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On Harnack’S Inequality and Interior Regularity 3

Let En be an n-dimensional space of points x = (x1, x2, . . . , xn), n ≥ 2,
D be a bounded domain in En with the boundary ∂D, 0 ∈ ∂D. We will
consider in D the equation

Lxu =
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
= 0 (1)

assuming that ‖aij(x)‖ is a real matrix with smooth elements in D \ {0}.
It is also assumed that for all x ∈ D, ξ ∈ En the condition

γ

n∑

i=1

λi(x)ξ2
i ≤

n∑

i,j=1

aij(x)ξiξj ≤ γ−1
n∑

i=1

λi(x)ξ2
i (2)

is fulfilled, where γ ∈ (0, 1] is a constant, λi = gi(ρ(x)), ρ(x) =
n∑

i=1

ωi(|xi|),

gi(t) =
(ω−1

i (t)

t

)2
, i = 1, 2, . . . , n. Here ωi(t) are strictly monotonic, upwards

convex functions on (0, diam D], ωi(0) = 0, ω−1
i (t) are the functions inverse

to ωi(t). There exist constants η, α, β ∈ (1,∞), σ > 2, A > 0 such that

αωi(R) ≤ ωi(ηR) ≤ βωi(R), (3)

(
ω−1

i (R)

R

)σ−1
ω−1

i (R)∫

0

(
ωi(t)

t

)σ

dt ≤ AR, (4)

i = 1, 2, . . . , n, for R ∈ (0, 2d], d = diam D.
The aim of this paper is to prove Harnack’s inequality for positive solu-

tions and to obtain an estimate of the Hölder norm for the class of equations
(1) that depends only on α, β, η, A, n, σ, γ, but does not depend on the
smoothness of the coefficients aij(x). The method employed in the paper
is analogous to that described in [1] which is applicable to the investigation
of problems for nondivergent uniformly elliptic equations of second order.
The case of power functions ωi(t) is considered in [2], while the case for
divergent equations in [3], [4].

For a measurable function u(x) in D we set that �
∫
D

u dx = 1
mesD

∫
D

u dx

and denote by p′ the number conjugate to 1 ≤ p < ∞, 1
p + 1

p′ = 1 ( 1
1 + 1

∞ =

1). For x0 ∈ En we denote ΠR(x0) = {x ∈ En : |xi − x0
i | ≤ ω−1

i (R);
i = 1, 2, . . . , n}. In the following results with regard to the operator Lx we
assume that the conditions (2)–(4) are fulfilled. Uniform estimates of the
solution and Green’s function Gy(x) of the Dirichlet problem are proved,
which do not depend on the smoothness of the coefficients of the equation.

We set Λ(x) =
( n∏

j=1

λj(x)
)1/(n−1)

, θ(x) = Λ(x)−(n−1). The following

weighted Sobolev space is introduced: the completion W 2,n
θ (D) (Ẇ 2,n

θ (D))

of the subspace of functions u(x) ∈ C2(D)∩C(D) (u(x) = 0, x ∈ ∂D) with
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respect to the norm

‖u‖ = ‖u‖2 +
∑

|α|=2

‖Dαu‖n,θ ,

where ‖Dαu‖n,θ = ‖θ1/nDαu‖n, ‖ · ‖n denotes the Lebesgue norm in the
space Ln(D).

Denote by Gy(x) Green’s function of the Dirichlet problem

Lxu = −f(x) in D, u|∂D = 0,

i.e., LxGy(x) = −δy(x) in D, Gy(x)|∂D = 0, where δy(x) is Dirac’s delta
function with singularity at the point y ∈ D. The representation

u(x) =

∫

D

Gy(x) Lyu dy (5)

is valid and the function Gy(x) is the solution of the problem

L∗
yv =

n∑

i,j=1

∂2

∂yi∂yj
(aij(y)v(y)) = −δx(y), v|∂D = 0, y ∈ D,

with respect to the variable y (see, e.g., [5]).
We will make a frequent use of the representation (5). As is known, in

studying the question of the existence of Green’s function of the Dirichlet
problem in the domain D for elliptic equations, we are faced with serious
difficulties depending on the degeneration character and geometric structure
of the domain D. We consider sufficiently smooth domains and infinitely
differentiable coefficients in D \ {0} (Hölder coefficients in D \ {0} can also
be considered).

In Lemma 3 below it will be shown to which class the function u(x)
should belong so that the representation (5) be fulfilled for it.

Lemma 1. Let the condition (2) be fulfilled for the elements of the matrix

‖aij(x)‖ (i, j = 1, 2, . . . , n). Then the estimate

γn
n∏

j=1

λj(x) ≤ det ‖aij(x)‖ ≤ γ−n
n∏

j=1

λj(x) (6)

is valid.

