
Grüss-type Inequalities

Sever S. Dragomir

vol. 8, iss. 4, art. 117, 2007

Title Page

Contents

JJ II

J I

Page 1 of 28

Go Back

Full Screen

Close

SHARP GRÜSS-TYPE INEQUALITIES FOR
FUNCTIONS WHOSE DERIVATIVES ARE OF

BOUNDED VARIATION

SEVER S. DRAGOMIR
School of Computer Science and Mathematics
Victoria University
PO Box 14428, Melbourne City
VIC 8001, Australia.
EMail: sever.dragomir@vu.edu.au

Received: 05 June, 2007

Accepted: 31 October, 2007

Communicated by: G. Milovanovíc

2000 AMS Sub. Class.: 26D15, 26D10, 41A55.

Key words: Riemann-Stieltjes integral, Functions of bounded variation, Lipschitzian func-
tions, Integral inequalities,̌Cebyšev, Grüss, Ostrowski and Lupaş type inequali-
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1. Introduction

In 1998, S.S. Dragomir and I. Fedotov [10] introduced the followingGrüss type
error functional

D (f ; u) :=

∫ b

a

f (t) du (t)− [u (a)− u (b)] · 1

b− a

∫ b

a

f (t) dt

in order to approximate theRiemann-Stieltjes integral
∫ b

a
f (t) du (t) by the simpler

quantity

[u (a)− u (b)] · 1

b− a

∫ b

a

f (t) dt.

In the same paper the authors have shown that

(1.1) |D (f ; u)| ≤ 1

2
· L (M −m) (b− a) ,

provided thatu isL−Lipschitzian, i.e.,|u (t)− u (s)| ≤ L |t− x| for anyt, s ∈ [a, b]
andf is Riemann integrableand satisfies the condition

−∞ < m ≤ f (t) ≤ M < ∞ for anyt ∈ [a, b] .

The constant1
2

is best possible in (1.1) in the sense that it cannot be replaced by a
smaller quantity.

In [11], the same authors established another result forD (f ; u) , namely

(1.2) |D (f ; u)| ≤ 1

2
K (b− a)

b∨
a

(u) ,

provided thatu is of bounded variationon [a, b] with the total variation
∨b

a (u) and
f is K−Lipschitzian. Here1

2
is also best possible.
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In [8], by introducing thekernelΦu : [a, b] → R given by

(1.3) Φu (t) :=
1

b− a
[(t− a) u (b) + (b− t) u (a)]− u (t) , t ∈ [a, b] ,

the author has obtained the followingintegral representation

(1.4) D (f ; u) =

∫ b

a

Φu (t) df (t) ,

whereu, f : [a, b] → R are bounded functions such that the Riemann-Stieltjes in-
tegral

∫ b

a
f (t) du (t) and the Riemann integral

∫ b

a
f (t) dt exist. By the use of this

representation he also obtained the following bounds forD (f ; u) ,

(1.5) |D (f ; u)|

≤



sup
t∈[a,b]

|Φu (t)| ·
∨b

a (f) if u is continuous andf is of bounded variation;

L
∫ b

a
|Φu (t)| dt if u is Riemann integrable andf is L-Lipschitzian;∫ b

a
|Φu (t)| dt if u is continuous andf is monotonic nondecreasing.

If u is monotonic nondecreasingandK (u) is defined by

K (u) :=
4

(b− a)2

∫ b

a

(
t− a + b

2

)
u (t) dt (≥ 0) ,

then

|D (f ; u)| ≤ 1

2
L (b− a) [u (b)− u (a)−K (u)](1.6)

≤ 1

2
L (b− a) [u (b)− u (a)] ,
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provided thatf is L−Lipschitzian on[a, b] .
Here 1

2
is best possible in both inequalities.

Also, for u monotonic nondecreasing on[a, b] and by definingQ (u) as

Q (u) :=
1

b− a

∫ b

a

u (t) sgn

(
t− a + b

2

)
dt (≥ 0) ,

we have

(1.7) |D (f ; u)| ≤ [u (b)− u (a)−Q (u)] ·
b∨
a

(f) ≤ [u (b)− u (a)] ·
b∨
a

(f) ,

provided thatf is of bounded variation on[a, b] . The first inequality in (1.7) is sharp.
Finally, the case whenu is convex andf is of bounded variation produces the

bound

(1.8) |D (f ; u)| ≤ 1

4

[
u′− (b)− u′+ (a)

]
(b− a)

b∨
a

(f) ,

with 1
4

the best constant (whenu′− (b) andu′+ (a) are finite) and iff is monotonic
nondecreasing andu is convex on[a, b] , then

0 ≤ D (f ; u)(1.9)

≤ 2 ·
u′− (b)− u′+ (a)

b− a
·
∫ b

a

(
t− a + b

2

)
f (t) dt

≤



1
2

[
u′− (b)− u′+ (a)

]
max {|f (a)| , |f (b)|} (b− a)

1

(q+1)1/q

[
u′− (b)− u′+ (a)

]
‖f‖p (b− a)1/q if p > 1, 1

p
+ 1

q
= 1;[

u′− (b)− u′+ (a)
]
‖f‖1 ,
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where2 and 1
2

are sharp constants (whenu′− (b) andu′+ (a) are finite) and‖·‖p are

the usual Lebesgue norms, i.e.,‖f‖p :=
(∫ b

a
|f (t)|p dt

) 1
p
, p ≥ 1.

