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variation (Lipschitzian or monotonic) are given. Applications in relation with
the well-knownCebySev, Griss, Ostrowski and Lupas inequalities are provided
as well.
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1. Introduction

In 1998, S.S. Dragomir and |. Fedotot(] introduced the followingGruss type
error functional

D(fiwi= [ FOdu(t) - u@) ~u®)]- ;= [ fa

in order to approximate thRiemann-Stieltjes integrqlf f(t) du (t) by the simpler
guantity

b
@) ~u @) 5 [ Fa

In the same paper the authors have shown that
1
(1.2) D(fiw) < 5 LM =m)(b—a),

provided that: is L—Lipschitziani.e.,|u (t) — u (s)| < L |t — x| foranyt, s € [a, b]
andf is Riemann integrabland satisfies the condition
—co<m< f(t) <M < oo foranyt e [a,b].

The constan% Is best possible in1(1) in the sense that it cannot be replaced by a
smaller quantity.
In [11], the same authors established another resulbfof; «) , namely

(12) D ()l < 5K - a)\/ (W)

provided that. is of bounded variatioron [a, b] with thetotal variation \/Z (u) and
f is K—Lipschitzian. Here! is also best possible.
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In [8], by introducing thekernel®,, : [a,b] — R given by

1
(L3) @ ()= [(t—a)u®) + - ul@)] —u(t), te b,
the author has obtained the followiirgegral representation
b

(14 D(fiw = [ e (®),
whereu, f : [a b — R are bounded functions such that the Riemann-Stieltjes in-
tegralf f (t)du (t) and the Riemann mtegr# f (t) dt exist. By the use of this
representatlon he also obtained the following boundsD‘()f u),
(1.5) |D(f;u)

sup | D, (t)] - \/Z (f) if uis continuous and is of bounded variation;

te[a,b]

<

L f |®, (t)|dt if uis Riemann integrable anglis L-Lipschitzian;

f |®, (t)| dt if uis continuous ang is monotonic nondecreasing.
If « is monotonic nondecreasirand K (u) is defined by

K (u) = (bfa)Q /ab (t— a;b)u(t)dt(z 0),
then

(L6) D (f)] < 5 (b~ a) [ (5) — w(a) ~ K (u)]

VAN
|

L~ a)u(b) — ua)],
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provided thatf is L—Lipschitzian ona, b] .
Here% is best possible in both inequalities.
Also, for u monotonic nondecreasing ¢m b| and by defining (u) as

Q (u) ;_ﬁ u(t)sgn(t—“T”> dt (> 0),

we have
@.7) D (fiw)] < [u(d) —u(a) - Q)] \/(f) <[u®) —ula)]-\/(f),

provided thatf is of bounded variation ofa, b] . The first inequality in{.7) is sharp.
Finally, the case when is convex andf is of bounded variation produces the
bound

(L8) D ()] < 5 [ ()~ @] (b—a) V(7).

a

with 1 the best constant (wheri_ (b) andw/, (a) are finite) and iff is monotonic
nondecreasing andis convex ona, b| , then

(1.9) 0<D(f;u)
§2.u’_(bl)):zg(a)_/a (t—a;b)f(t)dt
3 (W= (0) =, (a)] max{[f (a)| .| f ()]} (b~ a)

L [ (0) = @] 1, (=) i p= 1, bl =

IN

[ () =y (@] I £1];
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where2 and; are sharp constants (wheh (b) and/, (a) are finite) and|-[|, are

the usual Lebesgue norms, i.gf|, := (ff |f ()" dt T op>1.

The main aim of the present paper is to provide sharp upper bounds for the abso-
lute value ofD ( f; ) under various conditions far', the derivative of an absolutely
continuous functiom, and f of bounded variation (Lipschitzian or monotonic). Nat-
ural applications for th€ebysev functional that complement the classical results due
to CebySev, Gruss, Ostrowski and Lupasg are also given.

Gruss-type Inequalities
Sever S. Dragomir

vol. 8, iss. 4, art. 117, 2007

Title Page
Contents
44 44
< 14
Page 6 of 28
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au

2. Preliminary Results

We have the following integral representationdof.

Lemma 2.1. Assume that : [a,b] — R is absolutely continuous dn, b] and such
that the derivative/ exists ona, b] (eventually except at a finite number of points).
If «' is Riemann integrable oim b, then

(2.1) € la,b],

where the kernek : [a, b] — R is given by

b—t)(s—a) If s€la,t
K(t,s)::{ (b=1)(s—a) if s€ a1,

(t—a)(b—1s) if se (0]
Proof. We give, for simplicity, a proof only in the case whehis defined on the
entire interval, and for which we have used the usual conventionuthal :=
v, (a),u (b) := v’ (b) and the lateral derivatives are finite.

