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Abstract. The paper deals with graph operators—the Gallai graphs and the anti-Gallai
graphs. We prove the existence of a finite family of forbidden subgraphs for the Gallai graphs
and the anti-Gallai graphs to be H-free for any finite graph H. The case of complement
reducible graphs—cographs is discussed in detail. Some relations between the chromatic
number, the radius and the diameter of a graph and its Gallai and anti-Gallai graphs are
also obtained.
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1. Introduction

This paper mainly deals with graph operators, the Gallai graph Γ(G) and the

anti-Gallai graph ∆(G). Both the Gallai and the anti-Gallai graphs are spanning

subgraphs of the well known class of line graphs. The line graph [8] L(G) of a graph

G has the edges of G as its vertices and two distinct edges of G are adjacent in L(G)

if they are incident in G.

The Gallai graph Γ(G) of a graph G has the edges of G as its vertices and two

distinct edges of G are adjacent in Γ(G) if they are incident in G, but do not span a

triangle in G. In [6], it has been proved that Γ(G) is isomorphic to G only for cycles

of length greater than 3. Computing the clique number and the chromatic number of

Γ(G) are NP-complete problems. The notion of the Gallai perfect graph is discussed

in [12].

The anti-Gallai graph ∆(G) of a graph G has the edges of G as its vertices and

two distinct edges of G are adjacent in ∆(G) if they are incident in G and lie on a

triangle in G. It is the complement of Γ(G) in L(G). Though L(G) has a forbidden
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subgraph characterization, both the Gallai graphs and the anti-Gallai graphs do

not have the vertex hereditary property and hence cannot be characterized using

forbidden subgraphs [6]. Several other graph operators are discussed in [8].

The study of H-free graphs—graphs which do not have H as an induced

subgraph—for some classes of graphs H are quite interesting. Some classes of

H-free graphs are discussed in [3]. An important class of perfect graphs called the

complement reducible graphs or cographs have been extensively studied. Cographs

are recursively defined in [4], [11] as follows:

(1) K1 is a cograph

(2) If G is a cograph, so is its complement G and

(3) If G and H are cographs, so is their join, G ∨ H , where the join (sum) of two

graphs G and H is defined as the graph with V (G ∨ H) = V (G) ∪ V (H) and

E(G ∨ H) = E(G) ∪ E(H) ∪ {uv, where u ∈ V (G) and v ∈ V (H)}.

It is known [7] that a graph is a cograph if and only if it is P4-free. Various other

aspects of cographs are discussed in [4], [5], [9], [10], [11].

In this paper we prove that there exist infinitely many pairs of non-isomorphic

graphs of the same order having isomorphic Gallai and anti-Gallai graphs. We prove

the existence of a finite family of forbidden subgraphs for the Gallai graphs and anti-

Gallai graphs to be H-free for any finite graph H . The list of forbidden subgraphs

for H = P4 is given. The connected P4-free graphs—cographs whose Gallai and

anti-Gallai graphs are also P4-free are determined. The relationship between the

chromatic number, the radius and the diameter of a graph and its Gallai and anti-

Gallai graphs are also obtained.

All graph theoretic terminology and notation not mentioned here are from [1].

2. Gallai and anti-Gallai graphs

It is well known [1] that the only pair of non-isomorphic graphs having the same

line graph is K1,3 and K3. But, we first observe that, in the case of both Gallai and

anti-Gallai graphs, which are spanning subgraphs of L(G), there are infinitely many

pairs of non-isomorphic graphs of the same order having isomorphic Gallai graphs

and anti-Gallai graphs.

Theorem 1. There are infinitely many pairs of non-isomorphic graphs of the

same order having isomorphic Gallai graphs.

���������
. We prove this theorem by the following two types of constructions.
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1. Let G = P4 with n independent vertices joined to both its internal

vertices and an end vertex attached to k of these n vertices, and H = two copies of

K1,n+1 with k + 1 distinct pairs of end vertices made adjacent.

