

Dδ

F 2
n dx dt =

= (1 + T )

δ
∫

0

w(σ) dσ + ‖Fn‖2
L

(
2Dδ)

, 0 < δ < T. (18)

From (18), taking into account the fact that the expression ‖Fn‖2L:2(Dδ)

as a function of δ is nondecreasing, by the Gronwall lemma ([32, p. 13]) we
find that

w(δ) ≤ ‖Fn‖2L2(Dδ) exp(1 + T )δ ≤ ‖Fn‖2L2(Dδ) exp(1 + T )T,

whence for δ = t we obtain the inequality (9) with the constant c = exp(1+
T )T .

20. Since owing to (5) we have supp Fn ∩ST = ∅, there exists a positive
number δn < T such that

supp Fn ⊂ DT,δn
= {(x, t) ∈ DT : t > |x|+ δn}. (19)

In this section we will show that

un

∣

∣

DT \DT,δn

= 0. (20)

Indeed, let (x0, t0) ∈ DT \Dt,δn
. Introduce the domain Dx0,t0 = {(x, t) ∈

R4 : |x| < t < t0−|x−x0|} which is bounded from below by the surface ST

and from above by the boundary S−
x0,t0

= {(x, t) ∈ R4 : t = t0 − |x − x0|}
of the light cone of the past G−

x0,t0
= {(x, t) ∈ R4 : t < t0 − |x − x0|} with

the vertex at the point (x0, t0). By virtue of (19), we have

Fn

∣

∣

D
x0,t0

= 0, (x0, t0) ∈ DT \DT,δn
. (21)

Assume Dx0,t0,τ := Dx0,t0 ∩ {t < τ}, Ωx0,t0,τ := Dx0,t0 ∩ {t = τ}, 0 <

τ < t0. Then ∂Dx0,t0,τ = S1,τ ∪ S2,τ ∪ S3,τ , where S1,τ = ∂Dx0,t0,τ ∩ S∞,

S2,τ = ∂Dx0,t0,τ ∩ S−
x0,t0

, S3,τ = ∂Dx0,t0,τ ∩ Ωx0,t0,τ . Just in the same way

as when obtaining the equality (11), we multiply both sides of the equation

(7) by ∂un

∂t
, integrate over the domain Dx0,t0,τ , 0 < τ < t0, and taking into

account (8) and (21), we obtain

0 =

∫

S1,τ∪S2,τ

1

2ν0

[ 3
∑

i=1

(

∂un

∂xi

ν0−
∂un

∂t
νi

)2

+

(

∂un

∂t

)2(

ν2
0−

3
∑

j=1

ν2
j

)]

ds+

+

∫

S2,τ∪S3,τ

[

λ

4
u4

n +
m2

2
u2

n

]

ν0 ds+
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+
1

2

∫

S3,τ

[

(

∂un

∂t

)2

+

3
∑

i=1

(

∂un

∂xi

)2
]

dx. (22)

By (8) and (12), taking into account the fact that S2,τ is, just like S1,τ ,

a characteristic surface and hence
(

ν2
0 −

3
∑

j=1

ν2
j

)∣

∣

∣

S1,τ∪S2,τ

= 0 and also that

ν0

∣

∣

S1,τ
= − 1√

2
< 0, ν0

∣

∣

S2,τ
=

1√
2

> 0, ν0

∣

∣

S3,τ
= 1,

(

∂u

∂xi

ν0 −
∂u

∂t
νi

)
∣

∣

∣

∣

S1,τ

= 0,

(

∂u

∂xi

ν0 −
∂u

∂t
νi

)2∣
∣

∣

∣

S2,τ

≥ 0, i = 1, 2, 3,

we have
∫

S1,τ∪S2,τ

1

2ν0

[

3
∑

i=1

(

∂un

∂xi

ν0−
∂un

∂t
νi

)2

+

(

∂un

∂t

)2(

ν2
0−

3
∑

j=1

ν2
j

)

]

ds≥0. (23)

Taking into account (23), from (22) we get

∫

S3,τ

[

(

∂un

∂t

)2

+

3
∑

i=1

(

∂un

∂xi

)2
]

dx ≤ M

∫

S2,τ∪S3,τ

u2
n ds, 0 < τ < t0. (24)

Here, since un ∈ C∞(DT ) and |ν0| ≤ 1, we can take

M = m2 +
λ

2
‖un‖2C(DT )

< +∞ (25)

in the capacity of a nonnegative constant M independent of the parameter
τ . As far as un|ST

= 0 and ST : t = |x|, t ≤ T , we will have

un(x, t) =

t
∫

|x|

∂un(x, σ)

