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ABSTRACT. In this note, we shall investigate the Holder continuity of matrix functions applied
to normal matrices provided that the underlying scalar function is Hélder continuous. Further-
more, a few examples will be given.
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1. INTRODUCTION

We consider a scalar functioff : D — C on a (possibly unbounded) subsetof the
complex planeC. In this note, we shall be particularly interested in the case wheseHolder
continuous with exponenton D, that is, there exists a constant (0, 1] such that the quantity

(1.1) (flop = sup !f(x)_— fc(yy)\
I;fyD ’x y’

is bounded. We note that Holder continuous functions are indeed continuous. Moreover, they
areLipschitz continuou# « = 1; cf., e.qg., [4].
Let us extend this concept to functions of matrices. To this end, consider
M (C) = {A eC™: A"A = AAH},

normal

the set of all normal matrices with complex entries. Here, for a matrix [a;;]};_,, we use

the notationAH = [@j:]} ;-1 to denote the conjugate transpose4f By the spectral theorem
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normal matrices are unitarily diagonalizable, i.e., for ehe M " (C) there exists a

normal

unitaryn x n-matrixU, UNU = UU" = 1 = diag (1,1, ...,1), such that
U"XU = diag (A, Aa, ..., M),

where the set(X) = {\}, is the spectrum ofX. For any functionf : D — C,
with o(X') C D, we can then define a corresponding matrix function “value” by

see, e.g.,[5,/6]. Here, we use the bold face leftew denote the matrix function corresponding
to the associated scalar functign

We can now easily widen the definition (IL.1) of Holder continuity for a scalar fungtion
D — C to its associated matrix functiofi applied to normal matrices: Given a subBetC
M (C), then we say that the matrix functigh: D — C™*" is HOlder continuous with

normal

exponentx € (0,1] on if

1F(X) — F(Y)lle
1.2 aD = e}
(1.2) [flap )221%) IX_Y[°

is bounded. Here, for a matriX = [z4]7,_, € C"*" we define[| X || to be the Frobenius
norm of X given by

| X ||z = trace (X" X) Z 2517, X = (zy)}-1 € MP(C).
2,0=1
Evidently, for the definition[(1]2) to make sense, it is necessary to assume that the scalar

function f associated with the matrix functiofi is well-defined on the spectra of all matri-
cesX €D, i.e.,

(1.3) | o(X)CD.
XeD
The goal of this note is to address the following question: Provided that a scalar fugiction
is Holder continuous, what can be said about the Holder continuity of the corresponding matrix
function f? The following theorem provides the answer:

Theorem 1.1. Let the scalar functiory : D — C be Hdlder continuous with exponetate
(0,1], andD C M7*" (C) satisfy(1.3). Then, the associated matrix functign. D — C™*"

normal

is Holder continuous with exponentand

11—«

(1.4) [flap < n?[f]a,l?
holds true. In particular, the bound
(1.5) 1F(X) = FYV)lle < [flapn = [ X =Y,

holds foranyX,Y € D.

2. PROOF OF THEOREM [1.1

We shall check the inequality (1.5). From this {1.4) follows immediately. Consider two
matricesX,Y < D. Since they are normal we can find two unitary matriged¥ € M"*"*(C)
which diagonalizeX andY’, respectively, i.e.,

VXV = Dx = diag (A, Ao, ..., ),
WHYW = DY = dlag (:ulhu% s 7M7L) )
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where{\;}” , and{u;}!_, are the eigenvalues o andY’, respectively. Now we need to use
the fact that the Frobenius norm is unitarily invariant. This means that for any natexC"*"
and any two unitary matriceR, U € C™*" there holds

IRXU|lf = [ X[z
Therefore, it follows that
|X =Yg = |[VDxV*" - WDy W[
= |WHVDx V'V - WHW D, WV ||
— |W"VDx - DyW"V|:

= (WHVDx — DyW"V) :

