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Abstract. Nonuniformly degenerating elliptic equations of nondivergent
type are considered. Harnack type inequalities and an a priori estimate of
the Holder norm are proved for positive solutions of such equations.
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On Harnack’S Inequality and Interior Regularity 3

Let E, be an n-dimensional space of points x = (z1,xa,...,z,), n > 2,
D be a bounded domain in F,, with the boundary 0D, 0 € 9D. We will
consider in D the equation

- 0%y
Lyu= Z a;j(x) e 0 (1)
i,j=1 v

assuming that ||a;;(x)| is a real matrix with smooth elements in D \ {0}.
It is also assumed that for all x € D, £ € E,, the condition

n n

Y Nil@)El < Z aij ()68 <7y Ni(@)€ (2)

i=1 i=1
is fulfilled, where v € (0, 1] is a constant, A; = g;(p(z)), p(z) = > wi(|zs]),
i=1

—1
gi(t) = (&#)2, i=1,2,...,n. Here w;(t) are strictly monotonic, upwards
convex functions on (0, diam D], w;(0) = 0, w; ! () are the functions inverse
to w;(t). There exist constants 1, «, 8 € (1,00), ¢ > 2, A > 0 such that

aw;(R) < w;i(nR) < Bwi(R), (3)

i=1,2,...,n, for R € (0,2d], d = diam D.

The aim of this paper is to prove Harnack’s inequality for positive solu-
tions and to obtain an estimate of the Holder norm for the class of equations
(1) that depends only on «, 8, n, A, n, o, v, but does not depend on the
smoothness of the coefficients a;;(z). The method employed in the paper
is analogous to that described in [1] which is applicable to the investigation
of problems for nondivergent uniformly elliptic equations of second order.
The case of power functions w;(t) is considered in [2], while the case for
divergent equations in [3], [4].

For a measurable function u(z) in D we set that /g ude = — - g udx

and denote by p’ the number conjugate to 1 < p < oo, zl? + % =1(1+%=
1). For 29 € E, we denote Ig(zo) = {x € E, : |z; — 29| < w; ' (R);
1 =1,2,...,n}. In the following results with regard to the operator L, we
assume that the conditions (2)—(4) are fulfilled. Uniform estimates of the
solution and Green’s function G, (z) of the Dirichlet problem are proved,

which do not depend on the smoothness of the coefficients of the equation.
n 1/(n—1)
We set A(z) = ( I Aj(x)) , 0(z) = A(z)~ . The following
j=1

weighted Sobolev space is introduced: the completion Wﬁ’"(D) (WHQ"(D))
of the subspace of functions u(z) € C*(D)NC(D) (u(x) = 0, z € D) with
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respect to the norm

lull = llullz+ Y 1D%ull, -

| =2

where || D%ul[n.0 = [|0%/" D%, || - || denotes the Lebesgue norm in the
space Ly (D).
Denote by Gy(x) Green’s function of the Dirichlet problem

Lyu= _f(l‘) in Dv u‘aD = Oa

ie., LyGy(xz) = —d0y(x) in D, Gy(z)|lop = 0, where d,(x) is Dirac’s delta
function with singularity at the point y € D. The representation

u(e) = [ Gy(o) Lyudy o)
D
is valid and the function G, (z) is the solution of the problem

n 2
L= 3 50 (a(0)o@) = ~5.(), vlap =0, yeD,
ig=1 Yi0Yi
with respect to the variable y (see, e.g., [5]).

We will make a frequent use of the representation (5). As is known, in
studying the question of the existence of Green’s function of the Dirichlet
problem in the domain D for elliptic equations, we are faced with serious
difficulties depending on the degeneration character and geometric structure
of the domain D. We consider sufficiently smooth domains and infinitely
differentiable coefficients in D \ {0} (Holder coefficients in D \ {0} can also
be considered).

In Lemma 3 below it will be shown to which class the function u(z)
should belong so that the representation (5) be fulfilled for it.

Lemma 1. Let the condition (2) be fulfilled for the elements of the matriz
lai;(@)|| (¢,7=1,2,...,n). Then the estimate

" T M) < detflas; (@)| < 7" [ ] A=) (6)
=1 j=1
15 valid.