Proof. Let us use the following formula for the determinant of the matrix
A = ‖aij(x)‖:

πn/2

(det ‖A‖)1/2
=

∫

En

e−(Ay,y) dy (7)

(see [6, p. 125]). By virtue of (2), we have

∫

En

e−(A(x)y,y) dy ≤
∫

En

e
−γ

n∑
i=1

λi(x)y2
i

dy. (8)
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By the transformation yi = 1√
γλi(x)

ξi, i = 1, . . . , n, we obtain

∫

En

e−(A(x)y,y) dy ≤
( n∏

j=1

√
λj(x)γ

)−1 ∫

En

e−|ξ|
2

dξ =
πn/2

( n∏
j=1

λj(x)
)1/2

γn/2

.

Using this inequality, from (7) we obtain the left estimate (6). To obtain
the right estimate (6), we use the right inequality (2). Then

∫

En

e−(A(x)y,y) dy ≥
∫

En

e
−γ−1

n∑
j=1

λj(x)y2
j

dy =
πn/2γn/2

( n∏
j=1

λj(x)
)1/2

.

This inequality and (7) yield the right estimate (6). �

Lemma 2. Let D ⊂ ΠR(x0), u(x) ∈ Ẇ 2,n
θ (D) and the conditions (2)–

(4) be fulfilled. Then there exists a constant C > 0 depending on n, γ such

that we have the estimate

sup
x∈D

|u(x)| ≤ C

( n∏

j=1

ω−1
j (R)

)1/n
(∫

D

|Lxu|n dx
n∏

j=1

λj(x)

)1/n

. (9)

Proof. First we will show the validity of the estimate (9) for a function
u ∈ C2(D) ∩ C(D), u|∂D = 0. Let 1

2 sup
x∈D

|u(x)| ≤ |u(x0)| ≤ sup
x∈D

|u(x)|.

We make the transformation of the variables x → y, x = x0 + ω−1(R)y,
ω−1(R)y = (ω−1

1 (R)y1, . . . , ω
−1
n (R)yn). Then the parallelepiped ΠR(x0) is

mapped into the cube {y ∈ En : |y| < 1}. The equation (1) transforms to

n∑

i,j=1

aij(y)
∂2u

∂yi ∂yj
= f(y), y ∈ D′,

while the condition u|∂D = 0 becomes u|∂D′ = 0, where D′ is the image

of D. Here aij(y) =
aij(x0+ω−1(R)y)

ω−1

i (R)ω−1

j (R)
, f = f(x0 + ω−1(R)y), u(y) = u(x0 +

ω−1(R)y). Applying the Alexandrov inequality (see, e.g., [7, p. 105]) to the

operator L′
y =

n∑
i,j=1

aij(y) ∂2u
∂yi ∂yj

in the domain D′, we have

sup
y∈D′

|u(x)| ≤ C

(∫

D′

|L′
yu|n

det ‖aij‖
dy

)1/n

, C = C(n). (10)

By the property of determinants we have

det ‖aij(y)‖ =

( n∏

j=1

ω−1
j (R)

)−2

det ‖aij(x0 + ω−1(R)y)‖.
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After making the reverse transformation of the variables, we obtain

sup
x∈D

|u(x)| ≤ C

( n∏

j=1

ω−1
j (R)

)1/n(∫

D

|Lu|n
det ‖aij‖

dx

)1/n

,

whence by Lemma 1 it follows that

sup
x∈D

|u(x)| ≤ C

( n∏

j=1

ω−1
j (R)

)1/n
(∫

D

|Lu|n dx
n∏

j=1

λj(x)

)1/n

.

Let u ∈ Ẇ 2,n
θ (D). We show that in this case the estimate (9) is valid. We

have: ∃um ∈ C2(D) ∩ C(D) such that um(x) = 0, x ∈ ∂D, m = 1, 2, . . . ,

‖um − u‖W 2,n
θ (D) → 0 (m →∞).

By virtue of (8), for the functions um and the operator Lx we have

sup
x∈D

|um(x)| ≤ C

( n∏

j=1

ω−1
j (R)

)1/n

‖Lxum‖n,θ ,

which implies

sup
x∈D

|um(x)| ≤ C

( n∏

j=1

ω−1
j (R)

)1/n(
‖Lxu‖n,σ + ‖Lx(um − u)‖nθ

)
.

Hence, since m →∞ and from (2)–(4) it follows

‖Lx(um − u)‖n,θ ≤ C

n∏

j=1

(
ω−1

j (R)

R

)2

‖um − u‖W 2,n
θ

→ 0 (m →∞),

we obtain the estimate (9). �

Lemma 3. Let u ∈ Ẇ 2,n
θ (D), D ⊂ ΠR(0). Then the integral represen-

tation (5) is valid.

Proof. Denote by Gy,m(x) Green’s function of the Dirichlet problem for

the operator Lx,m =
n∑

i,j=1

ãij(x)
√

λi,mλj,m
∂2

∂xi∂xj
, λi,m(x) =

(ω−1

i (1/m)

1/m

)2

for x ∈ Π1/m(0), λm
i (x) = λi(x) for x ∈ D \ Π1/m(0), ãij =

aij√
λi(x)λj(x)

(i, j = 1, 2, . . . , n).
Let ∀f ∈ C∞(D), v ∈ C2(D) ∩ C(D) be the solution of the Diriclet

problem
Lx,mv(x) = f in D, v|∂D = 0.

