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Abstract

In this paper, we will find some new families of infinite (integer) matrices whose
entries satisfy a non-homogeneous recurrence relation and such that the sequence of
their leading principal minors is a subsequence of the Fibonacci, Lucas, Jacobsthal, or
Pell sequences.
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1 Introduction

Throughout this paper, unless noted otherwise, we will use the following notation. Let
a = ()0 and B = (B;)i=0 be two arbitrary sequences starting with a common first term
ag = By. We denote by P, g(n) the generalized Pascal triangle associated with the sequences
a and f, which is introduced as follows. Actually, P, 3(n) = [P, ;lo<ij<n IS & square matrix
of order n + 1 whose (4, j)-entry P, ; obeys the following rules:

PZ"OZO{Z', PO,jzﬁj for i,j:O,l,Z,...,n, and P)i,j:Pi,j—l—'—-Pi—l,j for 1<Z,j<n

We also denote by Ty, g(n) = [T jlo<i j<n the Toeplitz matriz of order n + 1 whose (i, j)-entry
T; ; obeys the following rules:

EDIO[Z', TO,j:ﬁj for i,j:O,l,Q,...,n, and E,j:Tk,l if Z—j:k—l

The unipotent lower triangular matriz L(n) = [L; ;lo<i j<n 1S again a square matrix of order
n + 1 with entries:

0, if 0<i<yg<m
Lig=19 /iy - o
(j), if 0<j<i<n.
We put U(n) = L(n)', where A" signifies the transpose of matrix A. Moreover, a lower

Hessenberg matriz H(n) = [H; jlo<ij<n 1S @ square matrix of order n + 1, where H;; = 0
whenever j > i+ 1 and H; ;11 # 0 for some 7, 0 <7< n — 1.
Given a matrix A, we denote by R;(A) (resp., C;(A)) the row i (resp., the column j) of
A. We also denote by A the submatrix obtained from A by deleting the first column of A.
Given a sequence ¢ = (;)i>0, define the binomial transform of ¢ to be the sequence

¢ = (#i)izo with '
pi=) (1) (k) Pk-

k=0

The Fibonacci sequence (A000045 in [3]) is defined by the recurrence relation:
Fo=0, =1, F,=F,  +F,, for n>2

The Lucas sequence (A000032 in [3]) is defined by the recurrence relation:
Lo=2 L,=1, L,=1L,1=0L,_5 for n>2.

The Jacobsthal sequence (A001045 in [3]) is defined by the recurrence relation:
Jo=0, h=1, J,=J,_1+2J,o for n>2.

The Pell sequence (A000129 in [3]) is defined by the recurrence relation:

PQZO, Plz]_, PnZQPn—1+Pn—2 for 7122
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Let A = [A;;]ij=0 be an arbitrary infinite matrix. We denote the elementary row opera-
tion of type three by O, (), where r # s and X a scalar, that is

Rk (O’I‘,S(}\>A) =

R, (A) + AR4(A), if k=r;
Ry (A), T

The nth leading principal minor of A, denoted by d,,(A), is defined as follows:
dn(A) = det[Ai7j]0<i7j<n, (n = O, 1, 2, 3, .. )

We put D(A) = (dn(A))nso. Two infinite matrices A and B are said to be equimodular
if D(A) = D(B). Given a sequence w = (wy)n>0, a family {4;| ¢t € I} of equimodular
matrices are said to be w-equimodular if D(A;) = w for all ¢t € I. We will denote the family
of w-equimodular matrices by A,. The infinite matrices in A, are said to be determinant
representations of w. Note that for any sequence w = (w,)n>0, there is a determinant
representation of w, in other words A,, # ). Indeed, expanding along the last rows, it is easy
to see that

wo 1 * x x
—w; 0 1 % x

wy 0 0 1 = €A,
—w3 0 0 0 1

(see also Theorem 3.2 and the Remark after this theorem in [4]). Especially, there are many
different determinant representations of w, when w is a (sub-)sequence of Fibonacci, Lucas,
Jacobsthal and Pell sequences. Some examples of such matrices can be found in [1, 2].

In this paper, we are going to find some determinant representations of the sequences:

F= (Fn+1)n>07 L= (Ln+1)n>07 J = (Jn+1)n>0 and P = (Pn+1)n>0-

It is worthwhile to point out that we will use non-homogeneous recurrence relations to con-
struct these determinant representations.