(2-1) ij=1 "
n n 2
= Z (WHV)M (DX)k,j - (DY)i,k (WHV)k,j
i,j=1 | k=1

2
=S|, [l
i,j=1
In the same way, noting that
f(X)=ViDx)V",  f(Y)=W/f(Dy)W",

we obtain

1£) = 1 = 3 | W), 1) — sl

i,7=1

Employing the Hélder continuity of, i.e.,

‘f(x)_f(y)’S[f]a7D|$_y|a7 .’L’,yED,
it follows that

(2.2) 1F(X) = FOE < [lap D ‘(WHV)M 2

ij=1

2c¢

|Aj—'ﬂﬂ

Fora = 1 the bound[(1]5) results directly frof (2.1) and {2.2)0 K « < 1, we apply Holder’s
inequality. That is, for arbitrary numbess t; € C,i = 1,2, ..., there holds

> lsiti] < (eririy (Z mmy_a.

i>1 i>1 i>1

In the present situation this yields

IF(X)— FOY) < aDZ (= s [V ) i) [
<[ aD(Z‘WH y |)\ — ) (Z‘WH ”2>10‘.
ij=1 =
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Therefore, using the identity (2.1), there holds

IFX) = FV)e < [flon 1 X = Y (Z (W), ) .

Then, recalling again that || is unitarily invariant, yields

(3 |,

1,j=1

l1—«

2 oz H l1-a 11—« -
= WV = e =0

This implies the estimaté (1.5).

3. APPLICATIONS

We shall look at a few examples which fit in the framework of the previous analysis. Here,
we consider the special case that all matricesraat and symmetric In particular, they are
normal and have only real eigenvalues.

Let us first study some functions : D — R, whereD C R is an interval, which are
continuously differentiable with bounded derivative bn Then, by the mean value theorem,

we have
f(x) = f(y) ‘

LI = sup 9] < o

£ebD

[f]1,D = Sup
z,yeD
T#Y

i.e., such functions are Lipschitz continuous.

Trigonometric Functions: Letm € N. Then, the functions — sin™(¢) andt — cos™(t) are
Lipschitz continuous ofR, with constant

m—1
d d m—1
L,, = [sin™ = |cos™ =sup|—sin™(t)| =sup |— cos™(t)| = vm | ——— )
i = cos” 5 = sup | s ()| = sup | cos”(0) = v (=)
Thence, we immediately obtain the bounds
m—1
—1
s ) = s (V) < v (YO0 X -
m—1
—1
Jeos™(3) — cos (¥ e < i (=L)X -

for any real symmetria x n-matricesX, Y. We note that

m—1
llm m—_l = e
oo \ ™~ im ’

and hencd.,,, ~ /m with m — oc.

VI

Gaussian Function: For fixedm > 0, the Gaussian functiofi : ¢t — exp(—m¢t?) is Lipschitz
continuous orR with constan{f], x = v2mexp(—3). Consequently, we have for the matrix
exponential that

|exp(—mX?) — exp(—mYz)HF < V2me 2 I X =Yg,

for any real symmetrie x n-matricesX,Y .
We shall now consider some functions which are less smooth than in the previous examples.
In particular, they are not differentiable @t
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Absolute Value Function: Due to the triangle inequality
[zl =Tyl < le—yl,  wzyeR,
the absolute value functiofi : ¢ — |¢| is Lipschitz continuous with constaff], x = 1, and
hence
(3.1) IXT = 1Yl < [IX = Ylle,

for any real symmetria: x n-matricesX,Y. We note that, for general matrices, there is an
additional factor ofy/2 on the right hand side of (3.1), whereas for symmetric matrices the
factor 1 is optimal; see [1] and the references therein.

p-th Root of Positive Semi-Definite Matrices: Finally, let us consider the-th root (p > 1) ofa

real symmetric positive semi-definite matrix. The spectrum of such matrices belongs to the non-
negative real axe® = R, = {z € R : = > 0}. Here, we notice that the functigh: ¢ — tr

is Holder continuous o with exponeniv = % and[f}iD = 1. Hence, Theore@.l applies.

In particular, the inequality

(3.2) H Xr Yy

p—1

7 [ X =Yg

P
<n
F

holds for any real symmetric positive-semidefinitex n-matricesX,Y. We note that the
estimate[(3]2) is sharp. Indeed, there holds equalify ifs chosen to be the identity matrix,
andY is the zero matrix.

We remark that an alternative proof 6f (8.2) has already been givén in [2, Chapter X] in the
context of operator monotone functions. Furthermore, closely related results on the Lipschitz
continuity of matrix functions and the Holder continuity of th¢h matrix root can be found in,

e.g., [2, Chapter VII] and [3], respectively.
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