Then

v(x) =

∫

D

Gy,m(x)f(y) dy, (11)

where Gy,m(x) is Green’s function of the operator Lx,m and the Dirichlet
problem for this operator in the domain D. Since the operator Lx,m has
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smooth (Lipshitzian) coefficients and does not degenerate, so the Dirichlet
problem is solvable and the representation (11) holds for it.

By virtue of Alexandrov’s maximum principle (see, e.g., [7]) we have

sup
x∈D

|v(x)| ≤ C

( n∏

j=1

ω−1
j (R)

)1/n

‖f‖n,θm,

where θm =
( n∏

j=1

λj,m(x)
)−1

, C = C(n, γ). Hence, taking into account the

representation (11), the inequality

‖f‖n,θm < ‖f‖n,θ

and the fact the class of functions C∞(D) is complete in Ln,θ(D), we obtain

‖G(·),m(x)‖n′,Λ ≤ C

( n∏

j=1

ω−1
j (R)

)1/n

, x ∈ D. (12)

Now ∃G(·),mk
(x) → G(·)(x) weakly in Ln′,Λ(D), where G(·)(x), x ∈ D, is

a function from Ln′,Λ(D).
Therefore∫

D

Gy,mk
(x)Ly,mk

u(y) dy =

∫

D

Gy,mk
(x)(Ly,mk

− Ly)u(y) dy+

+

∫

D

Gy,mk
(x)Lyu(y) dy, (13)

∀u ∈ W 2,n
θ (D).

Since Lyu ∈ Ln,θ(D) and G(·),mk
(x) → G(·)(x) converges weakly in

Ln′,Λ(D), we have
∫

D

Gy,mk
(x)Lyu(y) dy →

∫

D

Gy(x)Lyu(y) dt as mk →∞. (14)

Further,
∣∣∣∣
∫

D

Gy,mk
(x)(Ly,m − Ly)u(y) dy

∣∣∣∣ ≤

≤
n∑

i,j=1

∫

Π1/m(0)

|ãij |
(√

λi,mλi,m +
√

λiλj

)
|uxixj |Gy,m(x) dy ≤

≤ C1

n∑

i=1

(
ω−1

i (1/m)

1/m

)2 ∫

Π1/m(0)

|uxx|Gy,m(x) dy ≤

≤ C2

n∑

i=1

(
ω−1

i (1/m)

1/m

)2

‖G(·),m(x)‖n,Λ‖uxx‖n,σ → 0 (15)
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as m → ∞, x ∈ D, where |uxx|2 =
n∑

i,j=1

u2
xixj

, ‖uxx‖n,θ =
n∑

i,j=1

‖uxixj‖n,θ,

C2 = C2(n, γ, C1).
Now, using (15), (14) in (13), we can pass to the limit as mk → ∞,

whence we obtain the representation

u(x) =

∫

D

Gy(x)Lyu(y) dy, x ∈ D. �

Theorem 1. Let D be a bounded domain containing the parallelepiped

Π2R(x0) and let the conditions (2)–(4) be fulfilled. Then there exists a

constant C > 0 depending on n, γ, η, α, β, A, σ such that for q = σn
2+σ(n−1)

the inequality

(
�

∫

Π2R(x0)

Gq
y(x) dy

)1/q

≤ C

(
�

∫

Π2R(x0)

Gy(x) dy

)
, x ∈ ΠR(x0), (16)

is valid.

Proof. Denote, for brevity, Π2R(x0) by Π2R. Let supp f ⊂ Π2R. According
to Theorem 1 and the maximum principle,

sup
x∈ΠR

∣∣∣∣
∫

Π2R

Gy(x)f(y) dy

∣∣∣∣ ≤ C

( n∏

j=1

ω−1
j (2R)

)1/n∥∥∥∥f
( n∏

j=1

λj

)−1/n∥∥∥∥
Ln(Π2R)

,

where f(x) ≥ 0 a.e. in D,
n∏

j=1

λj(x) =
n∏

j=1

(ω−1
j (ρ(x))/ρ(x))2 .

The condition (3) implies ω−1
j (2R) ≤ ηδ0ω−1

j (R), where δ0 is the smallest

natural integer for which αδ0 ≥ 2. Therefore

sup
x∈ΠR

∣∣∣∣
∫

Π2R

Gy(x)f(y) dy

∣∣∣∣ ≤

≤ C

( n∏

j=1

ω−1
j (2R)

)1/n∥∥∥∥f
n∏

j=1

(
ω−1

j (ρ(x))/ρ(x)
)−2
∥∥∥∥

Ln(Π2R)

,

whence by virtue of the conjugacy of weighted Lebesgue spaces we have

( ∫

Π2R

Gn′

y (x)

( n∏

j=1

(
ω−1

j (ρ(y))/ρ(y)
) 2

n n′
)

dy

)1/n′

≤ C

( n∏

j=1

ω−1
j (R)

)1/n

.
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Since mes Π2R =
n∏

j=1

ω−1
j (R), by means of the latter inequality we obtain

(
�

∫

Π2R

Gn′

y (x)