Sinceu’ is assumed to be Riemann integrablgam| , it follows that the Riemann-

Stieltjes integrals/’ (s — a) du’ (s) and ftb (b— s)du’(s) exist for eacht € [a,].
Now, integrating by parts in the Riemann-Stieltjes integral, we have successively

/abK(t,S)du’(S):(b—t)/at(s—a)du’(s)+(t_a)/tb(b_s)duz(8)

— | W (s) ds}

o~ [l

(2.2)

a

=(b—1) {(s —a)u (s)

+ (t —a) {(b —s)u' (s)
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for anyt € [a, b] , and the representatiofi.() is proved. O

The following result provides a sharp bound fdr,| in the case when/’ is of
bounded variation.

Theorem 2.2. Assume that : [a,b] — Ris as in Lemm&.L If «" is of bounded
variation onla, b] , then

(2.3) [ ()] <

where\/’ («') denotes the total variation af on [a, b] .
The inequalities are sharp and the constérii; best possible.

Proof. It is well known that, ifp : [, 5] — R is continuous and : [a, 3] — R is of
bounded variation, then the Riemann-Stieltjes integfab (s) dv (s) exists and

[ reae)

B
< sup [p(s)|\/ (v).

s€[a,f]
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Now, utilising the representatiof? (1) we have successively:

(2.4) |2y ()]
1 t b
< {(b—t) / (s —a)d (s)| + (t — a) / (b—s)du’(s)]
—a a t
1 t b
< b—t — (t — b—s)- ' »
~b—a [( ) ssel[lapt S CL \.L/ CL ssel[ltlz ( 8) \t/ (u )] Griss-type Inequalities
" ) Sever S. Dragomir
(t=a)(b—1) (t—a)(b—1) vol. 8, iss. 4, art. 117, 2007
B b—a \a/ )+ \t/ T b—a \a/
The second inequality is obvious by the fact thiat-a) (b —t) < 1 (b—a)?, t € Title Page
la,b]. Contents
For the sharpness of the inequalities, assume that therefexist- 0 so that « "
b b
@5 je.wl<a 20Ny <)\ ), « >
“ “ Page 9 of 28
with » as in the assumption of the theorem. Then,tfet “*” , we get from £.5)
that Go Back
b b Full Screen
u(a) +u(b) a+b 1 : :
(26) | =5 —ul— §1A(b—a)\a/(u)§B(b—a)\a/(u). s
Consider the functiom : [a,b] — R, u (t) = |t — «E2| . This function is absolutely journal of inequalities
continuousy/’ (t) = sgn (t — 4£) | ¢ ,b \ {«*} and\/’ (v) = 2. Then @.6) in pure and applied
becomes% < 1A(b—a) < 2B (b— a), which implies thatA > landB > mdth?rfgfi
1 issn: =
1 O
4

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au

Corollary 2.3. With the assumptions of Theoren®, we have

2.7) M—%“;b)‘gi(b—@\?m.

The constan§ is best possible.
The Lipschitzian case is incorporated in the following result.

Theorem 2.4. Assume that : [a,b] — R is absolutely continuous dn, b] with the
property thatu’ is K —Lipschitzian on(a, b) . Then

2.8) |q>u(t)|g%(t—a)(b—t)f(g%@_a)?f(.
The constantg and ; are best possible.

Proof. We utilise the fact that, for ai.—Lipschitzian functionp : [o, 5] — R
and a Riemann integrable functien: [, 3] — R, the Riemann-Stieltjes integral

ffp (s) dv (s) exists and

[ peae)

Then, by £.1), we have that

B
gL/ 1p(s)|ds.

29) [P (1)
1

b—a[@_ﬂ

<

[ e-aaw | ru-al[ 0=

|
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1

< SR 0= 1) (=0 4 5K (1~ a) (b — 1)
= Lt-a) -k,

which proves the first part o2(8). The second part is obvious.

Now, for the sharpness of the constants, assume that there exist the constants

C, D > 0 such that
(2.10) 1D, ()| <C(b—1t)(t—a)K <D((b—a)kK,

provided thatu is as in the hypothesis of the theorem. Foe “T“’, we get from
(2.10 that

2.11) u(a)+u(b)_u(a+b

1 2 2
5 5 )‘ 4CK b—a)*<DMb—-a)K

Consideru : [a,b] — R, u (t) = 1 |t — %2|*. Thenu/ (t) = t — % is Lipschitzian

with the constanf = 1 and ¢.11) becomes

1 1
g(b—a)2 < ZC(b—a)2 < D(b—a)*,
which implies that” >  andD > 1. O

Corollary 2.5. With the assumptions of Theorei, we have

(2.12) M —u (C‘T“’)' < % (b—a)’K.