The graph G of type 1 is as follows. Let v1v2v3v4 be an induced P4. Let v2 and v3

be joined to n vertices u1, u2, . . . , un. Introduce k end vertices w1, w2, . . . , wk such

that each wi is adjacent only to ui for i = 1, 2, . . . , k. The edges v1v2, v2u1, v2u2, . . . ,

v2un of G, which are vertices of Γ(G), will induce a complete graph on n+1 vertices

in Γ(G). Similarly, v3v4, v3u1, v3u2, . . . , v3un will induce another complete graph on

n + 1 vertices in Γ(G). The vertex corresponding to the edge v2v3 will be adjacent

to both the vertices corresponding to v1v2 and v3v4. The k vertices corresponding

to the edges uiwi for i = 1, 2, . . . , k will be adjacent to the vertices corresponding to

the edges uiv2 and uiv3 for i = 1, 2, . . . , k respectively.

The graph H of type 1 is as follows. Let u adjacent to u1, u2, . . . , un+1 and v

adjacent to v1, v2, . . . , vn+1 be the two K1,n+1-s in H . Let u1v1, u2v2, . . . , uk+1vk+1

be the k + 1 distinct pairs of adjacent vertices in H . The vertices corresponding to

the edges uu1, uu2, . . . , uun+1 will induce a complete graph on n+1 vertices in Γ(H).

Similarly, the vertices corresponding to vv1, vv2, . . . , vvn+1 will also induce another

complete graph on n + 1 vertices in Γ(H). Again, the vertices corresponding to the

edges uivi for i = 1, 2, . . . , k + 1 will be adjacent to the vertices corresponding to the

edges uui and vvi for i = 1, 2, . . . , k + 1 respectively.

Therefore, both Γ(G) and Γ(H) are two copies of complete graphs on n+1 vertices

together with k +1 new vertices made adjacent to k + 1 distinct vertices of both the

complete graphs.
� 	 
��

2. Let G = P4 with n independent vertices joined to both its internal

vertices and an end vertex attached to k of them with k > 1 together with one end

vertex attached to each of the end vertices of P4, and H = two copies of K1,n+1 with

k + 1 distinct pairs of end vertices (one from each star) made adjacent and a single

pair made adjacent to another vertex.

The graph G of type 2 can be obtained from the graph G of type 1 by attaching

two end vertices x and y to v1 and v2 respectively. In Γ(G) the vertices corresponding

to the edges v1x and v4y will be adjacent to the vertices corresponding to the edges

v1v2 and v3v4 respectively.

The graph H of type 2 can be obtained from the graph H of type 1 by adding

a new vertex w and making it adjacent to both u1 and v1. In Γ(H) the vertices

corresponding to the edges wu1 and wv1 will be adjacent to the vertices corresponding

to the edges uu1 and vv1 respectively.

Therefore, both Γ(G) and Γ(H) are two copies of complete graphs on n + 1 ver-

tices together with k + 1 vertices made adjacent to k + 1 distinct vertices of both
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the complete graphs and two end vertices adjacent to one vertex from each of the

complete graphs.

The constructions mentioned in type 1 and type 2 are illustrated in Table 1. In

both the cases, the graphs G and H have the same Gallai graph. If n = k and

n = k − 1 in type 1 and type 2 respectively, then the order of G and H is the same.

G H Γ(G) = Γ(H)

Type 1

n = 3

k = 1

Type 2

n = 3

k = 1

Table 1.

Theorem 2. There are infinitely many pairs of non-isomorphic graphs of the

same order having isomorphic anti-Gallai graphs.
���������

. Let G be a graph with vertex set {v1, v2, . . . , vn} and an edge vivj

such that G is not isomorphic to a graph obtained under permutations of the index

set of the vertices which interchange i and j and ∆(G) is connected. Introduce a

vertex u adjacent to vi and vj . Let H1 be the graph obtained by introducing one

more vertex u1 adjacent to u and vi. Let H2 be the graph obtained by introducing

another vertex u2 (u1 is absent here) adjacent to u and vj . Then by construction

H1 and H2 are non-isomorphic. ∆(H1) is ∆(G) together with four more vertices

corresponding to uvi, uvj , uu1, viu1 in which uvi and uvj are adjacent to each other

and to vivj , uu1 and viu1 are adjacent to each other and to uvi. ∆(H2) is ∆(G)

together with four more vertices corresponding to uvi, uvj , uu2, vju2 in which uvi

and uvj are adjacent to each other and to vivj , uu2 and vju2 are adjacent to each

other and to uvj . Therefore, ∆(H1) is isomorphic to ∆(H2).

