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Abstract

In this note we prove, using combinatorial arguments, some new formulas connect-

ing poly-Bernoulli numbers with negative indices to Eulerian numbers.
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1 Introduction

Kaneko [10] introduced the poly-Bernoulli numbers A099594 during his investigations on
multiple zeta values. He defined these numbers by their generating function:

∞∑

n=0

B(k)
n

xn

n!
=

Lik(1− e−x)

1− e−x
, (1)

where

Lik(z) =
∞∑

i=1

zi

ik

is the classical polylogarithmic function. As the name indicates, poly-Bernoulli numbers are
generalizations of the Bernoulli numbers. For k = 1 B

(1)
n are the classical Bernoulli numbers

with B1 =
1
2
. For negative k-indices poly-Bernoulli numbers are integers (see the values for

small n, k in Table 1) and have interesting combinatorial properties.

❍
❍
❍

❍
❍
❍

n

k
0 1 2 3 4 5

0 1 1 1 1 1 1
1 1 2 4 8 16 32
2 1 4 14 46 146 454
3 1 8 46 230 1066 4718
4 1 16 146 1066 6906 41506
5 1 32 454 4718 41506 329462

Table 1: The poly-Bernoulli numbers B
(−k)
n

Poly-Bernoulli numbers enumerate several combinatorial objects arisen in different re-
search areas, such as lonesum matrices, Γ-free matrices, acyclic orientations of complete
bipartite graphs, alternative tableaux with rectangular shape, permutations with restriction
on the distance between positions and values, permutations with excedance set [k], etc. In
[3, 4] the authors summarize the known interpretations, present connecting bijections and
give further references.

In this note we are concerned only with poly-Bernoulli numbers with negative indices.
For convenience, we let Bn,k denote the poly-Bernoulli numbers B

(−k)
n .

Kaneko derived two formulas for the poly-Bernoulli numbers with negative indices: a
formula that we call the basic formula, and an inclusion-exclusion type formula. The basic
formula is

Bn,k =

min(n,k)∑

m=0

(m!)2
{
n+ 1

m+ 1

}{
k + 1

m+ 1

}
, (2)
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where
{
n

k

}
denotes the Stirling number of the second kind A008277 that counts the number

of partitions of an n-element set into k non-empty blocks [9]. The inclusion-exclusion type
formula is

Bn,k =
∞∑

n=0

(−1)n+mm!

{
n

m

}
(m+ 1)k. (3)

Kaneko’s proofs were algebraic, based on manipulations of generating functions. The
first combinatorial investigation of poly-Bernoulli numbers was done by Brewbaker [7]. He
defined Bn,k as the number of lonesum matrices of size n×k. He proved combinatorially both
formulas; hence, he proved the equivalence of the algebraic definition and the combinatorial
one.

Bayad and Hamahata [2] introduced poly-Bernoulli polynomials by the following gener-
ating function:

∞∑

n=0

B(k)
n (x)

tn

n!
=

Lik(1− e−t)

1− e−t
ext.

For negative indices the polylogarithmic function converges for |z| < 1 and equals to

Li−k(z) =

∑k

j=0

〈
k

j

〉
zk−j

(1− z)k+1
, (4)

where
〈
k

j

〉
is the Eulerian number [9] A008282 given, for instance, by

〈
k

j

〉
=

j∑

i=0

(−1)i
(
k + 1

i

)
(j − i)k. (5)

In [2] the authors used analytical methods to show that for k ≤ 0

B(k)
n (x) =

|k|∑

j=0

〈
|k|

j

〉 |k|−j∑

m=0

(
|k| − j

m

)
(−1)m(x+m− |k| − 1)n. (6)

The evaluation of (6) at x = 0 leads to a new explicit formula of the poly-Bernoulli numbers
involving Eulerian numbers.

Theorem 1. [2] For all k > 0 and n > 0 we have

Bn,k =
k∑

j=0

〈
k

j

〉 k−j∑

m=0

(−1)m
(
k − j

m

)
(k + 1−m)n. (7)

We see that the Eulerian numbers and the defining generating function of poly-Bernoulli
numbers for negative k are strongly related.

In this note we prove this formula purely combinatorially. Moreover, we show four further
new formulas for poly-Bernoulli numbers involving Eulerian numbers.
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2 Main results

In our proofs a special class of permutations plays the key role. We call this permutation class
Callan permutations because Callan introduced this class as a combinatorial interpretation
of the poly-Bernoulli numbers [8]. We use the well-known notation [N ] for {1, 2, . . . , N}.

Definition 2. Callan permutation of [n+k] is a permutation such that each substring whose
support belongs to N = {1, 2, . . . , n} or K = {n+ 1, n+ 2, . . . , n+ k} is increasing.