The constant is best possible.
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Remarkl. If «' is absolutely continuous anj”|| , = esssup,¢(,y [u” (t)| < oo,
then we can také& = ||«”||__ , and we have fromZ.8) that

1 1
(213) [0 <5t —a) (b=l < g b—a) v
The constantg and; are best possible ir2(13.
From (213 we also get Griiss-type Inequalities
Sever S. Dragomir
(214) M —u (GT_’—b> ‘ S é (b — CL>2 HU”HOO , vol. 8, iss. 4, art. 117, 2007
in which £ is the best possible constant. Title Page
Contents
44 44
< >
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3. Bounds in the Case when!' is of Bounded Variation

We can start with the following result:

Theorem 3.1. Assume that; : [a,b] — R is as in Lemm&.1 If v’ and f are of
bounded variation offu, b] , then

(3.1) 1D (f;u

b b
b—a\/ \/

and the constan} is best possible in3( 1).

»&IH

Proof. We use the following representation of the functioh&lf; «) obtained in 8]
(see also9] or [6]):

(3.2) D (fiu) = / B, (1) df (1)

Then we have the bound
b

D= | [ w0 <t>] < s %01V )
1 b b
<\ ) gup (0= a) (b= 1) -V ()

b

= 10—\ @)\ (),

a

where, for the last inequality we have used3.

Gruss-type Inequalities
Sever S. Dragomir

vol. 8, iss. 4, art. 117, 2007

Title Page
Contents
44 44
< 14
Page 13 of 28
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au

To prove the sharpness of the constg,nassume that there is a constant> 0
such that

b b
(3.3) D (fiw)| < E®—a)\/ () (f)

Consideru : [a,b] — R, u(t) = [t — 2|  Thenu/(t) = sgn(t —42), t €
[a,b]\ {<2} . The total varlatlon or{n b] is 2 and

/Hbf dt—l—/ f(t)dt = / sgn( a;—b) f(t)dt.

Now, if we choosef (t) = sgn (¢t — 2t), then we obtain from{.1) b — a <
4E (b — a), which implies thatt’ > 1. O

The following result can be stated as well:

Theorem 3.2. Assume that : [a,b] — R is asin Lemma.1 If the derivativeu’ is
of bounded variation ofu, b] while f is L—Lipschitzian ora, b], then

b
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Remark2. It is an open problem whether or not the const]g;uiﬁ the best possible
constant in §.4).

When the integrand is monotonic, we can state the following result as well:
Theorem 3.3. Assume that is as in Theoren3.1. If f is monotonic nondecreasing
on|a,b|, then

a+b

| VAR
@) (w2 Y [ g
’ %vaonmxﬂf<>mwx>nmb—am

b .
VL@ I, (- ) i p= 1, b

IN

L Ve @) IIF1L

1

where||f|[, : (f If @) dt) , p > 1 are the Lebesgue norms. The constants
and ; are best possible in3(5).

Proof. It is well known that, ifp : [a, 3] — R is continuous and : [«, 5] —
R is monotonic nondecreasing, then the Riemann-Stieltjes intqgrgal(t) dv (t)

exists and’fﬁ t)do(t ’ < fﬁ Ip (t)|dv (t). Then, on applying this property for
the mtegralf ®, (t)df (t), we have

(3.6) MNﬁwP:lb ‘ /W@ 0l df (1
gﬁqz)/na—mw—www>
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where for the last inequality we usedl ).
Integrating by parts in the Riemann-Stieltjes integral, we have

b

b b
[a-ae-nsm-roe-0c¢-of - [ Far@nsoa

:2/ab (t—a;b>f(t)dt,

which together with §.6) produces the first part oB(5).
The second part is obvious by the Holder inequality applied for the integral
7 (t — =) f () dt and the details are omitted.

For the sharpness of the constants we use as examigs= |t — “*| and
f(t)=sgn(t — %) ¢ € [a,b]. The details are omitted. O
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4. Bounds in the Case when!' is Lipschitzian

The following result can be stated as well:

Theorem 4.1.Letu : [a,b] — R be absolutely continuous da, b] with the property
that«' is K—Lipschitzian on(a, b) . If f is of bounded variation, then

b

1 Griss-type Inequalities
(41) |D (f’ u>| g (b - a> K \/ (f) ’ Sever S. Dragomir

vol. 8, iss. 4, art. 117, 2007

The constant is best possible in/(1).