However, the following problem is open.
������
������

. Characterize all pairs of non-isomorphic graphs of the same order

having isomorphic Gallai graph and anti-Gallai graph.
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3. Forbidden subgraph characterizations

A property P of a graph G is vertex hereditary if every induced subgraph of G

has the property P .
���������������

3. For a connected graph H , let G(H) = {G : Γ(G) is H-free} and

G∗(H) = {G : ∆(G) is H-free}.

Theorem 4. The properties of being an element of G(H) and G∗(H) are vertex

hereditary.

���������
. Let G ∈ G(H) and v ∈ V (G). Consider G′ = G − {v}. We desire to

prove that G′ ∈ G(H). On the contrary assume that Γ(G′) has H as an induced

subgraph. Let v1, v2, . . . , vt be neighbors of v. Therefore Γ(G) has the vertex set

V (Γ(G′)∪ {vv1, vv2, . . . , vvt}. In Γ(G), vvi is adjacent to vvj if vi is not adjacent to

vj , and vvi will be adjacent to all edges which have vi as one end vertex and other

end vertex is not vj for j = 1, 2, . . . , t. Hence if H is an induced subgraph of Γ(G′)

then H is an induced subgraph of Γ(G) also, which is a contradiction.

The case of G∗(H) follows similarly.

Corollary 5. G(H) and G∗(H) have vertex minimal forbidden subgraph charac-

terization.

Though many well known classes of graphs admit forbidden subgraph character-

izations, the number of such forbidden subgraphs need not be finite (as in the case

of planar graphs). However, for G(H) and G∗(H) we have

Theorem 6. For every vertex minimal forbidden subgraph of G(H) and G∗(H),

the number of vertices is bounded above by n(H)+1, where n(H) denotes the number

of vertices in H .

���������
. Let F (H) be the collection of all vertex minimal forbidden subgraphs

of G(H). Let L ∈ F (H). Therefore, Γ(L) has H as an induced subgraph. The n(H)

vertices of H , which correspond to n(H) edges of L, say e1, e2, . . . , en(H), can cover

a maximum of n(H) + 1 vertices of L, since H is connected.

We should prove that n(L) 6 n(H) + 1. To the contrary assume that n(L) >

n(H) + 1. Then there exists at least one vertex v ∈ V (L) which is not an end vertex

of any of e1, e2, . . . , en(H). Therefore, Γ(L − v) still has H as an induced subgraph,

which contradicts that L is a vertex minimal forbidden subgraph of G(H). Hence,

n(L) 6 n(H) + 1.

A similar argument holds for G∗(H) also.
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Corollary 7. The number of vertex minimal forbidden subgraphs for G(H) and

G∗(H) is finite.

In the next theorem, we obtain a forbidden subgraph characterization of G for

Γ(G) to be a cograph.

Theorem 8. Let G be a graph. Then, Γ(G) is a cograph if and only if G does

not have the following graphs as induced subgraphs.

(i) P5 (ii) C5 (iii) K2,3

(iv) (v) (vi)

(vii) (viii) (ix)

���������
. If Γ(G) is not a cograph then there exists an induced P4 in Γ(G), say

e1e2e3e4. In G, let e1 = u11u12, e2 = u21u22, e3 = u31u32 and e4 = u41u42.

Since e1 is adjacent to e2, let u12 = u21 and let u11 be not adjacent to u22. Since

e2 is adjacent to e3, either u21 = u31 or u22 = u31.

If u21 = u31, then since e1 is not adjacent to e3, u11 is adjacent to u32. Since e3

is adjacent to e4, either u31 = u41 or u32 = u41. If u31 = u41, then since e1 and e2

are not adjacent to e4, both u11 and u21 are adjacent to u42. If u32 = u41 then u31

is not adjacent to u42.

If u22 = u31, then u21 is not adjacent to u32. Again, since e3 is adjacent to e4,

either u31 = u41 or u32 = u41. If u31 = u41, then since e2 and e4 are not adjacent,

u21 is adjacent to u42. If u32 = u41 then u31 is not adjacent to u42. The above four

resulting graphs are respectively (iv), (vi), (vi) and (i).