( n∏

j=1

(
ω−1

j (ρ(y))/ρ(y)
)2n′/n

)
dy

)1/n′

≤

≤ C

( n∏

j=1

ω−1
j (R)

)2/n−1

. (17)

Now for x ∈ ΠR we have 1 ≤ C
R2

∫
Π2R

Gy(x) dy. Indeed, the function

z(x) = 1 −
n∑

j=1

(xj − x0
j )

2(ω−1
j (2R))−2 is a solution of the equation Lxz =

−2
n∑

j=1

ajj(x)(ω−1
j (2R))−2 in the domain DR = {x ∈ Π2R : z(x) > 0} and

z|∂DR = 0. Therefore for x ∈ ΠR we have

1 ≤ C

∫

Π2R

Gy(x)
n∑

j=1

ajj(x)(ω−1
j (2R))−2dy,

whence by virtue of (1) we obtain

1 ≤ C

∫

Π2R

Gy(x)

( n∑

j=1

λj(y)(ω−1
j (2R))−2

)
dy ≤

≤ C

∫

Π2R

Gy(x)
n∑

j=1

(
ω−1

j (ρ(y))/
(
ρ(y)ω−1

j (2R)
))−2

dy ≤

≤ C

R2

∫

Π2R

Gy(x) dy, x ∈ ΠR. (18)

We have used the monotonicity of ω−1
j (t)/t for the convex functions {ωj(t)}

and the fact that ρ(y) ≤ 2R in Π2R. From the estimates (17), (18) it follows
that

(
�

∫

Π2R

Gy(x)n′
( n∏

j=1

ω−1
j (ρ(y))/ρ(y)

) 2
n n′

dy

)1/n′

≤

≤ C

R2

( n∏

j=1

ω−1
j (R)

) 2
n
(

�

∫

Π2R

Gy(x) dy

)
, x ∈ ΠR. (19)

Using the Hölder inequality and (19), for 1 < q < n′ we have
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(
�

∫

Π2R

Gy(x)q dy

)
≤

≤ C

( n∏

j=1

ω−1
j (R)

) 2
n

(
�

∫

Π2R

( n∏

j=1

ω−1
j (ρ(y))/ρ(y)

)− 2
n

n′q
n′−q

dy

)n′−q

n′q

×

× 1

R2

(
�

∫

Π2R

Gy(x) dy

)
≤ C

( n∏

j=1

ω−1
j (R)

) 1

q′
+ 1

n 1

R2
×

×
(

�

∫

Π2R

( n∏

j=1

ω−1
j (ρ(y))/ρ(y)

)− 2
n

n′q

n′−q

dy

)n′−q

n′q ( ∫

Π2R

Gy(x) dy

)
. (20)

Note that 2
n

n′q
n′−q = σ and

∫

Π2R

( n∏

j=1

ω−1
j (ρ(y))/ρ(y)

)−σ

dy ≤ C
n∏

j=1

ω−1

j (R)∫

0

(ωj(|yj |)/|yj |)σ dyj . (21)

Indeed, the left-hand side is equal to

ω−1

1
(2R)∫

0

dy1

ω−1

2
(2R)∫

0

dy2 · · ·
ω−1

n (2R)∫

0

( n∏

j=1

ω−1
j (ρ(y))

ρ(y)

)−σ

dyn.

The function ω−1
j (t)/t increases (by virtue of the convexity of ωj(t)), ρ(y) ≥

ωj(|yj |), and therefore
ω−1

j (ρ(y))

ρ(y) ≥ |yj |
ωj(|yj |)

, j = 1, 2, . . . , n. Then

∫

Π2R

n∏

j=1

(
ω−1

j (ρ(y))

ρ(y)

)−σ

dy ≤
n∏

j=1

ω−1

j (2R)∫

0

(
ωj(t)

t

)σ

dt ≤

≤ C

n∏

j=1

ω−1

j (R)∫

0

(
ωj(t)

t

)σ

dt.

The latter inequality follows from the condition (3). Indeed, (3) implies
that

ω−1
j (αt) ≤ ηω−1

j (t) ≤ ω−1
j (βt) (22)

for sufficiently small values t > 0.
Let δ0 be the smallest integer for which αδ0 ≥ 2. Then from (22) we

obtain ω−1
j (2t) ≤ ω−1

j (αδ0 t) ≤ ηδ0ω−1
j (t). Further, if ωj(t) ≤ βδ0ωj(t/ηδ0),
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then
ωj(t)

t ≤
(

β
η

)δ0 ωj(t/ηδ0 )

t/ηδ0
, whence it follows that

ω−1

j (2R)∫

0

(
ωj(t)

t

)σ

dt ≤
(

β

η

)δ0σ
η−δ0ω−1

j (2R)∫

0

(
ωj(t)

t

)σ

dt ≤

≤
(

β

η

)δ0σ
ω−1

j (R)∫

0

(
ωj(t)

t

)σ

dt,

j = 1, . . . , n. By virtue of (21), from (20) we obtain
(

�

∫

Π2R

Gy(x)qdy

)1/q

≤ C(R)