The main aim of the present paper is to provide sharp upper bounds for the abso-
lute value ofD (f ; u) under various conditions foru′, the derivative of an absolutely
continuous functionu, andf of bounded variation (Lipschitzian or monotonic). Nat-
ural applications for thěCebyšev functional that complement the classical results due
to Čebyšev, Grüss, Ostrowski and Lupaş are also given.
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2. Preliminary Results

We have the following integral representation ofΦu.

Lemma 2.1. Assume thatu : [a, b] → R is absolutely continuous on[a, b] and such
that the derivativeu′ exists on[a, b] (eventually except at a finite number of points).
If u′ is Riemann integrable on[a, b] , then

(2.1) Φu (t) :=
1

b− a

∫ b

a

K (t, s) du′ (s) , t ∈ [a, b] ,

where the kernelK : [a, b]2 → R is given by

(2.2) K (t, s) :=

{
(b− t) (s− a) if s ∈ [a, t] ,

(t− a) (b− s) if s ∈ (t, b].

Proof. We give, for simplicity, a proof only in the case whenu′ is defined on the
entire interval, and for which we have used the usual convention thatu′ (a) :=
u′+ (a) , u′ (b) := u′− (b) and the lateral derivatives are finite.

Sinceu′ is assumed to be Riemann integrable on[a, b] , it follows that the Riemann-
Stieltjes integrals

∫ t

a
(s− a) du′ (s) and

∫ b

t
(b− s) du′ (s) exist for eacht ∈ [a, b] .

Now, integrating by parts in the Riemann-Stieltjes integral, we have successively∫ b

a

K (t, s) du′ (s) = (b− t)

∫ t

a

(s− a) du′ (s) + (t− a)

∫ b

t

(b− s) du′ (s)

= (b− t)

[
(s− a) u′ (s)

∣∣∣t
a
−

∫ t

a

u′ (s) ds

]
+ (t− a)

[
(b− s) u′ (s)

∣∣∣b
t
−

∫ b

t

u′ (s) ds

]
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= (b− t) [(t− a) u′ (t)− (u (t)− u (a))]

+ (t− a) [− (b− t) u′ (t) + u (b)− u (t)]

= (t− a) [u (b)− u (t)]− (b− t) [u (t)− u (a)]

= (b− a) Φu (t) ,

for anyt ∈ [a, b] , and the representation (2.1) is proved.

The following result provides a sharp bound for|Φu| in the case whenu′ is of
bounded variation.

Theorem 2.2. Assume thatu : [a, b] → R is as in Lemma2.1. If u′ is of bounded
variation on[a, b] , then

(2.3) |Φu (t)| ≤ (t− a) (b− t)

b− a

b∨
a

(u′) ≤ 1

4
(b− a)

b∨
a

(u′) ,

where
∨b

a (u′) denotes the total variation ofu′ on [a, b] .
The inequalities are sharp and the constant1

4
is best possible.

Proof. It is well known that, ifp : [α, β] → R is continuous andv : [α, β] → R is of
bounded variation, then the Riemann-Stieltjes integral

∫ β

α
p (s) dv (s) exists and∣∣∣∣∫ β

α

p (s) dv (s)

∣∣∣∣ ≤ sup
s∈[α,β]

|p (s)|
β∨
α

(v) .
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Now, utilising the representation (2.1) we have successively:

|Φu (t)|(2.4)

≤ 1

b− a

[
(b− t)

∣∣∣∣∫ t

a

(s− a) du′ (s)

∣∣∣∣ + (t− a)

∣∣∣∣∫ b

t

(b− s) du′ (s)

∣∣∣∣]
≤ 1

b− a

[
(b− t) sup

s∈[a,t]

(s− a) ·
t∨
a

(u′) + (t− a) sup
s∈[t,b]

(b− s) ·
b∨
t

(u′)

]

=
(t− a) (b− t)

b− a

[
t∨
a

(u′) +
b∨
t

(u′)

]
=

(t− a) (b− t)

b− a

b∨
a

(u′) .

The second inequality is obvious by the fact that(t− a) (b− t) ≤ 1
4
(b− a)2 , t ∈

[a, b] .
For the sharpness of the inequalities, assume that there existA, B > 0 so that

(2.5) |Φu (t)| ≤ A · (t− a) (b− t)

b− a

b∨
a

(u′) ≤ B (b− a)
b∨
a

(u′) ,

with u as in the assumption of the theorem. Then, fort = a+b
2

, we get from (2.5)
that

(2.6)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

4
A (b− a)

b∨
a

(u′) ≤ B (b− a)
b∨
a

(u′) .