Let Ck
n denote the set of Callan permutations of [n + k]. We call the elements in N the

left-value elements and the elements in K the right-value elements. For instance, for n = 2
and k = 2, the Callan permutations are (writing the left-value elements in red, right-value
elements in blue) as follows:

1234, 1324, 1423, 1342, 2314, 2413, 2341,

3124, 3142, 3241, 3412, 4123, 4132, 4231.

It is easy to see that Callan permutations are enumerated by the poly-Bernoulli numbers,
but for the sake of completeness, we recall a sketch of the proof.

Theorem 3. [8]

|Ck
n| =

min(n,k)∑

m=0

(m!)2
{
n+ 1

m+ 1

}{
k + 1

m+ 1

}
= Bn,k.

Proof. (Sketch) We extend our universe with 0, a special left-value element, and n+ k + 1, a

special right-value element. Define N̂ = N ∪{0} and K̂ = K ∪{n+ k + 1}. Let π ∈ Ck
n. Let

π̃ = 0π(n+ k + 1). Divide π̃ into maximal blocks of consecutive elements in such a way that

each block is a subset of N̂ (left blocks) or a subset of K̂ (right blocks). The partition starts
with a left block (the block of 0) and ends with a right block (the block of (n+ k + 1)). So
the left and right blocks alternate, and their number is the same, say m+ 1.

Describing a Callan permutation is equivalent to specifying m, a partition Π
N̂
of N̂ into

m + 1 classes (one class is the class of 0, the other m classes are called ordinary classes), a

partition Π
K̂

of K̂ into m + 1 classes (m of them not containing (n+ k + 1), these are the
ordinary classes), and two orderings of the ordinary classes. After specifying the components,

we need to merge the two ordered set of classes (starting with the nonordinary class of N̂

and ending with the nonordinary class of K̂), and list the elements of classes in increasing
order. The classes of our partitions will form the blocks of the Callan permutations. We will
refer to the blocks coming from ordinary classes as ordinary blocks.

This proves the claim.

The main results of this note are the next five formulas for the number of Callan per-
mutations and hence, for the poly-Bernoulli numbers. We present elementary combinatorial
proofs of the theorems in the next section. Theorem 8 is equivalent to Theorem 1; we recall
the theorem in the combinatorial setting.
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Theorem 4. For all k > 0 and n > 0 the identity

|Ck
n| =

min (n,k)∑

m=0

n∑

i=0

k∑

j=0

〈
n

i

〉〈
k

j

〉(
n+ 1− i

m+ 1− i

)(
k + 1− j

m+ 1− j

)
= Bn,k (8)

holds.

Theorem 5. For all k > 0 and n > 0 the identity

|Ck
n| =

k∑

j=0

〈
k

j

〉 k+2−j∑

m=0

(
k + 2− j

m

)
(m+ j − 1)!

{
n

m+ j − 1

}
= Bn,k (9)

holds.

Theorem 6. For all k > 0 and n > 0 the identity

|Ck
n| =

k∑

j=0

〈
k

j

〉 j−1∑

m=0

(−1)m
(
j − 1

m

)
(k + 1−m)n = Bn,k (10)

holds.

Theorem 7. For all k > 0 and n > 0 the identity

|Ck
n| =

k∑

j=0

〈
k

j

〉 j+1∑

m=0

(
j + 1

m

)
(m+ k − j)!

{
n

m+ k − j

}
= Bn,k (11)

holds.

Theorem 8. [2] For all k > 0 and n > 0 the identity

|Ck
n| =

k∑

j=0

〈
k

j

〉 k−j∑

m=0

(−1)m
(
k − j

m

)
(k + 1−m)n = Bn,k. (12)

holds.

3 Proofs of the main results

Eulerian numbers play the crucial role in these formulas. Though Eulerian numbers are
well-known, we think it could be helpful for readers who are not so familiar with this topic
to recall some basic combinatorial properties.
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3.1 Eulerian numbers

First, we need some definitions and notation. Let π = π1π2 · · · πn be a permutation of [n].
We call i ∈ [n − 1] a descent (resp., ascent) of π if πi > πi+1 (resp., πi < πi+1). Let D(π)
(resp., A(π)) denote the set of descents (resp., the set of ascents) of the permutation π. For
instance, π = 361487925 has 3 descents and D(π) = {2, 5, 7}, while it has 5 ascents and
A(π) = {1, 3, 4, 6, 8}.