(
�

∫

Π2R

Gy(x) dy

)
, x ∈ ΠR, (23)

where q = σn
2+σ(n−1) , 1 < q < n′,

C(R) =

( n∏

j=1

ω−1
j (2R)

) 1

q′
+ 1

n 1

R2

n∏

j=1

( ω−1

j (R)∫

0

(
ωj(yj)

yj

)σ

dyj

)2/σn

,

which implies

C(R) =

n∏

j=1

[(
ω−1

j (R)

R

)σ−1
1

R

ω−1

j (R)∫

0

(
ωj(t)

t

)σ

dyj

]2/σn

. (24)

Now observe that the condition 1 < q < n′ is equivalent to the condition
2 < σ < ∞. Hence, using the condition (4), from (23) and (24) we obtain
(16). �

Remark. The inequality (16) also holds for Green’s function of the par-
allelepiped Π2R(x0), i.e. if GR

y (x) is Green’s function for Π2R(x0), then for
q = σn

2+σ(n−1) we have the inequality

(
�

∫

Π2R(x0)

(
GR

y (x)
)q

dy

)1/q

≤ C

(
�

∫

Π2R(x0)

GR
y (x) dy

)
, x ∈ ΠR(x0), (25)

where the constant C > 0 depends on n, α, β, γ, η, A, σ.

Lemma 4 (increase lemma for narrow domains). Let D ⊂ ΠR(x0) be a

domain having limiting points on the surface of the parallelepiped ΠR(x0),

x0 ∈ D. Assume that u ∈ W 2,n
θ (D) is a positive solution of the equation

(1) in D that vanishes on ∂D. Then for any Q > 1 there exists δ > 0,
depending on Q, n, α, β, γ, η, A,σ, such that

mesD

mesΠR
< δ (26)

implies sup
x∈D

u(x) ≥ Qu(x0).
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Proof. Let us assume that M = sup
x∈D

u(x) and consider the auxiliary function

z(x) = u(x)−
n∑

j=1

(xj − x0
j )

2(ω−1
j (R))−2M . Then

Lxz = −2M

n∑

j=1

ajj(x)(ω−1
j (R))−2 in D,

and also z(x0) = u(x0) and z(x) ≤ 0 on ∂D. Indeed, on the part ∂D ∩
∂ΠR(x0) we have z(x) ≤ M − M . inf

x∈∂ΠR(x0)

n∑
j=1

(xj − x0
j )

2(ω−1
j (R))−2.

Assuming in (1) that ξ = (0, . . . , 1, 0, . . . , 0), where 1 stands as the j-th
coordinate of ξ, we obtain ajj ≤ γ−1λj , j = 1, 2, . . . , n. Then

|Lxz| ≤ 2Mγ−1
n∑

j=1

λj(x)(ω−1
j (R))−2,

whence, taking into account the form λj(x) = (ω−1
j (ρ(x))/ρ(x))2, the mono-

tonicity of the functions ω−1
j (t), ω−1

j (t)/t and the fact that ωj(0) = 0, for
j = 1, . . . , n we have

|Lxz| ≤ 2γ−1M

n∑

j=1

(
ω−1

j (ρ(x))

ω−1
j (R)

)2
1

ρ(x)2
≤ 2nγ−1 M

R2
. (27)

Applying Lemma 2 to the function z in the domain D, we obtain

u(x0)=z(x0)≤ sup
x∈D

z≤C

( n∏

j=1

ω−1
j (R)

)1/n∥∥∥∥LxZ

( n∏

j=1

λj(x)

)−1/n∥∥∥∥
Ln(D)

,

whence, by virtue of (27), it follows that

u(x0) ≤ C
M

R2

( n∏

j=1

ω−1
j (R)

)1/n∥∥∥∥
( n∏

j=1

λj(x)

)−1/n∥∥∥∥
Ln(D)

. (28)

On the other hand,

∫

D

dy
n∏

j=1

λj(y)
=

∫

D

n∏

j=1

(
ρ(y)

ω−1
j (ρ(y))

)2

dy. (29)

For y ∈ D we have ρ(y) =
n∑

j=1

ωj(|yj |), which implies that ωj(|yj |) < ρ(y)

for any j = 1, . . . , n. Since the functions ω−1
j (t)/t are monotone, we have

ω−1
j (ρ(y))

ρ(y)
≥ |yj |

ωj(|yj |)
.
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Therefore (29) implies

∫

D

dy
n∏

j=1

λj(y)
=

∫

D

n∏

j=1

(
ωj(|yj |)
|yj |

)2

dy. (30)

If we apply the Hölder inequality to the right-hand side of (30) and assume
that σ = 2n′q/(n(n′ − q)), then we will have

∫

D

dy
n∏

j=1

λj(y)
=

(∫

D

n∏

j=1

(
ωj(|yj |)
|yj |

)σ

dy

)2/σ

(mes D)1−
2
σ . (31)

Now, from (31) we derive

∫

D

dy
n∏

j=1

λj(y)
≤
(

mes D

mes ΠR

)1− 2
σ

(mes ΠR)1−
2
σ

(∫

πR

( n∏

j=1

ωj(|yj |)
|yj |

)σ

dy

)2/σ

≤

≤ C

( n∏

j=1

ω−1
j (R)