Proof. Let us use the following formula for the determinant of the matrix
A = [lai;(z)]]:

"/ ~(Ay) g 7
e = "
(see [6, p. 125]). By virtue of (2), we have
—7 Y Aila)y?
/e—(A(w)yJ;) dy < /e Y& Y dy. (8)

E, En
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By the transformation y; = ﬁ &,1=1,...,n, we obtain
YA

n -1
/e—(A(w)y,y) dy < <H A /)\j(:zz)~y> /e_\ﬁP d§ = — T
Jj=1

B = B ( jl;ll Aj (x)) Yz

n/2

Using this inequality, from (7) we obtain the left estimate (6). To obtain
the right estimate (6), we use the right inequality (2). Then

—yt i A (2)y3 /22
/ef(A(z)y,y) dy > /e j=1 7 dy = :—71/2
) (11%)
j=

This inequality and (7) yield the right estimate (6). O

Lemma 2. Let D C Ilg(xg), u(z) € W;n(D) and the conditions (2)-
(4) be fulfilled. Then there exists a constant C > 0 depending on n, v such
that we have the estimate

n 1/n ul™ dx 1/n
sup|u(x)|§C(ij1(R)> < M) : (9)

e J=1 D Hl Aj(x)
=

Proof. First we will show the validity of the estimate (9) for a function
u € C*(D)NC(D), ulop = 0. Let & sup |u(z)| < |u(zo)| < sup |u(z)|.
zeD zeD

We make the transformation of the variables  — y, * = ¢ + w *(R)y,
w YRy = (W " (R)y1, ..., w;, " (R)yn). Then the parallelepiped TTg(zo) is
mapped into the cube {y € E,, : |y| < 1}. The equation (1) transforms to

while the condition ulsp = 0 becomes u|sps = 0, where D’ is the image

a;j(x w™t 7 _ _ _ _
of D. Here a;;(y) = w£ ?;)w‘,(?}%?), = flxo+w N R)y), uly) = u(xo +

w™Y(R)y). Applying the Alexandrov inequality (see, e.g., [7, p. 105]) to the

operator Ly = > @;;(y) % in the domain D’ we have
i OYj

ig=1
i )"
sup [u(z)| < C /Ui_d , C=0C(n). 10
sup fio)] < 0 [ gty m.

D’

By the property of determinants we have

n -2
det [[a; (5)]] = (H«gl(R)) det [las; (0 + v (R)y)]|.
=1
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After making the reverse transformation of the variables, we obtain

n . 1/n |Lu|" 1/n
sup |u(z §C( w’ R) (/76&@) ,

whence by Lemma 1 it follows that
1/n 1/
L n
sup|u |<C’<Hw ) < |nu|7dz>
p I Ai(@)
j=1

Let u € W;"(D) We show that in this case the estimate (9) is valid. We
have: Ju,, € C?(D) N C(D) such that u,,(z) =0,z € 9D, m=1,2,...,

l[um — UHW;,"(D) =0 (m — o).

By virtue of (8), for the functions w,, and the operator L, we have

n 1/n
sup [t ()| < C’( Hw > | Lyt ln.0 s

which implies
1/n
sup i 0)] < c( [ B) (st + I = 0)la)
Hence, since m — oo and from (2)—(4) it follows
—1
(R)
Lt = ) < OH [(“7

we obtain the estimate (9) O

) lttm = e — 0 (1 = o0),

Lemma 3. Letu € WHQ’"(D), D C IIr(0). Then the integral represen-
tation (5) is valid.

Proof. Denote by Gy m(x) Green’s function of the Dirichlet problem for

n —1
the operator Lz,m = Z ’dij (x)\/Ai,m/\j,m #;m" Azym(CC) = (%)2
i,j=1 ’
for x € Hl/m(O), )\Zn(CC) = AZ(I) for x € D \ Hl/m(o)a EZU = \/)\—((:T‘ﬁ
(i,j =1,2,...,n).