In (iv), if we add even a single edge the property of Γ(G) not being a cograph will

be lost. In (vi), u22 adjacent to u42 gives (vii), u11 adjacent to u42 gives (ix) and

the combination of both gives (iv). The addition of these edges will not change the

required property either. In (i), u11 adjacent to u42 gives (ii), u11 adjacent to u41

gives (viii) and a combination of both gives (iii). Again, the addition of these edges

will not change the required property. However, if we add any other edge then the

property will be lost.

The converse can be easily proved.
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Theorem 9. Let G be a graph. Then ∆(G) is a cograph if and only if G does

not have the following graphs as induced subgraphs.

(i) K5 (ii) (iii) (iv) (v)

���������
. If ∆(G) is not a cograph then there exists an induced P4 in ∆(G), say

e1e2e3e4. In G, let e1 = u11u12, e2 = u21u22, e3 = u31u32 and e4 = u41u42.

Since e1 is adjacent to e2, let u12 = u21 and let u11 be adjacent to u22. Since e2

is adjacent to e3, either u21 = u31 or u22 = u31.

If u21 = u31 then u22 is adjacent to u32 and u11 is not adjacent to u31. Since e3

is adjacent to e4, either u31 = u41 or u32 = u41. If u31 = u41, then u32 is adjacent

to u42 and u11 and u22 are not adjacent to u42. If u32 = u41 then u31 is adjacent to

u42.

If u22 = u31 then u12 is adjacent to u32. Again, since e3 is adjacent to e4, either

u31 = u41 or u32 = u41. If u31 = u41, then u32 is adjacent to u42 and u21 is not

adjacent to u42. If u32 = u42 then u31 is adjacent to u42.

All the four resulting graphs are isomorphic to (ii) itself. Also, addition of any

of the possible edges will leave an induced P4 in ∆(G) and hence any graph with 5

vertices which contains (ii) as a (not induced) subgraph are also forbidden. Hence

all the above graphs are forbidden.

Conversely, it can be verified that the anti-Gallai graph will not be a cograph if

any of the nine graphs listed above is an induced subgraph of G.

4. Cographs

Theorem 10. If G is a connected cograph without a vertex of full degree then

Γ(G) is a cograph if and only if G = (pK2)
c, the complement of p copies of K2.

���������
. Let G = (pK2)

c. Then the number of vertices of G is 2p and the number

of edges of G is 2p(p−1). Let the vertices of G be {v11, v12, . . . , v1p, v21, v22, . . . , v2p}

with v1j and v2j as the only pair of non-adjacent vertices. Therefore, vertices of the

Gallai graph are of the form vijvi′j′ where j 6= j′. By definition of the Gallai graph,

vijvi′j′ will be adjacent only to vijv1j′ or vijv2j′ and v1jvi′j′ or v2jvi′j′ according to

the value of i and i′. Therefore, Γ(G) = (pC2)C4, which is a cograph.

Conversely, assume that G is a cograph without a vertex of full degree and Γ(G)

is also a cograph. For every u ∈ V (G), there exist at least one u′ ∈ V (G) which is

not adjacent to u.
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� �������
: u′ is the only vertex which is not adjacent to u.

To the contrary assume that there exists another vertex u′′ which is not adjacent

to u. Since G is a connected cograph, G = G1 ∨ G2. Let u ∈ V (G1). Since u is not

adjacent to both u′ and u′′, both of them belong to V (G1). Since G has no vertex

of full degree, G2 must contain at least two non-adjacent vertices v1 and v2. Then

the edges u′′v1, v1u, uv2, v2u
′ will induce a P4 in Γ(G), which is a contradiction.

Therefore G = (pK2)
c, where 2p = n.

���������������
11. Consider the class of graphs which are recursively defined as

follows:

H1 = {G : G = (pK2)
c ∨ (Kq), where p, q > 0}.

Hi = {G : G = (
⋃

Hi−1) ∨ Kr, where Hi−1 ∈ Hi−1 and r > 0} for i > 1.

H =
⋃
Hi

Theorem 12. For a connected cograph G, Γ(G) is a cograph if and only if G ∈ H.
���������

. Let G be a cograph other than Kq with a vertex of full degree. Let

V1 be the collection of all full degree vertices in G. Define G1 = 〈V − V1〉. Γ(G1) is

and induced subgraph of Γ(G). More precisely, Γ(G) = Γ(G1) together with some

isolated vertices. Therefore, Γ(G) is a cograph if and only if Γ(G1) is a cograph. If

G1 is a connected cograph then G1 has no vertex of full degree and hence Γ(G1) is

a cograph if and only if G1 = (pK2)
c. Therefore, Γ(G) is a cograph if and only if

G = (pK2)
c ∨ (Kq) ∈ H1.