Proof. Utilising (2.6), we have successively: Title Page
b b Contents
D] = | [ wuar (0] < swp o 0]V —
b < >
< —K sup [(b—t)(t—a
-2 te[a%] ( \a/ Page 17 of 28
b
1 Go Back
g(b—a) KN/ (f),
a Full Screen
and the inequality4.1) is proved. Close
Now, for the sharpness of the constant, assume that the inequality holds with a
constantz > 0, i.e., journal of inequalities
in pure and applied
) b mathematics
(4.2) D (f;u)] <G (b—a) K\/ (f)- issn: L443-575k
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for w and f as in the statement of the theorem.
Consideru (t) = % (t — “T*b)z and f (t) = sgn(t— %), t € [a,b]. Then
u' (t) =t — “tt is K—Lipschitzian with the constant’ = 1 and

D(f;u):/absgn(t—a;—b> | (t_a—;b> i (b—4a)2_

Since\/’ (f) = 2, hence from4.2) we get@ < 2G (b — a)®, which implies that
G>3 O

The following result may be stated as well:
Theorem 4.2. Letv : [a,b] — R be as in Theorem. 1. If f is L—Lipschitzian on
[a, b] , then
1
(4.3) D (fiu)| < 5 (b—a)’ KL.

The constant; is best possible in4(3).
Proof. We have by ?.9), that:

b

D) = | [ 0. @yas <t>\

b
<L |o. )

1 b 1
§§LK/ (b—t)(t—a)dt:EKL(b—a)?’,

and the inequality is proved.

Gruss-type Inequalities
Sever S. Dragomir

vol. 8, iss. 4, art. 117, 2007

Title Page
Contents
44 44
< 14
Page 18 of 28
Go Back
Full Screen

Close

journal of inequalities
in pure and applied
mathematics

issn: 1443-575k

© 2007 Victoria University. All rights reserved.


http://jipam.vu.edu.au
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au

For the sharpness, assume tlag) holds with a constank’ > 0. Then
(4.4) ID(f;u)l < F(b—a)’ KL,

providedf andu are as in the hypothesis of the theorem.

Considerf (t) = ¢ — 2 andu (t) = 1 (¢t — %“)2 . Then/ is Lipschitzian with

the constanf = 1 andf is Lipschitzian with the constarit = 1. Also,

zuﬁuyzlbe_a;ﬁ)ﬂﬁ:(b;ﬁi

and by ¢.4) we get®-%" < F (b — a)* which implies thatF" > 1. O

Finally, the case of monotonic integrands is enclosed in the following result.

Theorem 4.3.Letu : [a,b] — R be as in Theorem.1. If f is monotonic nonde-
creasing, then

(4.5) |D(f;u)|§K/( +b)f(t)dt
Ui max (| ()] 1f ()]} (b — a)?

K|fll,(b—a)*™ if p>1, L+ 1 =1

IN

2(q+1 l/q

s(b—a)K|[f],.

The first inequality is sharp. The constanis best possible.
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Proof. We have
b
(il < [ @)l (0

g%K/a (b—t)(t—a)df (t)

:K/ab (t—a;Z))f(t)dt

and the first inequality is proved. The second part follows by the Holder inequality.

The sharpness of the first inequality and of the cons}aﬁuﬂlows by choosing
u(t) = |t — < andf (t) = sgn (t — 2t2) . The details are omitted. O
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5. Applications for the éebyéev Functional

The above result can naturally be applied in obtaining various sharp upper bounds

for the absolute value of tr@ebyéev functional’ (f, g) defined by

(5.1) C(f,9):

dt——/ o oL

where f,g : [a,b] — R are Lebesgue integrable functions such tﬁgtis also
Lebesgue integrable.

There are various sharp upper bounds|fo( f, g)| and in the following we will
recall just a few of them.

In 1934, Gruss]3] showed that

1
(52) C(f.9)| < 7 (M —=m) (N =n)
under the assumptions thAandg satisfy the bounds

(5.3) —co<m< f(t)<M<oo and —oco<n<g()<N<o0

for almost everyt € [a,b], wherem, M, n, N are real numbers. The const%nts
best possible in the sense that it cannot be replaced by a smaller quantity.