Let Vf € C>®(D), v € C?(D) N C(D) be the solution of the Diriclet
problem
Lz,mv(‘r) = f in D7 U‘(’)D = 0.
Then
o@) = [ Gyl 1w . ()
D

where Gy (x) is Green’s function of the operator L, ., and the Dirichlet
problem for this operator in the domain D. Since the operator L, ,, has



On Harnack’S Inequality and Interior Regularity 7

smooth (Lipshitzian) coefficients and does not degenerate, so the Dirichlet
problem is solvable and the representation (11) holds for it.
By virtue of Alexandrov’s maximum principle (see, e.g., [7]) we have

n 1/n
sup lo(2)] < c(H«ﬁm) e
T =1

n -1
where 0,, = ( 11 )\jﬁm(:c)) , C = C(n,v). Hence, taking into account the
j=1

representation (11), the inequality

£l < [[flln6
and the fact the class of functions C°°(D) is complete in Ly, o(D), we obtain

n 1/n
||G(.))m(117)||n/7/\ < C< ijl(R)) , x€D. (12)
j=1

Now 3Gy m, (x) = G(y(x) weakly in L, (D), where G(.y(x), x € D, is
a function from L, (D).

Therefore
[ Gom @) Lymi)dy = [ Goan @)Ly, — Ly)ulw) dy+
D D
+ [ Gy @)Lty d (13)
D

Yu € W, (D).
Since Lyu € Lpng(D) and G, (x) — G(y(x) converges weakly in
L,/ A(D), we have
/Gy,mk(x)Lyu(y) dy — /Gy(x)Lyu(y) dt as my — oo. (14)
D D
Further,

[ G~ Lt | <
i n

< Z / 1@ij| (VAimAim + VAN ) o, |Gym (@) dy <

§02<M) / e Gy () dy <

1/m
M1/ (0)

n w._l m 2
<o 3 (S0 160l

ne — 0 (15)
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n n
as m — oo, ¥ € D, where |uz,|*> = > uiimj, uzallng = > v, line,

7,j=1 7,7=1
C2 = Ca(n,v,Ch).
Now, using (15), (14) in (13), we can pass to the limit as mj — oo,
whence we obtain the representation

x) = /Gy(x)Lyu(y) dy, ze€D. O

Theorem 1. Let D be a bounded domain containing the parallelepiped
Mog(zg) and let the conditions (2)—(4) be fulfilled. Then there exists a
constant C > 0 depending onn, v, n, o, 3, A, o such that for ¢ = %
the inequality

1/q
( f Gl(z) dy> < C’( f Gy(zx) dy>, x € Mr(xo), (16)
HQR(;E()) HQR(mo)
is valid.

Proof. Denote, for brevity, Ilag(z¢) by Ilag. Let supp f C Ilag. According
to Theorem 1 and the maximum principle,
n —1/n
f ( 1T Aj)
j=1

/n
/G dy’<C(Hw_1 23))1
where f(z) > 0 a.e. in D, HA() ﬁ<-%<wvmwﬁ.

j=1

The condition (3) 1mphes w; '(2R) < 7750cu_1(R)7 where dg is the smallest
natural integer for which a% 2 2. Therefore

sup
z€llp

)

Ln(HgR)

sup
z€llpr

/Gmw@@k

2R
n

FTT @5 o)) /()

Jj=1

3

Ln (HZR)

whence by virtue of the conjugacy of weighted Lebesgue spaces we have

(Jesa(istmen o)

1/n’

n 1/n
SC(j_l_[le_l(R)> :
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n
Since mesTlar = [] w{l (R), by means of the latter inequality we obtain
j=1

( J & (165 e ") dy> ”

j=1

IN

Mar
< c(f[lwf(m)?/"l. an)

Now for « € Ilg we have 1 < -5 [ Gy(z)dy. Indeed, the function

n

z(x) =1 - Y (x; — 29)*(w; '(2R)) "% is a solution of the equation L,z =

j=1
23 ajj(96)(%71(21’%))_2 in the domain Dp = {x € Il3g : 2(z) > 0} and
j=1

zlopr = 0. Therefore for x € I we have

1<C / Gy(x)Zajj(a:)(w;l(m))*?dy,

Mar

whence by virtue of (1) we obtain

1<c [ Gy<x>(ixj<y><w;1<2fz>>2> dy <

Mar J=1
<C [ 6@ Y (@ W) (o) ) dy <
I2r =1
< % Gy(z)dy, =xellp (18)
IlIor

We have used the monotonicity of wj_l (t)/t for the convex functions {w;(t)}
and the fact that p(y) < 2R in IIop. From the estimates (17), (18) it follows
that

( / Gy(z)" ( f[l wjl(p(y))/p(y)) ’ n/dy> " <

| < %(Jﬁl%l(m)%( / G, () dy), v el (19)