∂t
dσ, (x, t) ∈ S2,τ ∪ S3,τ . (26)

Reasoning in a standard way ([31, p. 63]), from the equality (26) we get
that

∫

S2,τ∪S3,τ

u2
n ds ≤ 2t0

∫

D
x0,t0,τ

(

∂un

∂t

)2

dx, 0 < τ < t0. (27)

Assuming v(τ) =
∫

S3,τ

[

(

∂un

∂t

)2
+

3
∑

i=1

(

∂un

∂xi

)2
]

dx, from (24) and (27) we

easily obtain

v(τ) ≤ 2t0M

τ
∫

0

v(δ) dδ, 0 < τ < t0,
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whence by virtue of (25) and the Gronwall lemma it immediately follows

that v(τ) = 0, 0 < τ < t0, and hence ∂un

∂t
= ∂un

∂x1
= ∂un

∂x2
= ∂un

∂x3
= 0 in the

domain Dx0,t0 . Therefore un|D
x0,t0

= const, and taking into account the

homogeneous boundary condition (8), we find that un|D
x0,t0

= 0 ∀(x0, t0) ∈
DT \DT,δn

. Thus the equality (20) is proved.
30. We will now pass to proving the a priori estimate (6). By (20),

extending un from the domain DT to the layer ΣT = {(x, t) ∈ R4 : 0 < t <

T} as zero and preserving for it the same designation, we obtain

un ∈ C∞
(

ΣT

)

, un

∣

∣

∣

∑

T
\DT,δn

= 0. (28)

In particular, from (28) it follows that un = 0 for |x| ≥ T .
Differentiating the equality (7) with respect to the variable xi, we obtain

�un,xi
+ m2un,xi

= −3λu2
nun,xi

+ Fn,xi
, i = 1, 2, 3, (29)

where un,xi
= ∂un

∂xi
, Fn,xi

= ∂Fn

∂xi
. Suppose

E(τ) =
1

2

3
∑

i=1

∫

Ωτ

(

u2
n,xit

+

3
∑

k=1

u2
n,xixk

)

dx, Ωτ = D∞ ∩ {t = τ}. (30)

By virtue of (28), in the right-hand side of (30) we can take instead of Ωτ

a three-dimensional ball B(0, T ) : |x| < T in the plane t = τ .
Differentiating the equality (30) with respect to the variable τ and then

integrating by parts, with regard for (7), (28) and (29) we find that

E′(τ) =

3
∑

i=1

∫

Ωτ

(

un,xitun,xitt +

3
∑

k=1

un,xixk
un,xixkt

)

dx =

=

3
∑

i=1

∫

Ωτ

(

un,xittun,xit −
3

∑

k=1

un,xixkxk
un,xit

)

dx =

=
3

∑

i=1

∫

Ωτ

(

�un,xi

)

un,xit dx =

=

3
∑

i=1

∫

Ωt

[

−m2un,xi
− 3λu2

nun,xi
+ Fn,xi

]

un,xit dx =

=

3
∑

i=1

∫

|x|<T,
t=τ

[

−m2un,xi
− 3λu2

nun,xi
+ Fn,xi

]

un,xit dx. (31)

By Hölder’s inequality ([33, p. 134])
∣

∣

∣

∫

f1f2f3 dx
∣

∣

∣
≤ ‖f1‖Lp1

‖f2‖Lp2
‖f3‖Lp3
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for p1 = 3, p2 = 6, p3 = 2,
1

p1
+

1

p2
+

1

p3
= 1,

and by the Cauchy inequality, for the right-hand side of (31) we have the
estimate

I =

∣

∣

∣

∣

3
∑

i=1

∫

|x|<T,
t=τ

[

−m2un,xi
− 3λu2

nun,xi
+ Fn,xi

]

un,xit dx

∣

∣

∣

∣

≤

≤ m2

2

3
∑

i=1

∫

|x|<T,
t=τ

u2
n,xi

dx +
m2

2

3
∑

i=1

∫

|x|<T,
t=τ

u2
n,xit

dx +
1

2

3
∑

i=1

∫

|x|<T,
t=τ

F 2
n,xi

dx+

+
1

2

3
∑

i=1

∫

|x|<T,
t=τ

u2
n,xit

dx + 3λ

∣

∣

∣

∣

3
∑

i=1

∫

|x|<T,
t=τ

u2
nun,xi

un,xit dx

∣

∣

∣

∣

≤

≤ m2 + 1

2

3
∑

i=1

∫

|x|<T,
t=τ

u2
n,xi

dx +
m2

2

3
∑

i=1

∫

|x|<T,
t=τ

u2
n,xit

dx+

+
1

2

3
∑

i=1

∫

|x|<T,
t=τ

F 2
n,xi

dx + 3λ

3
∑

i=1

‖u2
n‖L3((|x|<T, t=τ))×

× ‖un,xi
‖L6((|x|<T, t=τ))‖un,xit‖L2((|x|<T, t=τ)). (32)