)1− 2
σ

n∏

j=1

( ω−1

j (R)∫

0

(
ωj(t)

t

)σ

dt

)2/σ(
mes D

mes ΠR

)1− 2
σ

,

whence

u(x0) ≤ C
M

R2

( n∏

j=1

ω−1
j (R)

) 2
n (1− 1

σ )

×

×
n∏

j=1

( ω−1

j (R)∫

0

(
ωj(t)

t

)σ

dt

)2/σn(
mes D

mes ΠR

) 2
n (1− 2

σ )

. (32)

By virtue of (4) and (32) we obtain u(x0) ≤ CM
(

mes D
mesΠR

) 1
n (1− 2

σ )
, whence,

using (2), we find u(x0) ≤ CMδ
1
n (1− 2

σ ). Putting Cδ
1
n (1− 2

σ ) = Q−1 and
using the condition 2 < σ < ∞, we obtain M ≥ QU(x0). �

Lemma 5 (Moser type inequality). Let 0<p<∞, u(x)∈W 2,n
θ (Π2R(x0))

be a positive solution of the equation (1) in Π2R(x0). Then the estimate

sup
ΠR(x0)

u(x) ≤ C

(
�

∫

Π2R(x0)

u(x)p dx

)1/p

(33)

holds, where the constant C > 0 depends on n, α, β, γ, η, A, σ and also

on p.

Proof. We will follow the scheme from [7] to obtain the estimate (33) from
Lemma 4.
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It is obvious that for the functions ωj(t) satisfying the condition (3) we
have the estimate

ωj(kt) ≥ kµωj(t), t > 0, k ≥ 1. (34)

Putting Q = 2µ+1 in Lemma 4, let us find the corresponding δ. Assume
sup

ΠR(x0)

u(x) = u(x1) = 2M . Let

u1 = u−M and D1 = {x ∈ ΠR/2(x0) : u1 > 0}.

If mesD1 > δ mes ΠR/2(x1), then
∫

Π2R(x0)

up dx ≥
∫

ΠR/2(x1)

up dx ≥
∫

D1

up dx ≥

≥ δ mes ΠR/2(x1)M
p ≥ δ1 mes ΠR(x1)M

p

and the assertion is proved with C = δ−1
1 , where δ1 is a number smaller than

δ. If however mes D1 < δ mes ΠR/2(x1), then there exists ρ1 > 0 such that
mesD1 ∩ Πρ1

(x1) = δ mes Πρ1
(x1). Apply Lemma 4 to the function u1 in

the domain D1∩Πρ1
(x1). Then there exists a point x2 ∈ ∂Πρ1

(x1) such that
u(x2) > 2µ+1M . Assume u2 = u − 2µM , D2 = {x ∈ ΠR/2(x2) : u2 > 0}.
If mes(D2 ∩ ΠR/4(x2)) ≥ δ mesΠR/4(x2), then the statement is proved. If
mes(D2 ∩ΠR/4(x2)) < δ mesΠR/4(x2), then there exists 0 < ρ2 < R/4 such
that mes(D2∩Πρ2

(x2)) = δ mes Πρ2
(x2). Applying Lemma 4 in D2∩Πρ2

(x2)
to the function u2, we find a point x3 ∈ ∂Πρ2

(x2) such that u(x3) ≥ 22µ+1M .
Continuing this process, we come to the sequence ρ1, ρ2, . . . , ρk, . . . .

Let ρk be a number such that ρ1 + ρ2 + · · · + ρk > R/2. This number
exists because otherwise by virtue of the condition on the functions {ωi},

i = 1, . . . , n, we would have ωi(|xi
k − xi

1|) ≤ ωi

( k∑
j=2

|xi
j − xi

j−1|
)
≤

∞∑
j=2

ρj <

R
2 , whence

n∑
i=1

ωi(|xi
k − xi

0|) ≤ R
2 , i.e. all xk belong to ΠR/2(x1). On the

other hand, u(xk) → ∞ as k → ∞, which contradicts the boundedness
of u(x) in ΠR/2(x1) ⊂ Π3R/2(x0). Therefore there exists i0, 1 ≤ i0 < k,

such that ρi0 > R
2i0

. On the set Di0 we have u ≥ 2i0µM and mesDi0 ≥
C

n∏
j=1

ω−1
j (R/2i0). Therefore

∫

Π2R(x0)

up dx ≥ CMp

( n∏

j=1

ω−1
j

(
R

2i0

)
· 2i0µ

)
≥ CMp

n∏

j=1

ω−1
j (R)

by virtue of (34), so we come to the inequality (33). �

Lemma 6. Let ΠR(x0) ⊂ D, and the conditions (2)–(4) be fulfilled.

Then there exists a constant C > 0, depending on n α, β, γ, η, A, σ, such
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that

inf
x∈ΠR(x0)

∫

Π2R(x0)

Gy(x) dy ≥ CR2.

Proof. As a matter of fact, this statement has been proved in Theorem 1.