Using the Holder inequality and (19), for 1 < ¢ < n’ we have
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Mar
n 2 n -2 "T:q— T’:r:.#t;

< C(ijl(R)> (f (ijl(p(y))/p(y)) dy) x
j=1 yp =1
1 t N7

X =3 Gy(z)dy | <C Hwa (R) 7z~
2k J=1
n _zafe N\ AR
x <f (ijl(p(y))/p(y)> dy) (/Gy(w)dy>- (20)
II2r J=1 II2r
Note that 127 nnf,_% =0 and

n o n O ®

[ (T ewoen) ar<cT] [ Gotlubinh s @

Mop =1 =t

Indeed, the left-hand side is equal to
wi'2R) w3 '(2R) w, ' (2R) 1
rw; (pm)\ 77
i [ awe [ (TT557)
- ey)
0 0 J

The function wj*l(t) /t increases (by virtue of the convexity of w;(t)), p(y) >
-1
ws(lyj1), and therefore “Z) > Wl — 1,5, n. Then

r(y) = w;(ly;l)’
JI(E) ey (22 s
2r I =1

n O .
< Cj[[l O/R (““T(t)) dt.

The latter inequality follows from the condition (3). Indeed, (3) implies
that

w; Hot) < mwj () < wj(B1) (22)
for sufficiently small values ¢t > 0.

Let 8 be the smallest integer for which a% > 2. Then from (22) we
obtain wj_1(2t) < wj_l(a‘;"t) < n‘sf’wj_l(t). Further, if w;(t) < B%w;(t/n%),
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then ﬁ@ < (%)%M, whence it follows that

t/n°
w; ' (2R) , soo Wi 2R ,
[E () [ (o
t n t
0 0
w; ' (R)

ONACOE

j=1,...,n. By virtue of (21), from (20) we obtain

( / Gy(:c)qdy>1/q < O(R)( f G, () dy), velly  (23)

2R II2r
where ¢ = %,1<q<n’,
W (R)
n 141 n 7 o 2/on
- AR w;(y;)
- (iten) 31 )
j=1 =N Yi

which implies

cr) =1]]

Jj=1

—1

~1(R)\ o1 wj (R) - 2/on
A O o
0

Now observe that the condition 1 < g < n’ is equivalent to the condition
2 < 0 < 00. Hence, using the condition (4), from (23) and (24) we obtain
(16). |

Remark. The inequality (16) also holds for Green’s function of the par-
allelepiped Tlag(x9), ie. if GJf(x) is Green’s function for ITag(xo), then for
q= % we have the inequality

(/ (Gii"'(x))qdy)l/qsc( [ Gi@a). vetat, @
2k (zo) I2r(zo)

where the constant C' > 0 depends on n, «, 3, v, 1, 4, o.

Lemma 4 (increase lemma for narrow domains). Let D C IIg(zo) be a
domain having limiting points on the surface of the parallelepiped T1r(xg),
x9 € D. Assume that u € W(,Q’"(D) is a positive solution of the equation
(1) in D that vanishes on 0D. Then for any Q > 1 there exists § > 0,
depending on Q, n, o, 3, v, n, A,o, such that

mes D

26
mes I (26)
implies sup u(zr) > Qu(zg).

xz€D
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Proof. Let us assume that M = sup u(x) and consider the auxiliary function
x€D

(w5 — $9)2(W;1(R))_2M. Then

z(z) = u(x) — jz

Lyz=—2M Y aj;(z)(w; ' (R)™® in D,
j=1

and also z(zg) = u(zg) and z(x) < 0 on dD. Indeed, on the part D N

Ol g(zg) we have z(z) < M — M. inf > (z; — :v?—)Q(wj_l(R))’z.
IE@HR(IQ) j=1

Assuming in (1) that £ = (0,...,1,0,...,0), where 1 stands as the j-th

coordinate of £, we obtain a;; < 7_1)\j, 7=12,...,n. Then

Loz 2My ™) Nj(a)(wyt(R)) 2,
j=1
whence, taking into account the form \;(z) = (wjfl (p(z))/p(x))?, the mono-

tonicity of the functions w{l(t), w;l(t)/t and the fact that w;(0) = 0, for
j=1,...,n we have

I T N N,
sl <273 w; () ) s @

j=1

Applying Lemma 2 to the function z in the domain D, we obtain

n —1/n
L$Z<j1:[1 Aj(x))