If G1 is disconnected, then consider each of the connected components of G1. If

the removal of all full degree vertices from each of the components of G1 preserves

connectedness then as above each of these components must be of the form (pK2)
c ∨

(Kq). Therefore, G = (F1 ∪ F2 ∪ . . . ∪ Fp) ∨ Kq where each Fi ∈ H1 and q > 0.

Consequently, G ∈ H2.

If any of the components of G1, say G2, is disconnected then repeat the above

process to get G1 ∈ H2 and hence G = (H1∪H2∪ . . .∪Hr)∨Ks where each Hi ∈ H2

and r > 0. Consequently, G ∈ H3.

This process must terminate since the number of vertices of G is finite. Therefore

for a connected cograph G, Γ(G) is a cograph if and only if G ∈ H.

Theorem 13. For a connected cograph G, ∆(G) is a cograph if and only if

(i) G = G1 ∨ G2, where G1 is edgeless and G2 does not contain P4 as a subgraph

(which need not be induced) or

(ii) G is C4.
���������

. Let G be a connected cograph whose ∆(G) is also a cograph. Since G

is a connected cograph, G = G1 ∨ G2. Let G1 be an edgeless graph and u ∈ V (G1).
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If G2 contains a P4, say v1v2v3v4, then the edges v1v2, v2u, uv3, v3v4 of G induce a

P4 in ∆(G), which is a contradiction. Therefore, if G1 is edgeless then G2 does not

contain P4 as a subgraph.

Let u1v1 ∈ E(G1) and u2v2 ∈ E(G2). If G1 contains one more vertex, say v, not

adjacent to u1 and v1, then the edges u1v1, v1u2, u2v2, u2u of G induce a P4 in ∆(G),

which is a contradiction. If v is adjacent to at least one of the vertices, say v1, then

the edges u1u2, u2v1, v1v2, v2v of G induce a P4 in ∆(G), which is a contradiction.

A similar argument holds also for the vertex set of G2. Therefore both G1 and G2

are K2’s and G = C4.

Conversely, assume that G is a cograph of type (i) or (ii). Then G does not

contain any of the graphs from Theorem 9 as an induced subgraph and hence ∆(G)

is a cograph.

5. Chromatic number

Theorem 14. Given two positive integers a, b, where a > 1, there exists a graph

G such that χ(G) = a and χ(Γ(G)) = b.

���������
. If a = 1 then G must be a graph without edges, which makes Γ(G)

empty. So we can assume that a > 1.

Let G be the graph Ka together with b−1 end vertices attached to any one of the

vertices. Then Γ(G) is a− 1 copies of Kb sharing b− 1 vertices in common together

with some isolated vertices. Clearly, χ(G) = a and χ(Γ(G)) = b.

Lemma 15. The anti-Gallai graph of any graph G cannot be bipartite except for

the triangle free graphs.

���������
. If u1 is adjacent to u2 in ∆(G) then the corresponding edges, say e1

and e2, lie in a triangle, say e1e2e3. Then the vertex u3 in ∆(G) which corresponds

to e3 will be adjacent to both u1 and u3. Therefore, u1u2u3 induces a cycle of odd

length in ∆(G) and hence ∆(G) cannot be bipartite.

Theorem 16. Given two positive integers a, b, where b < a, b 6= 2, there exists

a graph G such that χ(G) = a and χ(∆(G)) = b. Further, for any odd number a,

there exists a graph G such that χ(G) = χ(∆(G)) = a.

���������
. First note that the anti-Gallai graph of a graph G cannot be bipartite

except for the triangle free graphs by the above lemma. Hence, b = χ(∆(G)) 6= 2 for

any G.