By the well-known theorem of imbedding of the space W l
m(Ω) into Lp(Ω)

for m = 2, l = 1, p = 6 ([31, p. 84]; [34, p. 111]), there takes place the
inequality

‖v‖L6((|x|<T )) ≤ c1‖v‖ ◦

W 1
2((|x|<t))

∀v ∈
◦

W 1
2((|x| < T )) (33)

with a positive constant c1 not depending on v.
We also have ([31, p. 117])

3
∑

i=1

∫

|x|<T

v2
xi

dx ≤ c2

n
∑

i,j=1

∫

|x|<T

v2
xixk

dx ∀v ∈
◦

W 2
2((|x| < T )) (34)

with a positive constant c2 not depending on v.
Applying the inequality (33) to the functions un and un,xi

which by virtue

of (28) belong to the space
◦

W 1
2((|x|<T )) for the fixed t=τ , we obtain

‖un‖L6((‖x‖<T, t=τ)) ≤ c1‖un‖ ◦

W1
2((‖x‖<T, t=τ))

,

‖un,xi
‖L6((‖x‖<T, t=τ)) ≤ c1‖un,xi

‖ ◦

W 2
2((‖x‖<T, t=τ))

.
(35)

By (9), (30), (33) and (35), we have

‖u2
n‖L3((‖x‖<T, t=τ))‖un,xi

‖L6((‖x‖<T, t=τ))‖un,xit‖L2((‖x‖<T, t=τ)) ≤
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≤ ‖un‖2L6((‖x‖<T, t=τ))c1‖un‖ ◦

W 2
2((‖x‖<T, t=τ))

[2E(τ)]
1
2 ≤

≤ c1c‖Fn‖2L2(Dτ )c1[2E(τ)]
1
2 [2E(τ)]

1
2 = 2cc2

1‖Fn‖2L2(Dτ )E(τ). (36)

By (9), (32), (34) and (36), we have

I ≤ m2 + 1

2
c2 2E(τ) + m2E(τ) +

1

2
‖Fn‖2W 1

2 ((‖x‖<T, t=τ))+

+ 6λcc2
1‖Fn‖2L2(Dτ )E(τ). (37)

By (31) and (37), we find that

E′(τ) ≤ α(τ)E(τ) + β(τ) ≤ α(T )E(τ) + β(τ), τ ≤ T. (38)

Here
α(τ) = (m2 + 1)c2 + m2 + 6λcc2

1‖Fn‖2L2(Dτ ),

β(τ) =
1

2
‖Fn‖2W 1

2 ((‖x‖<T, t=τ)).
(39)

Since according to (28) we have E(0) = 0, multiplying both sides of the
inequality (38) by exp[−α(T )τ ] and integrating in a standard way, we obtain

E(τ) ≤ eα(T )τ

τ
∫

0

e−α(T )σβ(σ) dσ ≤ eα(T )τ

τ
∫

0

β(σ) dσ =

=
1

2
eα(T )τ

τ
∫

0

‖Fn‖2W 1
2 ((‖x‖<T, t=σ)) dσ =

1

2
eα(T )τ‖Fn‖2W 1

2 (Dτ ) ≤

≤ 1

2
eα(T )T ‖Fn‖2W 1

2 (DT ), 0 ≤ τ ≤ T. (40)

By the equality (7),

un,tt = ∆un −m2un − λu3
n + F. (41)

Squaring both parts of the equality (41) and using the inequality
( n

∑

i=1

ai

)2

≤

n
n
∑

i=1

a2
i for n = 4, we will have

∫

Ωτ

u2
n,tt dx ≤ 4λ2

∫

|x|<T,
t=τ

u6
n dx + 4

∫

|x|<T,
t=τ

[

(∆un)2 + m4u2
n + F 2

n

]

dx,

whence by virtue of (9), (35) and the fact that (∆un)2 ≤ 3
3
∑

i=1

u2
n,xixi

, we

find that
∫

Ωτ

u2
n,tt dx ≤ 4λ2c6

1‖un‖2◦
W 1

2((‖x‖<T, t=τ))
+ 24E(τ) + 4m2c‖Fn‖2L2(Dτ )+

+ 4‖Fn‖2L2((‖x‖<T, t=τ)) ≤ 4λ2c6
1‖Fn‖6L2(Dτ ) + 4m4c‖Fn‖2L2(Dτ )+
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+ 4‖Fn‖2L2((‖x‖<T, t=τ)) + 24E(τ). (42)

Due to (40), it follows from (42) that

∫

DT

u2
n,tt dx dt =

T
∫

0

dτ

∫

Ωτ

u2
n,tt dx ≤ 4λ2c6

1T‖Fn‖6L2(DT )+

+ 4m4cT‖Fn‖2L2(DT ) + 4‖Fn‖2L2(DT ) + 12eα(T )T‖Fn‖2W 1
2 (DT ). (43)

From (9), (30), (40) and (43) we now find that

‖un‖2W 2
2 (DT ) =

T
∫

0

dτ

∫

Ωτ

[

u2
n +

(

∂un

∂t

)2

+
3

∑

i=1

(

∂un

∂xi

)2

+ u2
n,tt+

+

3
∑

i=1

u2
n,xit

+

3
∑

i,k=1

u2
n,xixk

]

dx ≤

≤
T

∫

0

[

c

∫

Dτ

F 2
n dx dt

]

dτ +

∫

DT

u2
n,tt dx dt +

T
∫

0

2E(τ) dτ ≤

≤ cT‖Fn‖2L2(DT ) + 4λ2c6
1T‖Fn‖6L2(DT ) + 4m4cT‖Fn‖2L2(DT )+

+ 4‖Fn‖2L2(DT ) + 12eα(T )T‖Fn‖2W 1
2 (DT ) + Teα(T )T‖Fn‖2W 1

2 (DT ) =

= (cT + 4m4cT + 4)‖Fn‖2L2(DT ) + 4λ2c6
1T‖Fn‖6L2(DT )+

+ (12 + T )eα(T )T‖Fn‖2W 1
2 (DT ). (44)

Taking into account the obvious inequality
( 3

∑

i=1

|ai|
)

1
2 ≤

3
∑

i=1

|ai|
1
2 and

the equality (39), from (44) we obtain

‖un‖W 2
2 (DT ) ≤ σ1‖Fn‖L2(DT ) + λσ2‖Fn‖3L2(DT )+

+ σ3‖Fn‖2W 1
2 (DT ) exp

[

σ4 + λσ5‖Fn‖2L2(DT )

]

, (45)

where σ1 = (cT + 4m4cT + 4)
1
2 , σ2 = 2c3

1T
1
2 , σ3 = (12 + T )

1
2 , σ4 =

1
2 ((m2 + 1)c2 + m2), σ5 = 3cc2

1. By (4), passing the in inequality (45) to
the limit as n →∞, we obtain the a priori estimate (6). Thus the proof of
Lemma 1 is complete. �

3. The Global Solvability of the Problem (1), (3) for λ > 0.

Remark 2. Before we proceed to considering the question on the solv-
ability of the nonlinear problem (1), (3), let us consider the same question
for the linear case in the form needed for us, when in the equation (1) the
parameter λ = 0, i.e., for the problem

Lu(x, t) = F (x, t), (x, t) ∈ DT (L := � + m2), (46)

u(x, t) = 0, (x, t) ∈ ST . (47)
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In this case for F ∈
◦

W 1
2(DT , ST ) we analogously introduce the notion of a

strong generalized solution u ∈
◦

W 2
2(DT , ST ) of the problem (46), (47) for

which there exists a sequence of the functions un ∈ C∞(DT ) satisfying the
boundary condition (47) and

lim
n→∞

‖un − u‖W 2
2 (DT ) = 0, lim

n→∞
‖Lun − F‖W 1

2 (DT ) = 0. (48)

As it follows from the a priori estimate (6), for that solution for λ = 0
we have the estimate

‖u‖W 2
2 (DT ) ≤ c0‖F‖W 1

2 (DT ) (49)

with a positive constant c0 not depending on u and F .

Since the space C∞
0 (DT , ST ) = {F ∈ C∞(DT ) : supp F ∩ST = ∅} of the

infinitely differentiable in DT functions vanishing in some bounded neigh-

borhood (its own for each function) of the set ST is dense in
◦

W 1
2(DT , ST ),

for a given F ∈
◦

W 1
2(DT , ST ) there exists a sequence of functions Fn ∈

C∞
0 (DT , ST ) such that lim

n→∞
‖Fn − F‖W 1

2 (DT ) = 0. For the fixed n, ex-

tending the function Fn from the domain DT to the layer ΣT = {(x, t) ∈
R4 : 0 < t < T} as zero and preserving the same notation, we will have
Fn ∈ C∞(ΣT ) with the carrier supp Fn ⊂ D∞ : t > |x|. Denote by un the

solution of the Cauchy linear problem: Lun = Fn, un|t=0 = 0, ∂un

∂t

∣

∣

t=0
= 0

in the layer ΣT , which, as is known, exists, is unique and belongs to the
space C∞(ΣT ) ([35, p. 192]). Moreover, since suppFn ⊂ D∞, un|t=0 = 0,
∂un