)

u(xo) =2(x0) <sup z < C( ﬁ wj_l(R)> 1/n

xeD j=1 Ln(D)
whence, by virtue of (27), it follows that
M n 1/n n —1/n
j=1 j=1 Ln(D)
On the other hand,

d n 2

/n—y = /H _f& dy. (29)

5 \w; (p(y)
p [N pa=t ™"

Jj=1

For y € D we have p(y) = > w;(|y;]), which implies that w;(|y;|) < p(y)

i=
for any j = 1,...,n. Since the functions wj_l(t)/t are monotone, we have

W (p(y)) |y;|
o) =y




On Harnack’S Inequality and Interior Regularity 13

Therefore (29) implies

[ I

]

If we apply the Holder inequality to the right-hand side of (30) and assume
that o = 2n/q/(n(n’ — q)), then we will have

/ = (I () ) et

Now, from (31) we derive

[ () e[ () )

D H /\J(y) nr J=1
j=1
w; H(R)
n 1-2 n J o 2/c
g t) mes D g
< 1 w]( dt
C<Hw] (R)) H< / t > mes [1g ’
Jj=1 j=1 0
whence
n 20-3
U(CE()) <Cﬁ (Hw]l(R)) X
Jj=1
n wjil(R) ( ) o 2/on 2(1-2)
w;(t mesD \ "' °
2| dt . 2
x H< / < t ) > (mesHR) (32)
Jj=1 0
By virtue of (4) and (32) we obtain u( 0) < C’M(H‘?C?Ii)%(k%), whence,
using (2), we find u(zo) < CM§=1=2). Putting C6=1-%) = Q! and
using the condition 2 < o < oo, we obtain M > QU (zo). O

Lemma 5 (Moser type inequality). Let 0<p<oo, u(x)€ WGQ’" (TI2gr (o))
be a positive solution of the equation (1) in Uagr(xo). Then the estimate

sup u(x)gc( f u(x)pd:v>1/p (33)

Hn(ro) M2r (o)

holds, where the constant C > 0 depends on n, «, 3, v, n, A, o and also
on p.

Proof. We will follow the scheme from [7] to obtain the estimate (33) from
Lemma 4.
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It is obvious that for the functions w;(t) satisfying the condition (3) we
have the estimate

wj(kt) > k”wj(t), t>0, k>1. (34)

Putting Q = 2#*! in Lemma 4, let us find the corresponding §. Assume
sup u(z) =u(r1) =2M. Let
Mg (zo)
up =u—M and D;={x€cllg/(zo):us >0}

If mes Dy > 0 mesIIg (1), then

/ u?P do > / updzZ/updzZ

2R (z0) Mgr/a(z1) Dy
> dmes g o(2w1)MP > 6 mes g (w1 ) MP

and the assertion is proved with C' = §;!, where §; is a number smaller than
d. If however mes Dy < dmesIlg/s(z1), then there exists p; > 0 such that
mes Dy N1II,, (z1) = dmesIl, (z1). Apply Lemma 4 to the function u; in
the domain Dy NII,, (z1). Then there exists a point zo € OII,, (x1) such that
u(wg) > 2#TIM. Assume ug = u — 2M, Dy = {x € Ig/s(x2) : ug > 0}.
If mes(D2 N1k 4(72)) > dmesIlp 4(z2), then the statement is proved. If
mes(Do NIlg/4(z2)) < dmesTlg 4(x2), then there exists 0 < po < R/4 such
that mes(D2NII,, (x2)) = d mesIl,, (z2). Applying Lemma 4 in DoNII,, (x2)
to the function ug, we find a point 23 € 911, (z2) such that u(xs) > 22+,
Continuing this process, we come to the sequence p1, p2, ..., Pk, - - .
Let pr be a number such that p; + p2 + -+ + pr > R/2. This number
exists because otherwise by virtue of the condition on the functions {w;},
k 00
i=1,...,n, we would have w;(|zi — xi]) < wi( > | —:Cj»_1|) <> pi<
j=2 j=2
£ whence Z:l(.ul(|:1:}C —zf|) < &, ie. all 2 belong to Ig/o(21). On the
other hand, u(xy) — oo as k — oo, which contradicts the boundedness
of u(x) in Mg/o(w1) C Har/2(zo). Therefore there exists ig, 1 < ig < k,

such that p;, > 2% On the set D;, we have u > 2%°#)M and mes D;, >

CT11 wj_l(R/TO). Therefore
j=1

n - R . n -
/ updzZC'Mp<ijl(2To)~2°“>ZCMprjl(R)
j=1

iy
M2r(z0) J

by virtue of (34), so we come to the inequality (33). O

Lemma 6. Let IIgr(z9) C D, and the conditions (2)—(4) be fulfilled.
Then there exists a constant C > 0, depending onn «, 3, v, n, A, o, such
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that
inf / G, (z)dy > CR?.