In the sequel, we introduce a new family of (infinite) matrices A(co) = [4;]i j=0, Whose
entries obey a non-homogeneous recurrence relation. Actually, for two constants u and v,
and arbitrary sequences A = (\;)iso and pu = ()0 With o = 0, the first column and row
of matrix A(oco) are the sequences

(Aio)izo = (Aos Aty Az, ooy Ao = Ais o),

)

and
(Aoj)jz0 = (Noy Ao + 1, Ao + 2u, .., Ao = No + ju, .. ),

respectively, while the remaining entries A, ; (i, j > 1) are obtained from the following non-
homogeneous recurrence relation:

Ajj=Aija+ Ay — Nicn+ s — i+ (5 — 1) (v —u), i, > 1.
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We denote by A(n) the submatrix of A(co) consisting of the entries in its first n + 1 rows
and columns. The matrix A(3), for example, is then given by

/\0 )\o—i-u )\0+2U )\0+3U
)\1 )\1+/JJ1+U )\1—1-2,u1—|—2u+v )\1+3M1+3U+3U
A =
(3) Ao Ao+ o +u Ao+ 20 + g + 2u + 2v Ao+ 3o + 3y + 3u+ Tv

)\3 )\3+[L3+U >\3+2;L3—|—,1L2+,U1+2U+3U )\3+3M3+3ﬂ2+4ﬂl+3u+120

Finally, the main result of this paper can be stated as follows:

Main Theorem. The matriz A(n), n > 0, defined as above, satisfies the following state-
ments:

T([Ll’ﬂ27/l37"')7(/l171)70707"') (n - 1)

In particular, we have det(A(n)) = det(H(n)).
(b) In the case when v =v =1 and \; = (2° — 1)c + 1, we have the following statements:

(b. 1) if s = (2i + “*2)2(””) c— N then det(A(n)) = Fys.

(b 2) if = (3 =2 = 25 ) 4 2 44 ihen det(A(n)) = Lo,
(b. 3) if p; = i*c — i* + 2i, then det(A(n)) = Joi1.
(b. 4) if s = (2i+1 + %) ¢+ B0 then det(A(n)) = Poay.

As mentioned previously, we have obtained some determinant representations of the
sequences:

F = (Fos1)nz0, L= (Lnt1)nz0, J = (Jut1)nz0 and P = (Ppi1)n>0,



which are presented in the following:

1 2 3 1 2 3
c+1 2¢+3 3¢c+6 --- c+1 2¢c+5 3c+10 ---
€ Ar, €Az,
3c+1 7¢c+3 12¢+8 --- 3c+1 9¢c+13 16c+30 ---
1 2 3 1 2 3
c+1 2¢+3 3c+6 --- c+1 2¢c+4 3¢c+8
€ Ay and € Ap.
3c+1 7¢c+2 12¢+6 --- 3c+1 8 +5 14c+13 ---

2 Main results
As the first result of this paper, we consider the following theorem.

Theorem 1. For two arbitrary sequences (N\;)i=o0 and (1;)i=0, with o = 0, and some integers
w and v, let A(co) = [A; i >0 be an infinite dimensional matriz whose entries are given by

A=A +A 1, — N+ — i+ (5 — 1) (v —u), 1, =21 (1)

and the initial conditions A;o = N; and Ag; = Ao+ iu, 1 = 0. If A(n) = [A;lo<ij<n, then
we have

A(n) = L(n) - H(n) - U(n), (2)
where .
N |u 0 0
M
H(n) = Ay
AE T(ﬂl,ﬂ2,ﬂ37-~)7(ﬂ17v70,07--~)(n —-1)
An

Proof. First of all, we recall that the entries of L(n) = [L;]o<ij<n satisfy the following

recurrence
Lij=Li1j 1+ Li;, 1<i,5<n. (3)

Similarly, for the entries of U(n) = [U; j]o<i j<n We have

Uj=U_1j1+U;1, 1<1,j<n (4)



In what follows, for convenience, we will let A = A(n), L = L(n), H = H(n) and
U = U(n). Now, for the proof of the desired factorization we compute the (z j)-entry of
L-H-U, that is

n

(L-H-U)iy=Y_> LiH.U.;. (5)

r=0 s=0
In fact, we should establish
Ro(L-H-U) =Ro(A)= (Aoy Ao+ u,..., A+ nu),
Co(L-H-U) =Co(A) = (Mo, A1, ),
and finally, show that
(L-H-U)ij=(L-H-U)iyja1+(L-H-U)iz1j— N1+ pi—pia+(—1)(v—u), (6)
for 1 <i,j <

Let us do the required calculations. Assume first that ¢ = 0. Then, we have

n

(L-H-U)o; = Z Z Lo, H,sUs; = Z Hy U j = HooUo,j + HoaUj = Ao + ju,

r=0 s=0 s=0

and so Ro(L - H -U) = Ro(A) = (Mo, Ao + 1, ..., Ao + nu).
Assume next that j = 0. In this case, we obtain

(L H U ZO_ZZLZTHTSUSO_ZLZTHTO_Z (T)S\T:)\i’

r=0 s=0 r=0

and hence we have Co(L - H - U) = Co(A) = (Ao, A1,y o oy An).
Finally, we must establish (6). Let us for the moment assume that 1 <4,j < n. In this
case, we have

n

(L -H - U)i,j = Z Z Li,T‘HT‘,SUSj Z Lz THT‘OUOJ + Z Z Lz rHr SUSj (7)

r=0 s=0 r=0 s=1

Let Q(i,j) = > > LiH, U, ;. Then, using (4), we obtain
r=0s=1

Lz THT,S(Us—l,j—l + Us,j—l) - Z Z Li,rHr,sUs—l,j—l + Z Z Li,rHr,sUs,j—l

1 r=0 s= r=0 s=
Z’I‘HTSUS 1,5— 1+(L H U)z] 1+ZLZOHOSUS 15— 1_ZL’L7"HTOUO] 1
(8)

M=

Q7)) = X

%
o
@
I

HM:



n n
For convenience, we write ©(i,j) = > > L;, H, sUs_1j—1. Now, we apply (3), to get
r=1s=1

06,7) = X2 (Licvpa+ Liciy) He U1y
r=1s=1
= > > Ly, aH Usqja+ > > Lica o Hr sUs 151
r=1s=1 r=1s=1
- Z Lifl,rler,sUsfl,jfl + Z Lifl,rler,lUO,jfl
r=2s=2 r=1

LivoHysUs—1j-1+ >, > Lica o Hy Us1 j1

r=1s=1

n
Liv,1HsUs—1 1+ >, Licv,—1HpqUpj1
r=1

+
NgE

||
N

Il
=,
M=

ﬁ
Il
N
@
Il
N

Li—l,OHLSUS—l,j—l + Z Z Li—l,rHr,s(Us,j - UsJ—l) (by (4))

+
NIE

5=2 r=1s=1
n n n
= > > Liy,aH g sUsyjoa+ > Licy o1 HeaUp ja
r=2s=2 r=1
n n
+ > LicioH1 Usrjor+ > > Licay Hy U,
s=2 r=1s=1
n n
— > > Li1,H,Us (by the structure of H)
r=1s=1
n n n n
= > Li1,HysUgsjr+ > Licipo1HrnUpjor + Y LicaoH1 sUs—1j-1
r=1s=1 r=1 s=2
n n n n
Z Z Lz 1 rHr SUSJ Z Li—l,rHT,OUO,j - Z Z Li—l,rHr,sUs,j—l
r=1s=0 =1 r=1s=1

(note that Ll 1n—1 = Un,1 J—1= 0)

= ZL’L 1,r— IHr1U0] 1+ZL1 IOHlsUs 1,9— 1+ZZL1 errsU,j

r=0 s=0
_ZLZ 10HOS EN ZL’L 1”‘H7‘0U0_7
=1
= Z Livp1HqUpj1 + Z Li1oHiUs—1jo1+(L-H-U)iq
r=1 s=2
- Z Lz 1 OHOs s,7 Z Lz 1 THT‘ OUO,] (by (5))
s=0 =1



By substituting this in (8), we obtain
Qi,j) = (L-H-U)ij1+(L-H Ui,

+> Licv,1HoaUpjor + Y LicioH1 5Us—1,j-1

r=1 s=2

_ZLz 10H05 5,j ZLZ 1r TOUOJ

+ Z LioHosUs—1,-1 — Z Li HyoUpj-1.

s=1 r=0

Finally, if the above expression is substituted in (7) and the sums are put together, then we

obtain
(L -H- U)Z'J‘ = (L -H - U)i—l,j + (L - H - U)i,j—l + \I](Zvj)v

where
Ui, j) = T%Li,rHr,oUo,j + z”: Li1p1H,1Upj1 + Zn: Li v oH sUs—1 ;1
—Z:OLZ 1,0Ho sUs Z Li 1, H,oUp; + Z LioHosUs—1;-1
_gLi,rHr,OUO,j—l-

However, by easy calculations one can show that

g;o LiyHyoUs, — zi;o LiyHyoUsy—1 = 0,
5 Lol = 52 ()= 32 (() = (7)) e == g
ZLZ o HyoUs, _rznox,—Ao — A1 — o,

S:ZQLi—LoHLsUs—l,j—l =(j — Dy,

Y Lio10HoUsj = Mo+ ju,

s=0
> LigHoUs 11 = u,
s=1
and so
W(i,j) = pi — pic1 — N1 + (7 — 1) (v — ).
This completes the proof. O



Before stating the next result, we need to introduce some additional definitions. Let
A = (A\i)iso and g = (p;)i=0 be two arbitrary sequences. The convolution of X\ and pu is the

sequence v = (v;);>0, where
i
v = E Abfbi— k-
k=0

The convolution matriz associated with sequences A and g is the infinite matrix A(co)
whose first column Cy(A(c0)) is A and whose jth column (j = 1,2,...) is the convolution of
sequences C,_1(A(oc0)) and p. We say that the convolution matrix of the sequences A and
A is the convolution matrix of the sequence A\. There are many well-known integer matrices
which can be written as convolution matrices of some sequences. For instance, U(oo) is the
convolution matrix of the sequences (1,0,0,...) and (1,1,0,0,...) and Py,.),1,1,.)(00) is
the convolution matrix of the sequence (1,1,...).
We will need the following technical result [4, Theorem 3.1].

Proposition 2. Let
Ax) = Zanxn_l» B(z) = Z bpa", V(x) = Zvnx” and W () = anx”
n=1 n=0 n=0 n=0

be the generating functions for the sequences (an)n>1, (bn)n=0, (Vn)ns0, and (wy,)nso, TESPEC-
tively. Consider an infinite dimensional matrix of the following form:

bo Vo VoWo
by | v1 VoW1 + V1Wy
M (oc) =
by | va  Vowy + V3w + vawy
where Co(M(o0)) = (bg,by,...)" and M(co)Yl is the convolution matriz of the sequences

(vi)iz0 and (wj)j>0- If

A(W(z)) = B(x)/V(x), (9)
then for any non-negative integer n, there holds
det(M(n)) = (=1)"o ey " a0,
where M(n) is the (n+ 1) x (n+ 1) upper left corner matriz of M(o0).

We are now in a position to prove the following theorem which is the second result of
this paper.

Theorem 3. Let A(n) be defined as in Theorem 1 and let ¢ be a constant. In the case when
u=v=1and \; = (2° — 1)c+ 1, we have the following statements:
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(a) if u; = (2i + %) c— @, then det(A(n)) = F41.

(b) if p; = (5731 — 2 — 27;1“) c+ 5(3171) + %, then det(A(n)) = L.

(¢) if py = i%c —i* + 2i, then det(A(n)) = Jyi1.

() of s = (2@'“ + ““)2“*4)) ¢+ B0 then det(A(n)) = Poay.

Proof. Let pn = (u;)i=0 be a sequence with pp = 0 and let ¢ be a constant. Let A = (\;);=0
be a sequence with \; = (2° — 1)c + 1. We consider the infinite matrices A(oc0) = [A; i >0
whose entries satisfy

Ai,j = Aifl’j + Ai,jfl — <2Z — 1)0 —1 —+ M — Hi—1 fOl" Z,] 2 1, (10)

with the initial conditions A;9 = (2° — 1)c+ 1 and Ag; = 1+, ¢ > 0. By Theorem 2, we
observe that

where

T o is,on), (711,0,0,0,..) (1 — 1)

C

Evidently det(A(n)) = det(H(n)), so it suffices to find det(H(n)). From the structure of
matrix H(oo), we have
Co(H(00)) = (bi)iso = (1,¢,¢,...),
whose generating function is
It (e—1)x
 1-2

B(x)

(a) Let p; = (2°+ (i72)2("+1) Je— i(i;?’). In this case, we have the following infinite dimensional
matrices:
1 2 3 4
c+1 2c+3 3c+6 4c+10
A(o0) = 3c+1 Tc+3 12¢+8 18c+ 17

Tc+1 17¢+2 32¢+8 bH3c+ 23
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and

& T(chl,ZCf1,c,c,...),(c+1,1,0,0,...)(OO)

Note that the submatrix H(oco)!! is the convolution of sequences
(v;)iso = (L,e+1,2c—1,¢,¢,...), and (w;)i=0 = (0,1,0,0,0,...),
whose generating functions are

14+ (c—2)2* - (c—1)a?
B 1—2z

V(x) and W (z) ==,

respectively. Plugging these generating functions into (9) yields

1+(c—1)z
A(W(z)) = Alz) = 1+c:r+(6712)7$xz*(071)m3 =1—2422" = 32"+ -+ (=1)" Fppa" +-- -,
1—x

and it follows by Proposition 2 that
det(H(n)) = (=1)"o5 w20, 0 = (—1)"ap1 = Fop,
as required.

(b) Let u; = (5732 — 20— %) c+ @ + . The infinite dimensional matrices created

in this case are as follows:

1 2 3 4
c+1 2c+5 3¢+ 10 4c + 16
Ao) = 3c+1 9c+13 16c+30 24c+ 53
Tc+1 3lc+36 62¢+ 88 101c+ 163

and

c T(c+3,4c+5,9c+10,19c+20,...),(e+3,1,0,0,...) (OO)

Again, one can easily see that the submatrix H(oco) is the convolution of sequences

(vi)izo = (1,¢+ 3,4c¢ +5,9¢ + 10, 19¢ + 20, ...),
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(with general form vg =1, v; =c+ 3 and v; = (5-2"%)(c+ 1) — ¢ for ¢ > 2), and
(’wi>¢>0 == (0, 1, O7 0, 0, .. )
The generating functions for these sequences are

1+ (c—1Dx)(—2*+z+1)
(1—2)(1—2x) ’

V(z) = ( and W(z) =z,

respectively. If B(x), V(x) and W(z) are substituted in (9), then we obtain

1+(c—1)z
AW(z)) = Alz) = (1+(071)i)7(ix2+x+1) = 1-3z+4a”—Te’ 112"+ (= 1)" Lppaa"+- -,
(1—z)(1—2z)

and by Proposition 2, it follows that
det(H(n)) = (=1)"op w20, 1 = (=1)"anp1 = Lo,

as required.

Let p; = i%c —i?+2i. In this case, we have the following infinite dimensional matrices:

1 2 3 4

c+1 2¢c+3 3c+6 4c+10
Aloo) = | 3c+1 Te+2 12¢+6 18c+ 14
7c+1 16c—1 30c+1 50c+ 11

and

c T(c+1,2c—2,0,0,...),(c+1,1,0,0,...)(OO)

Moreover, from the structure of H(oc), we see that the submatrix H(co)! is the
convolution of sequences

(Ui)i>0 = (1,6-}-1,20-2,0,0, )7 and (wi)i>0 = (0,1,0,0,...),
with generating functions V(z) = 1+ (c+ 1)z + (2¢ — 2)2? and W (z) = x, respectively.
Substituting the obtained generating functions in (9), we obtain
1+(c—1)z

A = A(z) = 1-z — 1— 2 530 (1) ny.
(W(z)) (z) T 7 Drt (2= D2 o432 =51 "+ - 4(=1)" T 2"+

12



Therefore, it follows from Proposition 2 that
det(H(n)) = (=1 "oy ™ a0 = (1) ani = Jup,
as required.

Let ju; = <2i+1 + w> c+ @ This time, we will deal with the following ma-

trices:
1 2 3 4

c+1 2c+4 3¢+ 8 4c + 13
A(o0) = 3c+1 8c+5 1ldc+ 13 21lc+ 26
Tc+1 2le+5 4le+ 17 68c+ 42

and

c Te+2,30-1,2¢,2¢,..)(c+2,1,0,0,...) (00)

In addition, the submatrix H(co)!!l of H(00) is the convolution of sequences:
(v)iso = (1,¢+2,3¢—1,2¢,2¢, ...) and (w;)i=0 = (0,1,0,0,...).
Note that the generating functions of these sequences are

14+ 140z +(2¢—3)a* — (c—1)z?
B 11—

V(z) and W(x)=x.,

respectively. After having substituted these generating functions in (9), we obtain

1+(c—1)z

AW (z)) = A(z) = 1+(1+C)$C+(2lc:§)$2_(C—l);v3 = 1-20+52"— 1224+ 4 (=1)" Ppyra™+- -

11—z

Now, by Proposition 2, we deduce that
det(H(n)) = (—1)"0f "0l D 20,00 = (<1) a1 = Pasa,

as required.

This completes the proof. O]
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3 Some remarks

In this section, we will explain how the sequences (A;);=o and (p;);>o in Theorem 3, are
determined. Consider the following lower Hessenberg matrix

hoo hoi O 0 0
hip hi1 hig O 0
hao hoy hig hip 0O
h3o hsi hey hix hip
hao hay hzy hoy hig

Let H(n) = [H;;lo<ij<n, and let d,, be the nth determinant of H(n). In what follows, we
show that the sequence of principal minors of H(o0), i.e., D(H(o0)) = (d,,)n>0, satisfies a
recurrence relation.

Proposition 4. With the above notation, we have
ho,0, if n=0,
dn = n—1
(=1)"ho1(h12)" o + D0 hppa (=hi2) i, if n>1.
k=0

Proof. Obviously, dy = hoo. Hence, from now on we assume n > 1. First, we apply the
following row operations:

Hi(n) = (}i{l Oz‘,o(%ﬁl))[{(”)?
Hy(n) = (7::11 O¢+1,1(;T;)> Hi(n),
Hs(n) = (7::12 Oi+2,2(%)> Hy(n),

Ha(n) = (I Ocetuna(535)) Hua ()

It is obvious that, step by step, the columns are “emptied” until finally the following matrix

hoo hex O 0 0 - 0
hio 0 his 0 0 0
hog 0 0 hy O 0
H,(n) = hso 0 0 0 hio 0 ,
Boio O 0 0 0 1o
hho O 0 0 0 0

(n+1)x(n+1)



is obtained, where

ho’o, if = O,

h01h0 0 if 7= 17 (11)

=

i,0 =

hzO_

h01

i—1 _
=hoo — 112 > hickihio, if P> 2.
=}

Evidently, d,, = det(H,(n)). Expanding the determinant along the last row of det(H,(n)),
we obtain

dn = (—1>nﬁn70h071(h172>n71, (TL 2 1) (12)
Finally, after some simplification, it follows that

d, = (—1)nl~ln,0h0,1 (h1,2)n71

e (_1)nh071(h172)n*1 [hno - h’gih [) - hl 5 Z h/n klhko (by (]‘1))

n—1 ~
= (=1)"ho1(h12)" thuo + (=1)" " (h12)" T hyihoo + (—=1)" T ho1(h12)" 2 > hp—rahio
=1
n—1
= (=1)"ho1(h12)" thno+ (=1)" T (hy2)" T huihoo + Y hu—ki(—hi2)" ", (by (12))
=1

n—1
= (=1)"ho1(h12)" g + 32 Bpga(—hy2)" 5.
k=0

and the result follows. ]

In Proposition 4, if we take hog = ho1 =1, higo = 1, hjgp = ¢ and h;; = fi; for i > 1,

then we obtain
1, if n=0;

dn = n—1
(=D)"c+ Y fingp(=1)""* 1y, if n>1.
k=0

Now, if (d,,)n=0 € {F, L, T, P}, then
,I:Ln = n ld + Z k+1 1 kdkv

from which we determine the sequence (fi;);>1. Now, we form

111 0

H(co)=] €
T(,[ll7[)/2»/137"')7(1&’17170707"') (OO)
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Finally, the sequences (\;);>0 and (u;);>o are determined by the equation A(n) = L(n) -
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