Eulerian numbers
〈
k

j

〉
counts the permutations of [k] with j− 1 descents. A permutation

π ∈ Sn with j − 1 descents is the union of j increasing subsequences of consecutive entries,
so called ascending runs. So, in other words

〈
k

j

〉
is the number of permutations of [k] with j

ascending runs. In our example, π is the union of 4 ascending runs: 36, 148, 79, and 25.
There are several identities involving Eulerian numbers, see, for instance, [6, 9]. We will

use a strong connection between the surjections/ordered partitions and Eulerian numbers:

r!

{
k

r

}
=

r∑

j=0

〈
k

j

〉(
k − j

r − j

)
. (13)

Proof. We take all the partitions of [k] into r classes. Order the classes, and list the elements
in increasing order. This way we obtain permutations of [k]. Counting by multiplicity we
get r!

{
k

r

}
permutations. All of these have at most r ascending runs.

Take a permutation with j(≤ r) ascending runs. How many times did we list it in the
previous paragraph? We split the ascending runs by choosing r − j places out of the k − j

ascents to obtain all the initial r blocks. The multiplicity is
(
k−j

r−j

)
. This proves our claim.

Inverting (13) immediately gives

〈
k

j

〉
=

j∑

r=1

(−1)j−rr!

{
k

r

}(
k − r

j − r

)
.

In the previous section we mentioned the close relation between Eulerian numbers and the
polylogarithmic function Lik(x). Here we recall one possible derivation of the identity (4)
following [6].

k∑

j=0

〈
k

j

〉
xj =

∞∑

j=0

〈
k

j

〉
xj =

∞∑

j=0

j∑

i=0

(−1)i
(
k + 1

i

)
(j − i)kxj =

=
∞∑

i=0

∞∑

l=0

(−1)i
(
k + 1

i

)
lkxi+l =

∞∑

i=0

(−1)i
(
k + 1

i

)
xi

∞∑

l=0

lkxl

= (1− x)k+1Li−k(x).

Substituting in (5) for
〈
k

j

〉
, changing the order of the summation, using the transformation

l = j − i, and finally applying the binomial theorem, we get the result.
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3.2 Combinatorial proofs of the theorems

We turn our attention now to the proofs of our theorems. For the sake of convenience,
thanks to our color coding (left-value elements are red, and right-value elements are blue),

we rewrite the set of right-value elements asK = {1, 2, . . . , k}, and K̂ = K∪{k + 1}. We can
do this without essentially changing Callan permutations, since we just need the distinction
between the elements N and K and an order in N and K. If we separately consider the
left-value elements and right-value elements in the permutation π, the elements of N form a
permutation of [n], and the elements of K form a permutation of [k]. We let πr denote the
permutation restricted to the right-value elements, and we let πℓ denote the permutation
restricted to the left-value elements. Further, let π̃r and π̃ℓ denote the extended versions of
the permutations. For instance, for π̃ = 0231454728183569679, we have π̃r = 145283679,
while π̃ℓ = 0234718569.

Proof. We consider the last entries of the blocks in the restricted permutations π̃ℓ (resp., π̃r).
Some of the blocks end with a descent and some of the blocks do not. (The special elements
0 and k + 1 are neither descents nor ascents of the permutations.) Let i be the number of
ascending runs in π̃ℓ and j be the number of ascending runs in π̃r. Further, let m be the
number of ordinary blocks of both types. The i− 1 descents of π̃ℓ determine i last elements
of blocks; hence, we are missing m− (i− 1) blocks with an ascent as last element. Similarly,
the j − 1 descents of π̃r determine j − 1 blocks and there are m− (j − 1) additional blocks
with an ascent as last element.

Given a pair (π̃ℓ, π̃r) with |D(π̃ℓ)| = i− 1 and |D(π̃r)| = j− 1, we can construct a Callan
permutation, according to the above arguments. In our running example, π̃ℓ = 0234718569,
we need to choose 3−2 = 1 from 9−2 possibilities. In general, we need to choose m− (i−1)
(as last elements of blocks) from n − (i − 1) possibilities. And analogously for π̃r, we need
to choose m − (j − 1) from k − (j − 1) possibilities. Hence, for a given pair (π̃ℓ, π̃r) with
|D(π̃ℓ)| = i− 1 and |D(π̃r)| = j − 1 we have

(
n+ 1− i

m+ 1− i

)(
k + 1− j

m+ 1− j

)

different corresponding Callan permutations. Since the number of pairs (π̃ℓ, π̃r) with |D(π̃ℓ)| =
i− 1 and |D(π̃r)| = j − 1 is

〈
n

i

〉〈
k

j

〉
The identity (8) is proven.

Note that (8) is actually a rewriting of the basic combinatorial formula (2) in terms
of Eulerian numbers using the relation (13) between the number of ordered partitions and
Eulerian numbers.