∂t

∣

∣

t=0
= 0, taking into account the geometry of the domain of dependence

of a solution of the linear wave equation, we will have suppun ⊂ D∞ ([35,
p. 191]). Retaining for the restriction of the function un to the domain DT

the same designation, we can easily see that un ∈ C∞(DT ), un|ST
= 0, and

because of (49),

‖un − u‖W 2
2 (DT ) ≤ c0‖Fn − F‖W 1

2 (DT ) . (50)

Since the sequence {Fn} is fundamental in
◦

W 1
2(DT , ST ), by (50) and

the fact that un|ST
= 0, the sequence {un} is likewise fundamental in the

whole space
◦

W 2
2(DT , ST ) = {u ∈ W 2

2 (DT ) : u|ST
= 0}. Thus there exists

a function u ∈
◦

W 2
2(DT , ST ) such that lim

n→∞
‖un − u‖W 2

2 (DT ) = 0, and since

by the condition Lun = Fn → F in the space W 1
2 (DT ), the function u will,

by Remark 2, be a strong generalized solution of the problem (46), (47)

from the space
◦

W 2
2(DT , ST ). The uniqueness of the solution from the space

◦

W 2
2(DT , ST ) follows from the a priori estimate (49). Consequently, for the

solution u of the problem (46), (47) we can write u = L−1F , where L−1 :
◦

W 1
2(DT , ST ) →

◦

W 2
2(DT , ST ) is a linear continuous operator, whose norm
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admits, by virtue of (49), the estimate

‖L−1‖ ◦

W 1
2(DT ,ST )→

◦

W 2
2(DT ,ST )

≤ c0. (51)

Remark 3. Below, we will show that the Nemytski operator N :
◦

W 2
2(DT , ST ) →

◦

W 1
2(DT , ST ) acting by the formula Nu = −λu3 is con-

tinuous and compact.

Indeed, first we note that if u ∈
◦

W 2
2(DT , ST ), then since DT is a bounded

domain from R4, therefore u ∈ Lq(DT ) for any q ≥ 1, and moreover, the

imbedding operator I1 :
◦

W 2
2(DT , ST ) → Lq(DT ) is continuous and compact

([31, p. 84]). Note also that the imbedding operator I2 : W 1
2 (DT ) →

Lp(DT ) is a linear continuous one for 1 < p < 4 ([31, p. 83]). Therefore,

if u ∈
◦

W 2
2(DT , ST ), then u2, uk ∈ L6(DT ), and since ∂u

∂xi
∈ W 1

2 (DT ), we

have ∂u
∂xi

∈ L3(DT ). As is known, if fi ∈ Lpi
(DT ), i = 1, 2, 1

p1
+ 1

p2
= 1

r
,

pi > 1, r > 1, then f1f2 ∈ Lr(DT ) ([4, p. 45]). For p1 = 6, p2 = 3, r = 2,
( 1
6 + 1

3 = 1
2 ), f1 = u2, f2 = ∂u

∂xi
, we obtain ∂Nu

∂xi
= −3λu2 ∂u

∂xi
∈ L2(DT ),

i = 1, 2, 3. Analogously, we have ∂Nu
∂t

∈ L2(DT ).

Let X be a bounded set in
◦

W 2
2(DT , ST ), and let {un} be a sequence

taken arbitrarily in X . Since the space
◦

W 2
2(DT , ST ) is compact-imbedded

into the space
◦

W 1
2(DT , ST ) ([34, p. 183]), there exist a subsequence {unk

}
and a function u ∈

◦

W 1
2(DT , ST ) such that

lim
k→∞

‖unk
− u‖L2(DT ) = lim

k→∞

∥

∥

∥

∥

∂unk

∂t
− ∂u

∂t

∥

∥

∥

∥

L2(DT )

=

= lim
k→∞

∥

∥

∥

∥

∂unk

∂xi

− ∂u

∂xi

∥

∥

∥

∥

L2(DT )

= 0. (52)

On the other hand, according to the above-said, there exists a subsequence
of the sequence {unk

}, for which we will preserve the same designation, such
that

lim
k→∞

‖u2
nk
−v0‖L6(DT ) =0, lim

k→∞

∥

∥

∥

∥

∂unk

∂xi

− vi

∥

∥

∥

∥

L3(DT )

= 0, i=1, 2, 3,

lim
k→∞

‖u3
nk
−v‖L2(DT ) =0, lim

k→∞

∥

∥

∥

∥

∂unk

∂t
−v4

∥

∥

∥

∥

L3(DT )

= 0,

(53)

where v0, v, vi, i = 1, 2, 3, 4, are some functions from the corresponding
spaces: L6(DT ), L2(DT ) for v0, v, and L3(DT ) for the remaining vi. Rea-
soning in a standard manner and using the notion of generalized Sobolev’s
derivative, from (52) and (53) we find that

v0 = u2, v = u3, vi =
∂u

∂xi

, i = 1, 2, 3, v4 =
∂u

∂t
. (54)



On the Global Solvability of the Cauchy Characteristic Problem 63

Let us now show that

lim
k→∞

∥

∥

∥

∥

∂Nunk

∂xi

− ∂Nu

∂xi

∥

∥

∥

∥

L2(DT )

= 0, i = 1, 2, 3,

lim
k→∞

∥

∥

∥

∥

∂Nunk

∂t
− ∂Nu

∂t

∥

∥

∥

∥

L2(DT )

= 0.

(55)

Indeed, using Hölder’s inequality for p = 3, q = 3
2 ( 1

p
+ 1

q
= 1), we obtain

∥

∥

∥

∥

∂Nunk

∂xi

− ∂Nu

∂xi

∥

∥

∥

∥

2

L2(DT )

= 9λ2

∫

DT

(

u2
nk

∂unk

∂xi

− u2 ∂u

∂xi

)2

dx dt =

= 9λ2

∫

DT

[

(u2
nk
− u2)

∂unk

∂xi

+ u2

(

∂unk

∂xi

− ∂u

∂xi

)]2

dx dt ≤

≤ 18λ2

∫

DT

(u2
nk
− u2)2

(

∂unk

∂xi

)2

dx dt + 18λ2

∫

DT

u4

(

∂unk

∂xi

− ∂u

∂xi

)2

dx dt

≤ 18λ2‖(u2
nk
− u2)2‖L3(DT )

∥

∥

∥

∥

(

∂unk

∂xi

)2∥
∥

∥

∥

L 3
2
(DT )

+

+ 18λ2‖u4‖L3(DT )

∥

∥

∥

∥

(

∂unk

∂xi

− ∂u

∂xi

)2∥
∥

∥

∥

L 3
2
(DT )

=

= 18λ2‖u2
nk
− u2‖2L6(DT )

∥

∥

∥

∥

∂unk

∂xi

∥

∥

∥

∥

2

L3(DT )

+

+ 18λ2‖u2‖2L6(DT )

∥

∥

∥

∥

∂unk

∂xi

− ∂u

∂xi

∥

∥

∥

∥

2

L3(DT )

. (56)

By virtue of (53), the sequence
{∥

∥

∥

∂unk

∂xi

∥

∥

∥

2

L3(DT )

}

is bounded. Hence from

(56), by virtue of (53) and (54), we obtain the first three equalities from (55)
for i = 1, 2, 3. The last equality from (55) is proved analogously. Finally,
the fact that Nunk

→ Nu in L2(DT ) follows directly from (53) and (54).
Thus the statement of Remark 3 is proved.

Remark 4. When writing the equalities

lim
k→∞

‖u2
nk
− v0‖L6(DT ) = 0, lim

k→∞
‖u3

nk
− v‖L2(DT ) = 0

from (53), we used the following: (1) the imbedding operator I1 :
◦

W 1
2(DT , ST ) → Lq(DT ) for any q ≥ 1 is continuous and compact; (2) if

u ∈ Lpr(DT ), p ≥ 1, r ≥ 1, then |u|p ∈ Lr(DT ), and from the fact that
un → u in Lpr(DT ) it follows that |un|p → |u|p in Lr(DT ) (analogously,
if un → u in L3r(DT ), then u3

n → u3 in Lr(DT )), which is a consequence
of the following theorem ([34, p. 66]): the nonlinear Nemytski operator H,
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acting by the formula u → h(x, u), where the function h = h(x, ξ) possesses
the Carathéodory property, acts continuously from the space Lp(DT ) to

