Journal of Lie Theory Vol. 15, No. 2, pp. 521–560 (2005) |
|
Canonical Coordinates for Coadjoint Orbits of Completely Solvable GroupsDidier Arnal, Mabrouk Ben Ammar, Bradley N. Currey and Béchir Dali%Didier Arnal Institut de Mathématiques de Bourgogne, Université de Bourgogne CNRS UMR 5584, BP 47870, F-21078 Dijon Cedex France didier.arnal@u-bourgogne.fr Mabrouk Ben Ammar Département de Mathématiques, Faculté des Sciences de Sfax BP 802, 3038 Sfax, Tunisie mabrouk.benammar@fss.rnu.tn, Bradley N. Currey Saint Louis University Department of Mathematics and Computer Science Saint Louis, MO 63103 curreybn@slu.edu, and Béchir Dali Département de Mathématiques, Faculté des Sciences de Bizerte 7021 Zarzouna, Bizerte, Tunisie bechir.dali@fss.rnu.tn Abstract: We show that when the methods of Arnal, D. and J. C. Cortet, Representations $*$ des groupes exponentiels, Journal Funct. Anal. {\eightbf92} (1990), 103–135 are combined with the explicit stratification and orbital parameters of Currey, B. N., The structure of the space of co-adjoint orbits of an exponential solvable Lie group, Trans. Amer. Math. Soc. {\eightbf332} (1992), 241–269, and Currey, B. N. and R. C. Penney, The structure of the space of co-adjoint orbits of a completely solvable Lie group, Michigan Math. J. 36 (1989), 309–320, the result is a construction of explicit analytic canonical coordinates for any coadjoint orbit ${\cal O}$ of a completely solvable Lie group. For each layer in the stratification, the canonical coordinates and the orbital cross-section together constitute an analytic parametrization for the layer. \vskip0truemm Finally, we quantize the minimal open layer with the Moyal star product and prove that the coordinate functions are in a convenient completion of spaces of polynomial functions on ${\g^*}$, for a metric topology naturally related to the star product. Keywords: Completely solvable Lie groups, Parametrization, Canonical coordinates Classification (MSC2000): 22E25, 22E27, 53D55 Full text of the article: (for faster download, first choose a mirror)
Electronic fulltext finalized on: 20 May 2010. This page was last modified: 4 Jun 2010.
© 2010 Heldermann Verlag
|