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UNIONS OF UNIQUELY COMPLEMENTED LATTICES
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Abstract. In this paper we generalize a result of V.N. Salij concerning direct product
decompositions of lattices which are complete and uniquely complemented.
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All lattices under consideration in the present note are assumed to have the least
element. When no misunderstanding can occur, this element will be denoted by 0.

Let U be the class of all uniquely complemented lattices (i.e.lattices having the
least and the greatest element in which each element possesses one and only one com-
plement). The importance of the class U is emphasized by the well-known fact that
each lattice can be isomorphically embedded into a lattice belonging to U (Dilworth
[1])-

For a lattice L we denote by co(L) the system of all convex sublattices L; of L
with 0 € L;. Let U; be the class of all lattices L such that L can be expressed as a

union |J L;, where each L; (i € I) is a complete lattice belonging to U Ncy(L).
i€l
A lattice L is called a generalized Boolean algebra if for each 0 < x € L, the
interval [0, z] is a Boolean algebra.

In the present note the following theorem will be proved:

(A) Every lattice L belonging to U is isomorphic to a direct product A, x By,
such that Ap is an atomic generalized Boolean algebra and Bp is a lattice
which belongs to ¢; and has no atoms.

This generalizes a result of V.N.Salij (which was announced in [2] and published
with a complete proof in [3]), namely,
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(B) (Salij) Every complete uniquely complemented lattice is isomorphic to a di-
rect product of a complete atomic Boolean algebra and a complete atomless
uniquely complemented lattice.

1. DIRECT PRODUCT DECOMPOSITIONS

Let L be a lattice and let ¢ be an isomorphism of L onto the direct product A x B
of lattices A and B. It is obvious that the lattice L is complete if and only if both
A and B are complete. If z € L and ¢(z) = (21, 22), then we denote

21 =2(A, ), 22 =2z(B,p).

When ¢ is fixed, we sometimes write z(A) and z(B) instead of z(A4, ) or z(B, ),
respectively.
Under the above notation, let

(A0790) = {Z €L: Z(B,SO) = 0}) (BOHO) = {Z €L: Z(A,QO) = 0}

When no misunderstanding can occur, we write Ag and By instead of (Ay, ) and
(Bo, ¢), respectively. Both Ay and By are convex sublattices of L and AgN By = {0}.
The lattice Ag is isomorphic to A; similarly, By is isomorphic to B. For each z € L
there exists a uniquely determined element z] in Ay such that

41 (4, 0) = 2(4, ¢);
similarly, there exists a uniquely determined element 2} in By with
2(B,p) = (B, ¢).

Denote ¢o(z) = (21, 25)-
The following lemma is easy to verify.

1.1. Lemma. Let L, A, B, ¢ and ¢y be as above.

(i) o is an isomorphism of the lattice L onto the direct product Ay x By.
(ii) For each z € L,

z(Ag) = max{t € Ap: t < z}, 2(Bo)=max{t € By: t < z}.

(iii) For each z € L,
z=2z(Ao) V z(By).

(iv) If 2! € Ap, 2% € By, z = 2! v 22, then z(Ap) = 2! and 2(Byp) = 22.
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From (ii) of Lemma 1.1. it follows that for each z € L we have
z € Ay <= 2(Ap) = 2,

and similarly for By.
Let X C L. We denote

X ={yeL:yhz=0 foreach =€ X}.
From 1.1. we obtain as a corollary:

1.2. Lemma. Under the notation as in Lemma 1.1 we have

AS=B,, Bj=A, AY=2A4, B =B8B,.

A lattice is said to be atomic (or atomless, respectively), if each its nonzero element
is a join of atoms (if it has no atom).

If ¥: L — C x D is another direct product representation of the lattice L, then
1o, Co and Dy have an analogous meaning as ¢g, Ag and By above.

1.3. Lemma. Let us apply the same assumptions and notation as in Lemma 1.1.
Suppose that the lattice A is atomic and that the lattice B is atomless. Let P be
the set of all atoms in L.

(i) P C Ap and each nonzero element of Ay is a join of some elements of P.
(ii) By = P°.

Proof. We have already remarked that Ag is isomorphic to A and that By is
isomorphic to B. Hence Ag is atomic and By is atomless. Let p € P. According to
(iii) of Lemma 1.1 we have p = p(Ag) V p(By). Since AgN By = {0}, either p(A4y) =0
or p(Bg) = 0. If p(Ag) = 0, then p(By) = p € By, thus p is an atom of By, which
is a contradiction. Therefore p(By) = 0, whence p € Ag and so P C Ay. Since Ag
is a convex sublattice of L and 0 € Ay, we infer that each atom of Ay belongs to P.
Hence (i) is valid.

