Journal of Lie Theory Vol. 15, No. 2, pp. 379–391 (2005) |
|
Naturally graded p-filiform Lie algebras in arbitrary finite dimensionJ. M. Cabezas and E. PastorJ. M. CabezasDpto. Matemática Aplicada E. U. de Ingeniería Universidad del País Vasco Nieves Cano, 12 01006 Vitoria (Spain) mapcamaj@vc.ehu.es and E. Pastor Dpto. Matemática Aplicada E. U. de Ingeniería Universidad del País Vasco Nieves Cano, 12 01006 Vitoria (Spain) mappasae@vc.ehu.es Abstract: The present paper offers the classification of naturally graded $p$-filiform Lie algebras in arbitrary finite dimension $n$. For sufficiently high $n$, ($n \geq\max\{3p-1,p+8\}$), and for all admissible value of $p$ the results are a generalization of Vergne's in case of filiform Lie algebras [Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la varieté des algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970), 81–116]. Classification (MSC2000): 22E60, 17B30, 17B70 Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 20 May 2010. This page was last modified: 4 Jun 2010.
© 2010 Heldermann Verlag
|