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Abstract

We consider those lattice paths that use the steps “up”, “level”, and “down” with

assigned weights w, b, c. In probability theory, the total weight is 1. In combinatorics,

we replace weight by the number of colors. Here we give a combinatorial proof of a

relation between restricted and unrestricted weighted Motzkin paths.

1 Introduction

We consider those lattice paths in the Cartesian plane starting from (0, 0) that use the steps
{U,L,D}, where U = (1, 1), an up-step, L = (1, 0), a level-step and D = (1,−1), a down-
step, with assigned weights w, b, and c. In probability theory, the total weight is 1. In
combinatorics, we regard weight as the number of colors and normalize by setting w = 1.
Let P be a path. We define the weight w(P ) to be the product of the weight of the steps.
Let A(n, k) be the set of all weighted lattice paths ending at the point (n, k), and let M(n, k)
be the set of lattice paths in A(n, k) that never go below the x-axis. Let an,k be the sum of
all w(P ) with P in A(n, k) and let mn,k be the sum of all w(P ) with P in M(n, k). Note
that

an,k = an−1,k−1 + ban−1,k + can−1,k+1,

and the same relationship holds for bn,k and mn,k. In combinatorics, we regard the weights
as the number of colors. Then A(n, k) is the set of all colored lattice paths ending at the
point (n, k) and M(n, k) is the set of all colored lattice paths in A(n, k) that never go below
the x-axis. Then an,k = |A(n, k)|, mn,k = |M(n, k)|, and mn = |M(n, 0)|. The sequence
{mn} is called the bc-Motzkin sequence for the bc-Motzkin lattice path. Let B(n, k) denote
the set of lattice paths in A(n, k) that never return to the x-axis after the initial U step and
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let bn,k = |B(n, k)| . Note that the paths in M(n, k) and B(n, k) are restricted paths. For
definitions and results please refer to Stanley [5].

2 Some Examples

Example 1. For b = 2, c = 1, all matrices are infinite by infinite. Partial entries are as
follows:

(an,k) =





















n\k −5 −4 −3 −2 −1 0 1 2 3 4 5
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 1 2 1 0 0 0 0
2 0 0 0 1 4 6 4 1 0 0 0
3 0 0 1 6 15 20 15 6 1 0 0
4 0 1 8 28 56 70 56 28 8 1 0
5 1 10 45 120 210 252 210 120 45 10 1





















,

(mn,k) =





















n\k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 2 1 0 0 0 0
2 5 4 1 0 0 0
3 14 14 6 1 0 0
4 42 48 27 8 1 0
5 132 165 110 44 10 1





















,

(bn,k) =





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 2 1 0 0 0 0
0 5 4 1 0 0 0
0 14 14 6 1 0 0
0 42 48 27 8 1 0
0 132 165 110 44 10 1





















.

The 21-Motzkin sequence 1, 2, 5, 14, 42, 132, ... of the first column of (mn,k) is the Catalan
sequence (Sloane’s A000108). Please refer to Stanley [5].

Example 2. For b = 3, c = 2, partial entries are as follows:

(an,k) =





















n\k −5 −4 −3 −2 −1 0 1 2 3 4 5
0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 2 3 1 0 0 0 0
2 0 0 0 4 12 13 6 1 0 0 0
3 0 0 8 36 66 63 33 9 1 0 0
4 0 16 96 248 360 321 180 62 12 1 0
5 32 240 800 1560 1970 1683 985 390 100 15 1





















,
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(mn,k) =





















n\k 0 1 2 3 4 5
0 1 0 0 0 0 0
1 3 1 0 0 0 0
2 11 6 1 0 0 0
3 45 31 9 1 0 0
4 197 156 60 12 1 0
5 903 785 372 98 15 1





















,

(bn,k) =





















1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 3 1 0 0 0 0
0 11 6 1 0 0 0
0 45 31 9 1 0 0
0 197 156 60 12 1 0
0 903 785 360 98 15 1





















.

The 32-Motzkin sequence 1, 3, 11, 45, 197, ...of the first column of (mn,k) is the little
Schroeder sequence (Sloane’s A001003).