Lr(DT ), p ≥ 1, r ≥ 1, if and only if |h(x, ξ)| ≤ d(x) + α|ξ| p
r ∀ξ ∈ (−∞,∞),

where d ∈ Lr(DT ) and δ = const ≥ 0. In our case, h(x, ξ) = |ξ|p,
i.e., Hu = |u|p. Note also that we have for the present proved that the

operator N from Remark 3 is compact from the space
◦

W 2
2(DT , ST ) to

W 1
2 (DT ). In its turn, this implies that the operator is continuous as well,

since the above-mentioned spaces, being Hilbert ones, are also reflexive ([34,

p. 182]). Finally, the fact that the image N(
◦

W 2
2(DT , ST )) is, in fact, a sub-

space of the space
◦

W 1
2(DT , ST ) follows from the following reasoning. If

u ∈
◦

W 2
2(DT , ST ), then there exists a sequence un ∈

◦

C2(DT , ST ) = {u ∈
C2(DT ) : u|ST

= 0} such that un → u in the space
◦

W 2
2(DT , ST ). But

according to the above-said, Nun → Nu in the space W 1
2 (DT ), and since

Nun = −λu3
n ∈

◦

C2(DT , ST ) ⊂
◦

W 1
2(DT , ST ), owing to the completeness of

the space
◦

W 1
2(DT , ST ), we finally obtain N(

◦

W 2
2(DT , ST )) ⊂

◦

W 1
2(DT , ST ),

and hence the operator N :
◦

W 2
2(DT , ST ) →

◦

W 1
2(DT , ST ) is continuous and

compact.

Remark 5. As is said in Remark 1 of Section 2, the first equality of (4)
implies that lim

n→∞
‖u3

n − u3‖L2(DT ) = 0. The latter is a direct consequence

of the statement in Remark 3. From the above remarks it immediately

follows that if F ∈
◦

W 1
2(DT , ST ), then the function u ∈

◦

W 2
2(DT , ST ) is a

strong generalized solution of the problem (1), (3) of the class W 2
2 if and

only if this function is, in view of (51), a solution of the following functional
equation

u = L−1(−λu3 + F ) (57)

in the space
◦

W 2
2(DT , ST ).

We rewrite the equation (57) in the form

u = Au := L−1(Nu + F ), (58)

where, according to Remark 3, the operator N :
◦

W 2
2(DT , ST )→

◦

W 1
2(DT , ST )

is continuous and compact. Consequently, owing to (51), the operator A :
◦

W 2
2(DT , ST ) →

◦

W 2
2(DT , ST ) is likewise continuous and compact. At the

same time, by Lemma 1, for any parameter τ ∈ [0, 1] and any solution

u ∈
◦

W 2
2(DT , ST ) of the equation with the parameter u = τAu the following

a priori estimate is valid:

‖u‖W 2
2 (DT ) ≤ σ1τ‖F‖L2(DT ) + τλσ2τ

3‖F‖3L2(DT )+

+ σ3τ‖F‖W 1
2 (DT ) exp

[

σ4 + τλσ5τ
2‖F‖2L2(DT )

]

≤ σ1‖F‖L2(DT )+
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+λσ2‖F‖3L2(DT ) +σ3‖F‖W 1
2 (DT ) exp

[

σ4 +λσ5‖F‖2L2(DT )

]

= C0(λ, σi, F ),

where C0 = C0(λ, σi, F ) is a positive constant not depending on u and on
the parameter τ .

Therefore, by the Leray–Schauder theorem ([36, p. 375]), the equation
(58) and hence the problem (1), (3) has at least one strong generalized solu-
tion of the class W 2

2 in the domain DT . Thus taking into account Remark
1 and Definitions 1, 2 and 3 of Section 2, the following theorem is valid.

Theorem 1. Let λ > 0, F ∈ L2,loc(D∞) and F ∈
◦

W 1
2(DT , ST ) for any

T > 0. Then the problem (1), (3) is globally solvable, i.e., for any T > 0
this problem has a solution of the class W 2

2 in the domain DT in the sense

of Definition 1.

Suppose
◦

W k
2,loc(D∞, S∞) = {v ∈ L2,loc(D∞) : v|DT

∈
◦

W k
2(DT , ST ) ∀T > 0}.

In the next section we will prove the uniqueness of a solution of the
problem (1), (3) of the class W 2

2 in the sense of Definition 1. This and
Theorem 1 allow us to conclude that the theorem below is valid.

Theorem 2. Let λ > 0 and F ∈
◦

W 1
2,loc(D∞, S∞). Then the problem

(1), (3) has in the light cone of the future D∞ a unique global solution u from

the space
◦

W 2
2,loc(D∞, S∞) which satisfies the equation (1) almost everywhere

in the domain D∞ and the boundary condition (3) in the sense of the trace

theory.

4. The Uniqueness of a Solution of the Problem (1), (3) of the

Class W 2
2 .

Lemma 2. The problem (1), (3) fails to have more than one solution of

the class W 2
2 in the sense of Definition 1.

Proof. Let u1 and u2 be two solutions of the problem (1), (3) of the class
W 2

2 in the domain DT in the sense of Definition 1. Then for the difference
u = u2 − u1 we have

(� + m2)u = −3λu3
2 + 3λu3

1, (59)

u, u1, u2 ∈
◦

W 2
2(DT , ST ). (60)

Multiplying both parts of the equation (59) by ut and integrating over the
domain Dτ just in the same manner as when writing (14), we obtain

∫

Ωτ

[

ut +

3
∑

i=1

u2
xi

]

dx + m2

∫

Ωτ

u2 dx =

= −6λ

∫

Dτ

(u3
2 − u3

1)ut dx dt, 0 < τ ≤ T. (61)
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Estimate the first part of the equality (61). We have

∣

∣

∣

∣

− 6λ

∫

Dτ

(u3
2 − u3

1)ut dx dt

∣

∣

∣

∣

= 6|λ|
∣

∣

∣

∣

τ
∫

0

dσ

∫

Ωσ

(u3
2 − u3

1)ut dx dt

∣

∣

∣

∣

≤

≤ 6|λ|
τ

∫

0

dσ

∫

Ωσ

|u2 − u1||u2
2 + u2u1 + u2

1| |ut| dx dt

∣

∣

∣

∣

≤

≤ 9|λ|
τ

∫

0

dσ

∫

Ωσ

(u2
2 + u2

1)|u| |ut| dx dt. (62)

Using Hölder’s inequality for p1 = 6, p2 = 3, p3 = 2 ( 1
6 + 1

3 + 1
2 = 1), we

obtain
∫

Ωσ

(u2
2 +u2

1)|u| |ut| dx dt≤
(

‖u2
2‖L3(Ωσ)+‖u2

1‖L3(Ωσ)

)

‖u‖L6(Ωσ)‖ut‖L2(Ωσ) =

=
(

‖u2‖2L6(Ωσ) + ‖u1‖2L6(Ωσ)

)

‖u‖L6(Ωσ)‖ut‖L2(Ωσ), 0 < σ ≤ T. (63)

By the imbedding theorem, we have ([31, pp. 69, 78])

‖v|Ωσ
‖ ◦

W 1
2(Ωσ)

≤ C(T )‖v‖W 2
2 (DT ) (dim Ωσ = 3, dim DT = 4),

‖v|Ωσ
‖L6(Ωσ) ≤ β‖v|Ωσ

‖ ◦

W 1
2(Ωσ)

≤ βC(T )‖v‖W 2
2 (DT ),

(64)

where the positive constants C(T ) and β do not depend on the parameter
σ ∈ (0, T ] and on the function v.

By virtue of (60), it follows from (63) and (64) that
∫

Ωσ

(u2
2 + u2

1)|u| |ut| dx ≤ 2M‖u‖ ◦

W1
2(Ωσ)

‖ut‖L2(Ωσ) ≤

≤ M
(

‖u‖2◦
W1

2(Ωσ)
+ ‖ut‖2L2(Ωσ)

)

= M

∫

Ωτ

[

u2
t +

3
∑

i=1

u2
xi

]

dx, (65)

where

M = β3C2(T ) max
(

‖u1‖2W 2
2 (DT ), ‖u2‖2W 2

2 (DT )

)

< +∞.

Assuming w(τ) =
∫

Ωτ

[

u2
t +

∑3
i=1 u2

xi

]

dx, by (62)–(65) we have

w(τ) ≤ 9|λ|M
τ

∫

0

w(σ) dσ,

whence by the Gronwall lemma we find that w = 0, i.e., ut = ux1 = ux2 =
ux3 = 0. Consequently, u = const, and since by the condition of the lemma
u|ST

= 0, we have u = 0 and hence u2 = u1, which proves the lemma. �
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5. The Absence of the Global Solvability of the Problem (1), (3) for

λ < 0. The following statement is valid: let λ < 0, F = µF0, F0 ∈ C(D∞),
supp F0∩S∞ = ∅, F0 ≥ 0, F0 6≡ 0, µ = const > 0. Then for any T > 0 there
exists a number µ0 = µ0(T ) > 0 such that for µ ≥ µ0 the problem (1), (3)

fails to have a classical solution u ∈
◦

C2(DT , ST ) = {u ∈ C2(DT ) : u|ST
= 0}

in the domain DT .
We omit here the proof of that statement because it repeats the proof

of an analogous result for the wave equation with the power nonlinearity
with two spatial variables [27] and relies essentially on the method of test
functions [14].
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