Consider the function w = 1−
n∑

j=1

(xj−x0
j )2

(ω−1

j (R))2
. Then Lxw = 2−

n∑
i=1

aii(x)

(ω−1

i (R))2
.

Assume that x ∈ ΠR(x0). Then we have

1−
n∑

j=1

(
ω−1

j (R)

ω−1
j (2R)

)2

≤ C

∫

Π2R(x0)

Gy(x)
n∑

j=1

ajj(y)

(ω−1
j (2R))2

dy.

The condition (3) implies that ω−1
j (R) ≥ η−δ0ω−1

j (2R). Now

1− η−δ0 ≤ Cγ−1

∫

Π2R(x0)

Gy(x)

n∑

j=1

λj(y)

(ω−1
j (2R))2

dy ≤

≤ Cγ−1

∫

Π2R(x0)

Gy(x)

n∑

j=1

(
ω−1

j (ρ(y))

ω−1
j (R)

)2
dy

ρ(y)2
≤ C

R2

∫

Π2R(x0)

Gy(x) dy,

whence CR2 ≤
∫

Π2R(x0)

Gy(x) dy, x ∈ ΠR(x0). �

Lemma 7. Let ΠR(x0) ⊂ D and the conditions (2)–(4) be fulfilled. Then
∫

ΠR(x0)

Gy(x) dy ≤ CR2, x ∈ ΠR(x0),

where the constant C > 0 depends on n, α, β, γ, η, A, σ.

Proof. By virtue of the Hölder inequality we have
∫

ΠR(x0)

Gy(x) dy ≤ mesΠR(x0) �

∫

ΠR(x0)

Gy(x) dy ≤

≤ mesΠR(x0)

(
�

∫

ΠR(x0)

Gq
y(x) dy

)1/q

≤

≤ mesΠR(x0)

(
�

∫

ΠR(x0)

Gn′

y (x)

n∏

j=1

(
ω−1

j (ρ(y))

ρ(y)

) 2
n n′

dy

)1/n′

×

×
(

�

∫

ΠR(x0)

( n∏

j=1

ω−1
j (ρ(y))

ρ(y)

)− 2
n ·

n′q

n′−q

dy

)n′−q

n′q
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By virtue of the estimate (17) the latter inequality implies

∫

ΠR(x0)

Gy(x) dy ≤ (mes ΠR(x0))
2
n−

1
q + 1

n′ ×

×
(

�

∫

ΠR(x0)

( n∏

j=1

ω−1
j (ρ(y))

ρ(y)

)− 2
n ·

n′q

n′−q

dy

)n′−q

n′q

=

= C

( n∏

j=1

ω−1
j (R)

) 1

q′
+ 1

n
n∏

j=1

( ω−1

j (R)∫

0

(
ωj(t)

t

) 2
n ·

n′q

n′−q

dt

)n′−q

n′q

(35)

from which (assuming that σ = 2
n ·

n′q
n′−q ) we derive, by means of the condition

(4), that
∫

ΠR(x0)

Gy(x) dy ≤ CR. �

Theorem 2. Let D be a bounded domain and Π2R(x0) ⊂ D. Assume

that u(x) ∈ W 2,n
θ (D) is a positive solution of the equation (1) for which

the conditions (2)–(4) are fulfilled. Then there exists a constant C > 0,
depending on n, α, β, γ, η, A, σ, such that

sup
x∈ΠR(x0)

u(x) ≤ C inf
x∈ΠR(x0)

u(x). (36)

Proof. Let 1 = inf
x∈ΠR(x0)

u(x) = u(x1). Denote Et = {x ∈ Π2R(x0) : u(x) >

t}, t > 1. Then by the maximum principle GR
y (x) ≤ Gy(x), where GR

y (x) is
Green’s function for Π2R(x0). Then

u(x)

t
≥ C

R2

∫

Et

GR
y (x) dy, x /∈ Et.

Indeed, on ∂Et we have u(x)
t ≥ 1, 1

CR2

∫
Et

GR
y (x) dy ≤ 1. On ∂Π2R(x0)

we have u(x)
t > 0, 1

CR2

∫
Et

GR
y (x) dy = 0. In Π2R(x0) \ Et both functions

u(x)
t and 1

CR2

∫
Et

GR
y (x) dy are solutions of the equation (1), and u(x)

t ≥
1

CR2

∫
Et

GR
y (x) dy on the boundary Π2R(x0) \ Et. We have made use of

Lemma 7 to obtain

1

CR2

∫

Et

GR
y (x) dy ≤ 1

CR2

∫

ΠR(x0)

GR
y (x) dy ≤ 1.
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By the maximum principle we have u(x)
t ≥ 1

CR2

∫
Et

GR
y (x) dy, x ∈ π2R(x0) \

Et. Putting in this inequality x = x0, we obtain

1

t
≥ 1

CR2

∫

Et

GR
y (x) dy. (37)

Assuming E = Et, from the inequality (25) we obtain for the function
GR

y (x)
∫

Et

GR
y (x) dy ≥ 1

C

(
mes Et

mes Π2R(x0)

)τ ∫

Π2R(x0)

GR
y (x) dy, (38)

x ∈ ΠR(x0)\Et. The inequality (38) is a corollary of the inequality (25) (see

[8]). Setting in (38) x = x1 we have 1
t ≥ C

(
mesEt

mesΠ2R(x0)

)τ 1
R2

∫
Π2R(x0)

GR
y (x1) dy,

from which by virtue of Lemma 6 we obtain

C

t
≥ C

(
mesEt

mes Π2R

)τ

, (39)

where C, τ > 0 are some numbers depending on n, σ, A, α, β, η, γ. From
(39) it follows that

mesEt ≤ C
mesΠ2R

tp
, p =

1

τ
.

