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In the present note, we continue the investigation of the question of solvability of the

boundary value problem

u

00

(t) = F (u)(t); (1)

u(a) = 0; u(b) = 0; (2)

which was begun in [1]. Notation introduced there remains valid. Moreover, we assume

that:
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Theorem 1. Let on the set C
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b

Z

a

[v(s)(F (v)(s) � g(s)v

0

(s)]

�

�(g)(s)

ds � �

0

�










v

0

p

�(g)










2

L

2

�

+

+ �

1

�

kvk

C

0

�

� �

1

�










v

0

p

�(g)










2


L

2

�

;










�

(F (v) � gv

0

) sgn v

�

�










L

� �

2

�

kvk

C

0

�

+ �

2

�

kv

0

k

2�

L

2

�

be ful�lled, where g 2 L([a; b]), 
 + � = 1, and continuous, nondecreasing functions
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, i = 0; 2, j = 1; 2, satisfy the conditions
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(x) = O(x); i = 1; 2:

Then the problem (1), (2) has at least one solution.

Corollary 1. Let on the set C
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([a; b]) the inequality
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F (v)(t) � p(t)v(t) � g(t)v

0

(t) � l(v)(t)
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be ful�lled, where l 2 L([a; b]), p, g 2 L([a; b]), q 2 K
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) is nondecreasing

in the second argument, and
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Moreover, let
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where

b

l : L([a; b])! L([a; b]) is the operator de�ned by the equality
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Then the problem (1), (2) has at least one solution.

Mention two corollaries of Theorem 1 for the equation

u

00

(t) = p(t)u(t) + g(t)u

0

(t) + h(t)u(�(t)) +G(u)(t); (5)

where p, g, h 2 L([a; b]), � 2M([a; b]; [a; b]) and G 2 K([a; b]).

Corollary 2. Let on the set C
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be ful�lled, where q 2 K
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satis�es (4). Let, moreover,
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Then the problem (5), (2) has at least one solution.

Remark 1. Note that, unlike Corollaries 1{3 in [1], the restriction imposed on the sign

of the function h is not required here.

In the case where

h(t) � 0 for a < t < b; (8)

the condition (7) can be somewhat improved. More exactly, we have

Corollary 3. Let on the set C
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over, the inequality (8) holds, and
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Then the problem (5), (2) has at least one solution.

Theorem 2. Let on the set C
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Then the problem (1), (2) has at least one solution.
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