EMIS ELibM Electronic Journals Journal of Lie Theory
Vol. 15, No. 2, pp. 379–391 (2005)

Previous Article

Next Article

Contents of this Issue

Other Issues


ELibM Journals

ELibM Home

EMIS Home


Pick a mirror

 

Naturally graded p-filiform Lie algebras in arbitrary finite dimension

J. M. Cabezas and E. Pastor

J. M. Cabezas
Dpto. Matemática Aplicada
E. U. de Ingeniería
Universidad del País Vasco
Nieves Cano, 12
01006 Vitoria (Spain)
mapcamaj@vc.ehu.es
and
E. Pastor
Dpto. Matemática Aplicada
E. U. de Ingeniería
Universidad del País Vasco
Nieves Cano, 12
01006 Vitoria (Spain)
mappasae@vc.ehu.es

Abstract: The present paper offers the classification of naturally graded $p$-filiform Lie algebras in arbitrary finite dimension $n$. For sufficiently high $n$, ($n \geq\max\{3p-1,p+8\}$), and for all admissible value of $p$ the results are a generalization of Vergne's in case of filiform Lie algebras [Vergne, M., Cohomologie des algèbres de Lie nilpotentes. Application à l'étude de la varieté des algèbres de Lie nilpotentes, Bull. Soc. Math. France 98 (1970), 81–116].

Classification (MSC2000): 22E60, 17B30, 17B70

Full text of the article: (for faster download, first choose a mirror)


Electronic fulltext finalized on: 20 May 2010. This page was last modified: 4 Jun 2010.

© 2010 Heldermann Verlag
© 2010 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition