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Abstract

Suppose n runners having nonzero distinct constant speeds run laps on a unit-length
circular track. The Lonely Runner Conjecture states that there is a time at which all
the n runners are simultaneously at least 1/(n + 1) units from their common starting
point. The conjecture has been already settled up to six (n ≤ 6) runners and it is open
for seven or more runners. In this paper the conjecture has been proved for two or
more runners provided the speed of the (i+1)th runner is more than double the speed
of the ith runner for each i, arranged in an increasing order.

1 Introduction and Summary

The conjecture in its original form stated by Wills [10] and also independently by Cusick [6]
is as follows:

For any n positive integers w1, w2, . . . , wn, there is a real number x such that

‖wix‖ ≥
1

n + 1
,

for each i = 1, 2, . . . , n, where for a real number x, ‖x‖ is the distance of x from
the nearest integer.

Due to the interpretation by Goddyn [4], the conjecture is now known as the “Lonely
Runner Conjecture”.
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Suppose n runners having nonzero distinct constant speeds run laps on a unit-
length circular track. Then there is a time at which all the n runners are simul-
taneously at least 1/(n + 1) units from their common starting point.

The term “lonely runner” reflects an equivalent formulation in which there are n + 1
runners with distinct speeds.

Suppose n+1 runners having nonzero distinct constant speeds run laps on a unit-
length circular track. A runner is called lonely if the distance (on the circular
track) between him (or her) and every other runner is at least 1/(n + 1). The
conjecture is equivalent to asserting that for each runner there is a time when he
(or she) is lonely.

The case n = 2 is very simple. For n = 3, Betke and Wills [3] settled the conjecture while
Wills was dealing with some Diophantine approximation problem and also independently
by Cusick [6] while Cusick was considering n-dimensional “view-obstruction” problem. The
case n = 4 was first proved by Cusick and Pomerence [7] with a proof that requires a work
of electronic case checking. Later, Bienia et al. [4] gave a simpler proof for n = 4. The
case n = 5 was proved by Bohman, Holzman and Kleitman [5]. A simpler proof for the case
n = 5 was given by Renault [9]. Recently, Barajas and Serra ([1], [2]) proved the conjecture
for n = 6. Goddyn and Wong [8] gave some tight instances of the lonely runner. For n ≥ 7
the conjecture is still open. We prove the conjecture for two or more runners provided the
speed of the (i+1)th runner is more than double the speed of the ith runner for each i, with
the speeds arranged in an increasing order.

2 Main Result

Theorem 1. Let M = {m1,m2, . . . ,mn} where n ≥ 2, and (
mj+1

mj
)(n−1

n+1
) ≥ 2 for each

j = 1, 2, . . . , n − 1. Then there exists a real number x such that

‖mjx‖ ≥
1

n + 1
,

for each j = 1, 2, . . . , n.

Proof. Consider an interval I = [u, v] = [ 1
m1(n+1)

, n

m1(n+1)
]. Clearly, for x ∈ I, we have

‖m1x‖ ≥ 1
n+1

, and v − u = 1
m1

(n−1
n+1

). Let us denote the interval I by I1. We now construct
the intervals I2, I3, . . . In satisfying the following properties:

(a) I1 ⊃ I2 ⊃ I3 ⊃ . . . ⊃ In

(b) For Ij = [uj, vj], vj − uj = 1
mj

(n−1
n+1

)

(c) For each x ∈ Ij we have ‖mjx‖ ≥ 1
n+1
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Clearly, I1 satisfies (b) and (c). Inductively, we now define the jth interval Ij = [uj, vj]. We
have

mjvj−1 − mjuj−1 =
mj

mj−1

(

n − 1

n + 1

)

≥ 2.

Therefore, there exists an integer ℓ(j) such that

mjuj−1 ≤ ℓ(j) < ℓ(j) + 1 ≤ mjvj−1 ⇒ uj−1 ≤
ℓ(j)

mj

<
ℓ(j) + 1

mj

≤ vj−1.

Define,

Ij = [uj, vj] =

[

ℓ(j) + 1
n+1

mj

,
ℓ(j) + n

n+1

mj

]

.

It can be seen easily that the interval Ij satisfies all (a), (b) and (c). Since the intersection
of the intervals I1, I2, . . . In is nonempty therefore, we have the theorem.

In the theorem we have seen that the n runners having their speeds r1, r2, . . . , rn with
(

rj+1

rj
)(n−1

n+1
) ≥ 2 satisfy the Lonely Runner Conjecture.
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