Using Myceilski’s construction [1] there exists a triangle-free graph H with chro-

matic number a. ForH , ∆(G) is a trivial graph and hence b = 1. For 2 < b < a, there

51



exists an induced subgraph H ′ of H whose chromatic number is b. Let v1, v2, . . . , vn

be the vertices of H ′. Let G be the graph obtained from H by joining all vertices

of H ′ to a new vertex u. Since b < a, χ(G) = a itself. If vi and vj are adjacent

(or non-adjacent) in H ′ then the vertices corresponding to uvi and uvj are adja-

cent (or non-adjacent) in ∆(G). Therefore, the vertices corresponding to the edges

uv1, uv2, . . . , uvn induce an H ′ in ∆(G). Again for any pair of adjacent vertices,

say vi and vj in H ′, the vertices corresponding to the edges uvi and uvj are ad-

jacent to the vertex corresponding to v1v2. Therefore ∆(G) is H ′ together with

one vertex each adjacent to both the end vertices of each edge in H ′. For b > 2,

χ(∆(G)) = χ(H ′) = b.

If a is an odd integer then χ(Ka) = a and χ(∆(G)) = χ(L(G)) = χ′(Ka) = a,

where χ′ is the edge chromatic number.

6. Radius and diameter

In this section r(G) and d(G) denote the radius and the diameter of a graph G

respectively.

Theorem 17. Let G be a graph such that Γ(G) is connected. Then r(Γ(G)) >

r(G) − 1 and d(Γ(G)) > d(G) − 1.
���������

. Let r(Γ(G)) = r. Then there exists an edge, say uv, in G which is at a

distance less than or equal to r from every other edge in G. Hence, any vertex of G

is at a distance less than or equal to r +1 from both u and v. We have r(G) 6 r +1,

which implies r(Γ(G)) > r(G) − 1.

Let d(G) = d. There exist two vertices u and v such that the distance between u

and v is d(u, v) = d. Let uu1u2ua−1v be a shortest path connecting u and v in G.
� �������

: dΓ(G)(uu1, ua−1v) = a − 1. uu1, u1u2, ua−1v is a path of length a − 1

connecting uu1 and ua−1v in Γ(G). Therefore, dΓ(G)(uu1, ua−1v) 6 a − 1.

It is required to prove that dΓ(G)(uu1, ua−1v) = a − 1. On the contrary assume

that there exists an induced path uu1, v1v
′

1, v2v
′

2, vk−1v
′

k−1, ua−1v of length k in Γ(G)

connecting uu1 and ua−1v, where k < a − 1. Then there exists a path of length less

than or equal to a−1 connecting u and v in G, which contradicts d(u, v) = a. Hence,

dΓ(G)(uu1, ua−1v) = a − 1.

Since there exist two vertices of Γ(G) which are at a distance a− 1, d(Γ(G)) must

be greater than or equal to a − 1.
�������

18. If a and b are two positive integers such that a > 1 and b > a − 1

then there exist graphs G and H whose Gallai graphs are connected and r(G) = a,

r(Γ(G)) = b, d(H) = a and d(Γ(H)) = b.
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Theorem 19. If G is a graph such that ∆(G) is connected and r(G) > 1,

r(∆(G)) > 2(r(G) − 1) and d(∆(G)) > 2(d(G) − 1).

���������
. Let r(∆(G)) = r > 1. There exists an edge, say uv, in G such that

any edge is at a distance less than or equal to r from uv in ∆(G). Let w ∈ V (G).

Since G is connected there exists at least one edge with w as an end vertex, say ww′.

There exists a path of length less than or equal to r from ww′ to uv in ∆(G). Any

two adjacent edges in ∆(G) belong to a triangle and hence this path induces a path

of length less than or equal to 1
2r from either u or v to w. Therefore, any vertex is

at a distance less than or equal to 1
2r + 1 from both u and v. Hence r(G) 6

1
2r + 1,

which implies that r(∆(G)) > 2(r(G) − 1).

Let d(G) = d. There exist two vertices u and v such that d(u, v) = d. Let

uu1u2 . . . ud−1v be a shortest path connecting u and v. Consider d(uu1, ud−1v) in

∆(G). If it is k, then there exists a path of length less than or equal to 1
2k + 1 in G

connecting u and v. Therefore, 1
2k + 1 > d, which implies k = 2(d − 1). However,

d(∆(G)) > k. Hence, d(∆(G)) > 2(d(G) − 1).

�������
20. If a and b are two positive integers such that a > 1 and b > 2(a−1) then

there exist graphs G and H whose anti-Gallai graphs are connected with r(G) = a,

r(∆(G)) = b, d(H) = a and d(∆(H)) = b.

 "!�# �$��%&����')(����*�����
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