Another less known result, even though it was establishe@ddyySev in 1882
[1], states that

(5.4 C (o)l < 35 1 e 0= ).

provided thatf’, g’ exist and are continuous [n, b] and || f'||, = sup;ep |/ ()]
The constant; cannot be replaced by a smaller quantity. Tebysev inequality
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also holds iff, g are absolutely continuous da, b|, f', ¢’ € Lo [a,b] and||-|| _ is
replaced by thess sup norm || f'|| = esssup,eqy [f ()]

In 1970, A. Ostrowski 16] considered a mixture between Griss aémbyéev
inequalities by proving that

(5.5) 1C(f.9)l <

provided thatf satisfies §.3) andg is absolutely continuous and € L, [a, b] .
Three years after Ostrowski, A. Lupak4] obtained another bound far (f, g)
in terms of the Euclidean norms of the derivatives. Namely, he proved that

(b—a)(M—=m) g,

0| =

1
(5.6) C(f:9)l = — (0—=a) [lf'llz llg'll;

provided thatf and g are absolutely continuous anfd, ¢ € L, [a,b]. Here % is
also best possible.
Recently, Cerone and Dragomit]] proved the following result:

I I
67 IOl < intlo =l = [ |0 =525 [ £
providedf € L{a,b] andg € C'[a,b].
As particular cases o(7), we can state the results:
I I
68  CU<lilg= [ 10— [ T asa
if g€ Cla,b)andf € L [a,b] and
1 I I
69 (CUl<zM=m = [ 10— [ @asae
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wherem < g (z) < M for z € [a,b]. The constant$ in (5.8) and1 in (5.9) are best
possible. The inequalitys(9) has been obtained before in a different wayah [
For generalisations in abstract Lebesgue spaces, best constants and discrete ver-

sions, seed]. For other results on th€ebysev functional, se€]] [7] and [12].

Now, assume thag : [a,b] — R is Lebesgue integrable di,b]. Then the
functionu (t) := fatg (s) ds is absolutely continuous d, b] and we can consider

the function

t—a

t b
(5.10) D, () ::(Pu(t):/g(s)ds—b_a/ g(s)ds, te€]a,b].

Utilising Lemma2.1, we can state the following representation result.

Lemma 5.1. If g is absolutely continuous, then

1

(5.11) ég(t):b_a/ K(ts)dg(s), telab,

whereK is given by £.2).

As a consequence of Theorem& and?2.4, we also have the inequalities:

Proposition 5.2. Assume thag is Lebesgue integrable dn, b] .

(i) If g is of bounded variation ofw, b] , then

(t—a)(b—t

b b
612)  [a, )< 220N g < LoV ).

The inequalities are sharp ar&jis best possible.
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(i) If g is K—Lipschitzian ora, b], then

(5.13) (b—a) K.

B, ()] <5 (b-H)(t-0) K <

0|

The constantg and ; are best possible.

We notice that the functiong; : [a,b] — R, g1 (t) = sgn (t — 2*) andg, :

Griss-type Inequalities
[a,b] = R, g (t) = (t — “t°) realise equality in§.12) and .13, respectively. Sevt::)s_lngm;ir
Now, we observe that far () = fat g (s)ds, s € [a,b], we have the identity: vol. 8, iss. 4, art. 117, 2007
(5.14) D(fu)=@0-a)C(f9g).
L o . . Title Page
Utilising this identity and Theorenis 1and3.3, we can state the following result.
Contents
Proposition 5.3. Assume thag is of bounded variation ofu, b] .
<« »
(i) If f is of bounded variation ofu, b] , then p S
1 b b
(5.15) col< V-V P e
a a Go Back
The constant is best possible in5(15). Full Screen
(i) If fis monotonic nondecreasing, then Close
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(L2 (g)max {|f (a)].]f (b)]};

b — .
< V@I, - i p s, Ll =1,

b
L 5 Ve @) 11
The multiplicative constam?sand% are best possible i5(16).

_ Finally, by Theorems!.1—4.3we also have the following sharp bounds for the
Cebysev functional’ (f, g) .

Proposition 5.4. Assume thag is K —Lipschitzian ora, b] .

(i) If fis of bounded variation, then

b

(5.17) Cal <5 b-a K\ ().
The constan§ Is best possible.

(i) If fis L—Lipschitzian, then
(5.18) C(f9)l < o5 (b—af KL

The constant; is best possible in5(19.
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(ii) If fis monotonic nondecreasing, then

619 [C (o)l < K5 [ (=557 rar
LK (b—a)max {|f (a)|,|f (B)[};

IN

1 .
s =) S, W p> 1 Db =1

SIS

The first inequality is sharp. The constahis best possible.

Remark3. The inequalities¥.15 and €.17) were obtained by P. Cerone and S.S.

Dragomir in i, Corollary 3.5]. However, the sharpnes of the constaretsd; were
not discussed there. Inequality. (9 is similar to theCebysSev inequality=(4).
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