Example 3. Let b = 4, c = 3. Partial entries are as follows:

(an,k) =

















n\k −4 −3 −2 −1 0 1 2 3 4
0 0 0 0 0 1 0 0 0 0
1 0 0 0 3 4 1 0 0 0
2 0 0 9 24 22 8 1 0 0
3 0 27 108 171 136 57 12 1 0
4 81 432 972 1200 886 400 108 16 1

















,

(mn,k) =

















n\k 0 1 2 3 4
0 1 0 0 0 0
1 4 1 0 0 0
2 19 8 1 0 0
3 100 54 12 1 0
4 562 352 105 16 1

















,

(bn,k) =

















1 0 0 0 0 0
0 1 0 0 0 0
0 4 1 0 0 0
0 19 8 1 0 0
0 100 54 9 1 0
0 562 356 105 16 1

















.

3 Main results

We now give a bijective proof for
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Theorem 4. an,k =
∑

i=0 cimn,2i+k for n, k ≥ 0.

Proof. Let P be a lattice path in A(n, k). Find the leftmost lowest point of the path, and
let this point be p = (m,−i). Now we obtain path P ′ in M(n, 2i + k) from P as follows:
first, replace U with D, and D with U for the section of P before the point p. Next, reverse
the order of those steps and attach those steps to the end of the rest of the path. This gives
us a path P ′ with i fewer down steps and w(P ) = ciw(P ′). Note that the attached point is
the rightmost point of height i + k; this identification suggests the inverse mapping.

Example 5. Let P = (UDDD)LUDUUUDU ∈ A(15, 1), P ′ = LUDUUUDU (UUUD) ∈
M(15, 5).

P =
◦ ◦ ◦

× ◦ ◦ ◦
◦ ◦ ◦
• ◦ ◦

∈ A(12, 1)

P ′ ==

◦
◦ ◦

◦
◦ •

◦ ◦
◦ ◦

× ◦ ◦

∈M(12, 2 ∗ 2 + 1)

Remark 6. Theorem 4 shows us the relationship between (mn,k) and (an,k).

For Example 1

















1 0 0 0 0 0
2 1 0 0 0 0
5 4 1 0 0 0
14 14 6 1 0 0
42 48 27 8 1 0
132 165 110 44 10 1

































1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 1 0 1

















=

















1 0 0 0 0 0
2 1 0 0 0 0
6 4 1 0 0 0
20 15 6 1 0 0
70 56 28 8 1 0
252 210 120 45 10 1

















.

For Example 2
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















1 0 0 0 0 0
3 1 0 0 0 0
11 6 1 0 0 0
45 31 9 1 0 0
197 156 60 12 1 0
903 785 360 98 15 1

































1 0 0 0 0 0
0 1 0 0 0 0
2 0 1 0 0 0
0 2 0 1 0 0
4 0 2 0 1 0
0 4 0 2 0 1

















=

















1 0 0 0 0 0
3 1 0 0 0 0
13 6 1 0 0 0
63 33 9 1 0 0
321 180 62 12 1 0
1683 985 390 100 15 1

















.

For Example 3













1 0 0 0 0
4 1 0 0 0
19 8 1 0 0
100 54 12 1 0
562 352 105 16 1

























1 0 0 0 0
0 1 0 0 0
3 0 1 0 0
0 3 0 1 0
9 0 3 0 1













=













1 0 0 0 0
4 1 0 0 0
22 8 1 0 0
136 57 12 1 0
886 400 108 16 1













.

We now give a bijective proof for

Theorem 7. an,−k = ckan,k.

Proof. Let P be in A(n,−k). Then P has k more D steps than U steps. We obtain
P ′ ∈ A(n, k) from P by interchanging D steps and U steps. Then P has k more D steps
than P ′. Hence an,−k = ckan,k.

For examples, see Examples 1, 2 and 3.
We now give a bijective proof for

Theorem 8. (1 + b + c)n =
∑n

k=−n an,k = an,0 +
∑n

k=1(c
k + 1)an,k.

Proof. For each step we have (1 + b + c) choices. Let us index the columns of (an,k) by
the power k of y. The generating function going from one row to next is multiplied by
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w(y) = y + b + cy−1. Hence the generating function of the nth row of (an,k) is w(y)n. By
setting y = 1 we have

(1 + b + c)n =
n

∑

k=−n

an,k

=
−1
∑

k=−n

an,k + an,0 +
n

∑

k=1

an,k

=
n

∑

k=1

ckan,k + an,0 +
n

∑

k=1

an,k

= an,0 +
n

∑

k=1

(ck + 1)an,k.