If b € By and p € P, then clearly bAp = 0. Thus By C P°. Let 0 < z € P?.
If 0 < z(Ap), then in view of (i) there is p € P with p < 2(Ap) < 2, which is a
contradiction. Hence z(Ag) = 0 and so z € By. Therefore P> C By. Hence (ii)
holds. O
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Lema 1.3 yields as a corollary:

1.4. Lemma. If a lattice L possesses a representation as a direct product
of an atomic lattice and an atomless lattice, then this representation is unique in
the following sense: if the assumptions from Lemma 1.3 hold and if, moreover, 1 :
L — C x D is an isomorphism such that C is an atomic lattice and D is an atomless
lattice, then Cy = Ag and Dy = By.

2. PROOF OF THEOREM (A)

We apply the notation mentioned in the introduction. Let L € U;. Hence there
are L; (i € I) in U Nco(L) such that

L:ULi.

iel
Thus for each z € L there is x € L having the property that
z €[0,z] = L; for some i€ I.

In view of Theorem (B) there are lattices A(z) and B(z) such that A(z) is atomic,
B(z) is atomless, and there is an isomorphism ¢* of [0, z] onto A(z) x B(x).

We construct the lattices Ag(z) and Bg(z) and the isomorphism ¢ as in Sect. 1
with the distinction that we now have the lattice [0, z] instead of L. Let P be the
set of all atoms of L.

2.1. Lemma. Let z and x be as above, z > 0. Then

(i) z(Ao(z)) =sup{pe P:p< z},
(ii) z(Bo(x)) = max{t € P°: t < z}.

Proof. Ag(z) is isomorphic to A(z), hence Ag(z) is atomic. The case
z(Ao(z)) = 0 is trivial; suppose that z(Ag(z)) > 0. Hence z(Ao(z)) is the join
of some atoms of Ag(z). Since Ag(x) is a convex sublattice of [0,z] and 0 € Ag(z),
each atom of Ag(x) belongs to P. Hence (i) holds.

By(z) is isomorphic to B(x), hence it is atomless. Next, By(x) is a convex sublat-
tice and 0 € By(z). Therefore PN By(x) = 0. Thus bAp = 0 for each b € By(z) and
each p € P. In particular, 2(Bo(z)) Ap = 0 for each p € P and hence z(By(z)) € P°.
Let t € Pt < z. According to (iii) of 1.1 we have t = t(Ag(x)) V t(Bo(z)). More-
over, since Ag(x) is atomic, we infer that t(Ag(z)) = 0. Hence t = ¢(Bp(x)). In view
of t < z we obtain ¢(By(z)) < 2(Bo(x)), whence ¢t < z(By(z)). Thus (ii) is valid. O

150



2.2. Lemma. Letx and z be asin 2.1. Let j € I, L; = [0,y], « < y. Then
(under analogous notation as above) we have

2(Ao(2)) = 2(Ao(y)),  2(Bo(x)) = 2(Bo(y))-

Proof. This is an immediate consequence of 2.1. O

2.3. Lemma. Letz and z be asin 2.1. Let k € I, L, = [0,t], © < t. Then
2(Ao(x)) = 2(Ao(t)) and z(Bo(x)) = 2(Bo(t))-

Proof. There exists j € I such that z vVt € L;. Let L; = [0,y]. Now the
assertion follows from 2.2.

We denote by A the set of all elements of L which can be expressed as joins of
elements belonging to P. Next let B, = (Ar)’.

Let z € L. Let = be as above. Put

z1 = z(Ag(z)), 22 = 2z(Bo(x)).

In view of 2.3, z; and 22 do not depend on the particular choice of z, they are
uniquely determined by z. Next, according to 2.1 we have z; € Ay and 2z, € Bj.
Denote ¢(z) = (21, 22). Then ¢ is a mapping of L into Ay, x By.

Let z' € A, 2> € By. There exists i(1) € I with L;qy = [0,2(1)] such that
2 V2% < z(1). Put ¢ = 2' V 22. There exists an isomorphism ¢*() of [0, z(1)] onto
A(z(1)) x B(z(1)). From 2.3 and 1.1 (iv) we obtain that ¢ = 2! and g, = 22. Thus
 is surjective.

Let s € L. There is i(2) € I with L;oy = [0,2(2)] such that 2z V s = z(2). By
considering the isomorphism ¢*®) of [0,2(2)] onto A(x(2)) x B(z(2)) we get that
the following conditions are equivalent:

(i) z<s,

(ii) 21 < s1 and 29 < ss.
Therefore ¢ is an isomorphism.

Ifi € I and L; = [0, z], then A(z) is a Boolean algebra. Because L4 is the union of
all such intervals A(z), we infer that L4 is a generalized Boolean algebra. Moreover,
P C La. Thus the lattice B, = (Ar)° is atomless.

If L; = [0, x] is as above, then B(z) € U. Since Lp is the union of all such intervals
B(z) with 0 € B(x), the relation Lp € U is valid. This completes the proof of (A).

O
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Let us remark that if L is complete and if the greatest element of L is denoted
by z, then (under the same notation as above) we have Ly = A(x), Lp = B(z),
hence both L4 and Lp are complete lattices, L4 is a Boolean algebra and Lp is an
atomless lattice belonging to . Hence (B) is a particular case of (A).
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