z€IlR(xo)
M2r(zo0)

Proof. As a matter of fact, this statement has been proved in Theorem 1.
n 02 n ani(z
Consider the function w =1—- )" (Iﬁif—)z Then Lyw =2— 3 —,1(—)2
=1 (@ (B) = (Wi (B)
Assume that z € IIg(xo). Then we have

N (BN ~ ai(y)
: ;(wgfz)) =¢ [ )Gy(m);wl(m))? w

The condition (3) implies that wjfl(R) > n_50w51(2R). Now

1—p % <Cy! / Gy(w)z_/\fidyﬁ

2
Man(x0) j=1 (wj (2R))
n —1 2
i wi (p(W)\* dy C
<oyt / Gy(x < J > < = / Gy(z)dy,
Y y( ); wjfl(R) p(y)2 R2 y( ) dy
H2r(z0) J M2k (zo0)
whence CR?2 < [ Gy(x)dy, z € (o). O
I2r (o)

Lemma 7. Let IIg(xo) C D and the conditions (2)—(4) be fulfilled. Then

Gy(x)dy < CR?, x€Tlg(x),
HR(LE())

where the constant C > 0 depends on n, o, 3, v, n, A, o.

Proof. By virtue of the Holder inequality we have

/ Gy(z)dy < mesIIg(zo) f Gy(z)dy <

M r(zo) g (zo)
1/q
< mes HR(:co)< / Gi(z) dy) <
HR(LE())
, n wfl %n' 1/n’
< mesHR(:co)< / Gy (z) H <M> dy) X
: e p(y)
IR (z0) 7
2 n q n/fq
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By virtue of the estimate (17) the latter inequality implies

2 1,1
Gy(z)dy < (mesIlg(zg))m " »" X

Ir(x0)
n -1 2 n'q n'—g
W n n/— n!
(T
s ply
Mg(zo) 7
n 14r o g @ O n'q e
— -1 oo wj n on’—q
- c(ij (R)> 11 ( / (—t ) dt) (35)
j=1 j=1 0
from which (assuming that o = ,27 ,Z}l,qq) we derive, by means of the condition
(4), that [ Gy(z)dy < CR. 0
Ir(xo)

Theorem 2. Let D be a bounded domain and Ilag(xo) C D. Assume
that u(x) € W;’n(D) is a positive solution of the equation (1) for which
the conditions (2)—(4) are fulfilled. Then there exists a constant C > 0,
depending on n, o, B, v, n, A, o, such that

sup wu(z) <C inf u(x). (36)

€l R (o) z€llr(zo)
Proof. Let 1 = IlInf( )u(:z:) = u(xy1). Denote E; = {z € llar(zo) : u(z) >
rcllr(zo
t}, t > 1. Then by the maximum principle G (x) < Gy (z), where G} () is
Green’s function for ITag(x9). Then

u(x C
¥Z ﬁ/Gf/(I)d% z ¢ Ey.
E:

Indeed, on OF; we have @ > 1, ﬁ;bf GR(x)dy < 1. On dllzg(z0)
we have ﬂtﬂ > 0, C}QQEI GE(z)dy = 0. In Hagr(x) \ E; both functions

@ and ﬁ;bf Gl (x)dy are solutions of the equation (1), and “(tx) >

o7z | GE(x)dy on the boundary Ilog(zo) \ Er. We have made use of

t
Lemma 7 to obtain

1 1
R /fo(ac) dy < R / fo(x) dy < 1.
Ey HR(mO)
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By the maximum principle we have @ > CR2 f GE(z)dy, x € mr(xo) \

E;. Putting in this inequality T = x9, We obtaln

= > _— R
L / Gl (37)
Assuming F = F, from the inequality (25) we obtain for the function
Gy(z)
1 mes E "
Rg)dy > = (2B / R(z)d

Jer@ans g (st Cia)dy,  (39)
E, 2Rk (o)

x € Ig(xo)\ Er. The inequality (38) is a corollary of the inequality (25) (see

[8]). Setting in (38) 2 = 1 we have 1 > C(ﬁ%f% [ GE(x1)dy,
‘ M2r(z0)

from which by virtue of Lemma 6 we obtain

S c(—meSEt ) , (39)

t mes [lop

where C,7 > 0 are some numbers depending on n, o, A, a, 3, n, 7. From
(39) it follows that

es]l 1
mesEth'u7 p=—.
tP T

Now, by Lemma 5, for p; = p/2 we have

sup  (u(z)” <C f uPrde <

z€IlR(xo) Mas (0)
2r (o

o] 1
1
< 7(/tp11mesEt dt+/tp11|Et|dt> <
mesIl>r
1 0

< C(/tpl_p_ldt+01> < Cs(0, A, B,7,m,n).

1
Theorem 2 is proved. (|
Lemma 8. Let D be a bounded domain, Tag(x0) C D, u(x) € Wy (D)

be a solution of the equation (1). Then there exists a number Q > 1,
depending onn, o, A, a, 5, n, 7, such that

osc u > osc u,
HQR(I[)) HR(mO)

where oscu = sup u — inf u.
E E E
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Proof. Apply Theorem 2 to the functions u(z) — mar and Mar — u(x) in
Ior(xo), where mogp = inf wu(x), Mogp = sup wu(x). Then
2R (o) g (z0)
Mg —mar < C(mpr —maor) and Mg —mpr < C(Mag — MRg).

The summation of these inequalities gives

(14+C) osc u<(C—-1) osc u,

HR(:E()) 7T2R(:EO)
whence
+1
0SC U > —— 0SC U,
HQR(IQ) - C - ]. HR(I[))

where the constant C' > 0 of Harnack’s inequality depends on n, o, A, «,
By, - O

Theorem 3. Let D be a bounded domain in E,, u(z) € W™ (D) be
a solution of the equation (1), where the coefficients satisfy the conditions
(2)~(4). Then for any p > 0 there exist p = p(a,n, A, 8,v,n) and H =
H(a,n,A,B,v,n) such that for any x,y € D, ={z € D : dist(z, R" \ D) >
p} we have the estimate

[u(@) = u(y)| < Hlz = y|" sup [u].

Proof. Fix y € D,. There exists Ry such that IIsp,(y) C D. For this it is
sufficient to take Ry = w*2(p)7 where w™(p) = min{w (p),w2(p), - .., wn(p)}-
For k = 0,1,2,..., we denote pp = 27" Ry, I =11, (y). By virtue of
Theorem 2,

1
osc u<— osc u<---<-— o0sc u.
My, (v) Q I, () QF 1,, ()

Let R be any number from (0, Rp]. Then there is a natural number &
such that pr < R < pr—1. In that case,

1 pk ) U < R > V
osc u< —|(= osc u<2 osc |ul{—=1], 40
Or(y) ~ @ (RO Ogry(y) HzRo(y)| | Ry ( )

where v =log, Q. Let x € D,, x # y, be any point.

Two cases are possible: 1) w™(|z —y|) < Ro, i) w* (| — y|) > Ry, where
wt(p) = max{wi(p),...,wn(p)}. In the case i) we have x € I+ (jz—y))(¥),
and therefore (40) implies

u(z) —u(y)] < QS%pIUIRo_” (Wl —yD)”. (41)
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Let ty > t; > 0, k be a natural integer for which n* < i—f < nkt1l. Then
by virtue of the condition (3)

t o
wj (ﬁ ' tl) > wi(n" ) > afw;(t) > o' i =

log, a
1 /[t K
= a (E) wj(tl), (42)

where j € {1,2,...,n}. By virtue of the condition (42) w;(t)/t~¢ is bounded
for sufficiently small ¢, where { = log, . Then from (41) we obtain

wj(t2)

sup |u| - 2v+1
” lv —y|*, z€D,.

@(p))
In the case ii) we have |u(z) — u(y)| < 2sup|u] < 2sup|u] QLR‘”VDi,
D D 0
z € D, ]
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