Remark 9. Apply Theorem 8 to

Example 1:

















1 0 0 0 0 0
2 1 0 0 0 0
6 4 1 0 0 0
20 15 6 1 0 0
70 56 28 8 1 0
252 210 120 45 10 1

































1
2
2
2
2
2

















=

















1
4
16
64
256
1024

















.

.

Example 2

















1 0 0 0 0 0
3 1 0 0 0 0
13 6 1 0 0 0
63 33 9 1 0 0
321 180 62 12 1 0
1683 985 390 100 15 1

































1
3
5
9
17
33

















=

















1
6
36
216
1296
7776

















.

Example 3













1 0 0 0 0
4 1 0 0 0
22 8 1 0 0
136 57 12 1 0
886 400 108 16 1

























1
4
10
28
82













=













1
8
64
512
4096













.

Please refer to Getu [2] for Riordan matrices.
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Definition 10. A lower triangular matrix A = (g, f) is said to be a Riordan matrix if
the generating function Ak of the kth column is gfk, where g = g(x) = 1 + g1x + g2x

2 + · · ·
and f = f(x) = x + f2x

2 + f3x
3 + · · · . Let R be the set of all Riordan matrices.

Lemma 11. Let D = (dn,k) = (g, f) ∈ R and A = [ai] a column vector with generating

function A(x) =
∑

aix
i. Then the generating function for B = DA is gA(f).

Proof. bn =
∑

ai([x
n]gf i) = [xn]

∑

aigf i = [xn]gA(f).

Remark 12. Let M = (g, f) and N = (h, l) be in R. Then MN = (g, f)(k, l) =
(gk(f), l(f)) and R is a group with (g, f)−1 = ( 1

g(f−1)
, f−1).

Definition 13. For each A ∈ R, we define the Stieltjes Matrix. SA = A−1A or
ASA = A, where A is the matrix obtaining from A by removing the first row. The entries of
the Stieltjes matrix are of the following form:

SA =

















× 1 0 0 0 0
× × 1 0 0 0
× × × 1 0 0
× × × × 1 0
× × × × × 1
× × × × × ×

















.

For the following Remark please refer to Peart [3] and Spitzer [4].

Remark 14. Let A = (g, f) ∈ R be a matrix with tridiagonal Stieltjes matrix of the
form

















a 1 0 0 0 0
d b 1 0 0 0
0 c b 1 0 0
0 0 c b 1 0
0 0 0 c b 1
0 0 0 0 c b

















.

Then f = f(x) = x(1 + bf + cf 2), g = 1
1−ax−dxf

.

For Example 1, f = x(1 + 2f + f 2) = 1−2x−
√

1−4x

2x
,

(an,k) = (g, f) with g = 1
1−2x−2xf

,

(mn,k) = ( f

x
, f),

S(an,k) =

















2 1 0 0 0 0
2 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 2

















, S(mn,k) =

















2 1 0 0 0 0
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 2

















.
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For Example 2, f = x(1 + 3f + 2f 2) = 1−3x−
√

1−6x+x2

4x
,

(an,k) = (g, f) with g = 1
1−3x−4xf

,

(mn,k) = ( f

x
, f),

S(an,k) =

















3 1 0 0 0 0
4 3 1 0 0 0
0 2 3 1 0 0
0 0 2 3 1 0
0 0 0 2 3 1
0 0 0 0 2 3

















, S(mn,k) =

















3 1 0 0 0 0
2 3 1 0 0 0
0 2 3 1 0 0
0 0 2 3 1 0
0 0 0 2 3 1
0 0 0 0 2 3

















.

Theorem 15. For bc-Motzkin sequences we have (mn,k)(
1

1−cx2 , x) = (an,k).

Proof. It follows by Theorem 4.

Theorem 16. For bc-Motzkin sequences we have (an,k)(
1

1−cx
+ x

1−x
) = 1

1−kx
, k = 1 + b + c.

Proof. By Theorem 8.

Theorem 17. For bc-Motzkin sequences we have (mn,k)(
1

(1−cx)(1−x)
) = 1

1−kx
.

Proof. By Theorems 15, 16.

Remark 18. Apply Theorem 17 to

Example 1.

















1 0 0 0 0 0
2 1 0 0 0 0
5 4 1 0 0 0
14 14 6 1 0 0
42 48 27 8 1 0
132 165 110 44 10 1

































1
2
3
4
5
6

















=

















1
4
16
64
256
1024

















.