Now, by Lemma 5, for p1 = p/2 we have

sup
x∈ΠR(x0)

(u(x))
p1 ≤ C �

∫

Π2R(x0)

up1dx ≤

≤ 1

mes Π2R

( ∞∫

1

tp1−1 mes Et dt +

1∫

0

tp1−1|Et| dt

)
≤

≤ C

( ∞∫

1

tp1−p−1dt + C1

)
≤ C2(σ, A, α, β, γ, η, n).

Theorem 2 is proved. �

Lemma 8. Let D be a bounded domain, Π2R(x0) ⊂ D, u(x) ∈ W 2,n
θ (D)

be a solution of the equation (1). Then there exists a number Q > 1,
depending on n, σ, A, α, β, η, γ, such that

osc
Π2R(x0)

u ≥ Q osc
ΠR(x0)

u,

where osc
E

u = sup
E

u− inf
E

u.



18 Rabil A. Amanov

Proof. Apply Theorem 2 to the functions u(x) − m2R and M2R − u(x) in
Π2R(x0), where m2R = inf

Π2R(x0)
u(x), M2R = sup

Π2R(x0)

u(x). Then

MR −m2R ≤ C(mR −m2R) and M2R −mR ≤ C(M2R −MR).

The summation of these inequalities gives

(1 + C) osc
ΠR(x0)

u ≤ (C − 1) osc
π2R(x0)

u,

whence

osc
Π2R(x0)

u ≥ C + 1

C − 1
osc

ΠR(x0)
u,

where the constant C > 0 of Harnack’s inequality depends on n, σ, A, α,
β, η, γ. �

Theorem 3. Let D be a bounded domain in En, u(x) ∈ W 2,n
θ (D) be

a solution of the equation (1), where the coefficients satisfy the conditions

(2)–(4). Then for any ρ > 0 there exist µ = µ(α, n, A, β, γ, η) and H =
H(α, n, A, β, γ, η) such that for any x, y ∈ Dρ = {x ∈ D : dist(x, Rn \D) >
ρ} we have the estimate

|u(x)− u(y)| ≤ H |x− y|µ sup
D
|u|.

Proof. Fix y ∈ Dρ. There exists R0 such that Π2R0
(y) ⊂ D. For this it is

sufficient to take R0 = ω−(ρ)
2 , where ω−(ρ) = min{ω1(ρ), ω2(ρ), . . . , ωn(ρ)}.

For k = 0, 1, 2, . . . , we denote ρk = 2−k+1R0, Πk = Πρk
(y). By virtue of

Theorem 2,

osc
Πρk

(y)
u ≤ 1

Q
osc

Πρk−1
(y)

u ≤ · · · ≤ 1

Qk
osc

Πρ0
(y)

u.

Let R be any number from (0, R0]. Then there is a natural number k
such that ρk ≤ R ≤ ρk−1. In that case,

osc
ΠR(y)

u ≤ 1

Q

(
ρk

R0

)ν

osc
ΠR0

(y)
u ≤ 2 osc

Π2R0
(y)
|u|
(

R

R0

)ν

, (40)

where ν = log2 Q. Let x ∈ Dρ, x 6= y, be any point.
Two cases are possible: i) ω+(|x− y|) < R0, ii) ω+(|x− y|) ≥ R0, where

ω+(ρ) = max{ω1(ρ), . . . , ωn(ρ)}. In the case i) we have x ∈ Πω+(|x−y|)(y),
and therefore (40) implies

|u(x)− u(y)| ≤ 2 sup
D
|u|R−ν

0

(
ω+(|x− y|)

)ν
. (41)
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Let t2 ≥ t1 > 0, k be a natural integer for which ηk ≤ t2
t1
≤ ηk+1. Then

by virtue of the condition (3)

ωj(t2) = ωj

(
t2
t1
· t1
)
≥ ωj(η

kt1) > αkωj(t1) ≥ α
logη

t2
t1
−1

=

=
1

α

(
t2
t1

)logη α

ωj(t1), (42)

where j ∈ {1, 2, . . . , n}. By virtue of the condition (42) ωj(t)/t−ξ is bounded
for sufficiently small t, where ξ = logη α. Then from (41) we obtain

|u(x)− u(y)| ≤
sup
D
|u| · 2ν+1

(ω(ρ))ν
|x− y|ξν , x ∈ Dρ.

In the case ii) we have |u(x) − u(y)| ≤ 2 sup
D
|u| ≤ 2 sup

D
|u| (|x−y|)ξν

Rν
0

,

x ∈ Dρ. �
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