Now we enumerate Callan permutations according to the number of descents in πr. Given
a permutation πr with j − 1 descents, we determine the number of ways to merge πr with
left-value elements to obtain a valid Callan permutation. Let D = {d1, d2, . . . , dj−1} be the
set of descents of πr. In our running example, j = 3 and D = {3, 5}. We code the positions
of the left-values comparing to the right-values by a word w. We let wi be the number of
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right-values that are to the left of the left-value i. In our example, w1 = 5, since there are
5 right-value elements preceding the left-value 1, w2 = 0, because there are no right-value
elements preceding the left-value 2, etc. Hence, w = 500366356. Note that the blocks of the
left-value elements can be recognized from the word: The positions i, for which the values
wi are the same, are the elements of the same block. We call a word valid with respect to πr

if the augmentation of πr according to the word w leads to a valid Callan permutation.

Observation 9. A word w is valid with respect to a permutation πr if and only if it contains
every value di of the descent set of πr.

Proof. In a Callan permutation the substrings restricted to K or N are increasing subse-
quences. Given πr with descent set D, each di ∈ D has to be the last element of a block in
the ordered partition of the set K, the set of right-value elements. Hence, each right-value
with position di in πr has to be followed by a left-value element in the Callan permutation.
In our word w at the position of this left-value element there is a di.

For the converse, assume that our word w contains at least one di, for any di ∈ D(πr).
There is at least one left-value element with di in w at its position. This implies that if we
combine πr and πℓ then in πr the position of the descent will be interrupted by a left-value
element. The combined permutation will be a Callan permutation.

Corollary 10. The number of valid words with respect to πr depends only on the number of
descents in πr.

We let wj−1 denote a word that is valid to a πr with j − 1 descents and W (πr) denote
the set of words wj−1. The number of Callan permutations of size n + k is the number of
pairs (πr, wj−1), where πr is a permutation of [k] with j− 1 descents and wj−1 ∈ W (πr). We
denote |W (πr)| by w(j − 1). Hence,

|Ck
n| =

k∑

j=1

〈
k

j

〉
w(j − 1).

The next two proofs are based on two different ways of determining w(j − 1), i.e., enu-
merating those wj−1’s that are valid to a πr with j − 1 descents.

Proof. Fix πr and take a wj−1 ∈ W (πr). Then wj−1 corresponds to an ordered partition of
[n] into at least j − 1 blocks. Let j − 1 +m be the number of the blocks.

First, we take an ordered partition of {1, 2, . . . , n } into m + j − 1 non-empty blocks in
(m+ j − 1)!

{
n

m+j−1

}
ways. Then we refine the partition of πr, defined by the descents. For

the refinement we need to choose additional places for the m blocks. These places can be
before the first element of πr, or at an ascent. We have

(
k+2−j

m

)
choices. This proves (9).

Proof. Now we calculate w(j − 1) using the inclusion-exclusion principle. The total number
of words of length n with entries {0, 1, . . . , k} (wi = 0 if the left-value i is in the first block
of the Callan permutation) is (k + 1)n. We have to reduce this number with the number
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of invalid words with respect to πr, with the words that do not contain at least one of the
di ∈ D. Let As be the set of words that do not contain the value s. The quantity |∪s∈DAs|
is to be determined. Clearly, |As| = (k + 1 − 1)n and this number does not depend on
the choice of s; hence, we have

∑
s∈D |As| = kn(j − 1). Then |As ∩ At| = (k + 1 − 2)n

and
∑

s,t∈D |As ∩ At| = (k − 1)n
(
j−1
2

)
. Analogously, | ∩m

l=1 Asl | = (k + 1 − m)n
(
j−1
m

)
. The

inclusion-exclusion principle gives

w(j − 1) =

j−1∑

m=0

(−1)m
(
j − 1

m

)
(k + 1−m)n,

and this implies (10).

Proof. Finally, the identities (11) and (12) follow by the symmetry of Eulerian numbers.
If we reverse a permutation of [k] with j − 1 descents we obtain a permutation with k −
(j − 1) − 1 descents. According to our previous arguments a pair (πr, wk−j), where πr is a
permutation with k − j descents and wk−j is a valid word with respect to πr determines a
Callan permutation. Hence,

|Ck
n| =

k∑

j=1

〈
k

k − j + 1

〉
w(k − j) =

k∑

j=1

〈
k

j

〉
w(k − j).

We have two formulas for w(k − j).

w(k − j) =

j+1∑

m=0

(
j + 1

m

)
(m+ k − j)!

{
n

m+ k − j

}
,

w(k − j) =

k−j∑

m=0

(−1)m
(
k − j

m

)
(k + 1−m)n.

This implies (11) and (12).
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