.

Example 2. Please refer to Cameron [1] for this example.

















1 0 0 0 0 0
3 1 0 0 0 0
11 6 1 0 0 0
45 31 9 1 0 0
197 156 60 12 1 0
903 785 360 98 15 1

































1
3
7
15
31
63

















=

















1
6
36
216
1296
7776

















.

Example 3.













1 0 0 0 0
4 1 0 0 0
19 8 1 0 0
100 54 12 1 0
562 352 105 16 1

























1
4
13
40
121













=













1
8
64
512
4096













.
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Remark 19. Theorem 17 applies only to Stieltjes matrices of the form

















b 1 0 0 0 0
c b 1 0 0 0
0 c b 1 0 0
0 0 c b 1 0
0 0 0 c b 1
0 0 0 0 c b

















.

The following is a generalization.

Theorem 20. Let A = (g, f) ∈ R be a Riordan matrix with tridiagonal Stieltjes matrix of

the form

















a 1 0 0 0 0
d b 1 0 0 0
0 c b 1 0 0
0 0 c b 1 0
0 0 0 c b 1
0 0 0 0 c b

















and A(x) = (1−cx)+(k−a−1)x+(c−d)x2

(1−x)(1−cx)
,

then (g, f)A(x) = 1
1−kx

, where k = 1 + b + c.

Proof. Let A(x) = 1 + (k − a)x+ [(k − a− 1)c+ (c− d) + (k − a)]x2 + [((k − a− 1)c+ c−
d)c + (k − a− 1)c + (c− d) + (k − a)]x3 + · · · .

Then A(x)− xA(x) = (1−cx)+(k−a−1)x+(c−d)x2

1−cx
.
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Now

(g, f)A(x) =
1

1− ax− dxf

1 + (k − a− c− 1)f + (c− d)f 2

(1− f)(1− cf)

=
1

1− ax− dxf

1 + (b− a)f + (c− d)f 2

(1− f)(1− cf)
=

1

1− ax− dxf

1 + bf + cf 2 − af − df 2

(1− f)(1− cf)

=
1

1− ax− dxf

f

x
− af − df 2

(1− f)(1− cf)

=
f

x(1− f)(1− cf)

=
f

x(1− f − cf + cf 2)

=
f

x− xf − cxf + cxf 2

=
f

f − xbf − xf − cxf

=
f

f − xf(b + c + 1)

=
1

1− kx
.

Remark 21. Apply Theorem 20 and Peart [3].

Example 1.

SA =

















1 1 0 0 0 0
1 2 1 0 0 0
0 1 2 1 0 0
0 0 1 2 1 0
0 0 0 1 2 1
0 0 0 0 1 2

















, A =

















1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
5 9 5 1 0 0
14 28 20 7 1 0
42 90 75 35 9 1

















= (g, f),

where f = x(1 + 2f + f 2) = 1−2x−
√

1−4x

2x
, g = 1

1−x−xf
= 1−

√
1−4x

2
,

A(x) = 1+x
(1−x)(1−x)

= 1 + 3x + 5x2 + 7x3 + 9x4 + 11x5 + 13x6 + O (x7) ,

















1 0 0 0 0 0
1 1 0 0 0 0
2 3 1 0 0 0
5 9 5 1 0 0
14 28 20 7 1 0
42 90 75 35 9 1

































1
3
5
7
9
11

















=

















1
4
16
64
256
1024

















.

Example 2.
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SA =













2 1 0 0 0
2 3 1 0 0
0 2 3 1 0
0 0 2 3 1
0 0 0 2 3













, A =













1 0 0 0 0
2 1 0 0 0
6 5 1 0 0
22 23 8 1 0
90 107 49 11 1













= (g, f),

where f = x(1 + 3f + 2f 2) = 1−3x−
√

1−6x+x2

4x
, g = 1

1−2x−2xf
,

A(x) = 1+x
(1−x)(1−2x)

= 1 + 4x + 10x2 + 22x3 + 46x4 + 94x5 + 190x6 + 382x7 + O (x8) ,













1 0 0 0 0
2 1 0 0 0
6 5 1 0 0
22 23 8 1 0
90 107 49 11 1

























1
4
10
22
46













=













1
6
36
216
1296













.

.
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