Consider the functionu : [a, b] → R, u (t) =
∣∣t− a+b

2

∣∣ . This function is absolutely
continuous,u′ (t) = sgn

(
t− a+b

2

)
, t ∈ [a, b] \

{
a+b
2

}
and

∨b
a (u′) = 2. Then (2.6)

becomesb−a
2

≤ 1
2
A (b− a) ≤ 2B (b− a) , which implies thatA ≥ 1 andB ≥

1
4
.
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Corollary 2.3. With the assumptions of Theorem2.2, we have

(2.7)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

4
(b− a)

b∨
a

(u′) .

The constant1
4

is best possible.

The Lipschitzian case is incorporated in the following result.

Theorem 2.4.Assume thatu : [a, b] → R is absolutely continuous on[a, b] with the
property thatu′ is K−Lipschitzian on(a, b) . Then

(2.8) |Φu (t)| ≤ 1

2
(t− a) (b− t) K ≤ 1

8
(b− a)2 K.

The constants1
2

and 1
8

are best possible.

Proof. We utilise the fact that, for anL−Lipschitzian functionp : [α, β] → R
and a Riemann integrable functionv : [α, β] → R, the Riemann-Stieltjes integral∫ β

α
p (s) dv (s) exists and∣∣∣∣∫ β

α

p (s) dv (s)

∣∣∣∣ ≤ L

∫ β

α

|p (s)| ds.

Then, by (2.1), we have that

|Φu (t)|(2.9)

≤ 1

b− a

[
(b− t)

∣∣∣∣∫ t

a

(s− a) du′ (s)

∣∣∣∣ + (t− a)

∣∣∣∣∫ b

t

(b− s) du′ (s)

∣∣∣∣]
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≤ 1

b− a

[
1

2
K (b− t) (t− a)2 +

1

2
K (t− a) (b− t)2

]
=

1

2
(t− a) (b− t) K,

which proves the first part of (2.8). The second part is obvious.
Now, for the sharpness of the constants, assume that there exist the constants

C, D > 0 such that

(2.10) |Φu (t)| ≤ C (b− t) (t− a) K ≤ D (b− a)2 K,

provided thatu is as in the hypothesis of the theorem. Fort = a+b
2

, we get from
(2.10) that

(2.11)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

4
CK (b− a)2 ≤ D (b− a)2 K.

Consideru : [a, b] → R, u (t) = 1
2

∣∣t− a+b
2

∣∣2 . Thenu′ (t) = t− a+b
2

is Lipschitzian
with the constantK = 1 and (2.11) becomes

1

8
(b− a)2 ≤ 1

4
C (b− a)2 ≤ D (b− a)2 ,

which implies thatC ≥ 1
2

andD ≥ 1
8
.

Corollary 2.5. With the assumptions of Theorem2.4, we have

(2.12)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

8
(b− a)2 K.

The constant1
8

is best possible.
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Remark1. If u′ is absolutely continuous and‖u′′‖∞ := ess supt∈[a,b] |u′′ (t)| < ∞,
then we can takeK = ‖u′′‖∞ , and we have from (2.8) that

(2.13) |Φu (t)| ≤ 1

2
(t− a) (b− t) ‖u′′‖∞ ≤ 1

8
(b− a)2 ‖u′′‖∞ .

The constants1
2

and 1
8

are best possible in (2.13).
From (2.12) we also get

(2.14)

∣∣∣∣u (a) + u (b)

2
− u

(
a + b

2

)∣∣∣∣ ≤ 1

8
(b− a)2 ‖u′′‖∞ ,

in which 1
8

is the best possible constant.
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3. Bounds in the Case whenu′ is of Bounded Variation

We can start with the following result:

Theorem 3.1. Assume thatu : [a, b] → R is as in Lemma2.1. If u′ and f are of
bounded variation on[a, b] , then

(3.1) |D (f ; u)| ≤ 1

4
(b− a)

b∨
a

(u′) ·
b∨
a

(f) ,

and the constant1
4

is best possible in (3.1).

Proof. We use the following representation of the functionalD (f ; u) obtained in [8]
(see also [9] or [6]):

(3.2) D (f ; u) =

∫ b

a

Φu (t) df (t) .

Then we have the bound

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|Φu (t)|
b∨
a

(f)

≤ 1

b− a

b∨
a

(u′) sup
t∈[a,b]

[(t− a) (b− t)] ·
b∨
a

(f)

=
1

4
(b− a)

b∨
a

(u′) ·
b∨
a

(f) ,

where, for the last inequality we have used (2.3).
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To prove the sharpness of the constant1
4
, assume that there is a constantE > 0

such that

(3.3) |D (f ; u)| ≤ E (b− a)
b∨
a

(u′) ·
b∨
a

(f) .

Consideru : [a, b] → R, u (t) =
∣∣t− a+b

2

∣∣ . Then u′ (t) = sgn
(
t− a+b

2

)
, t ∈

[a, b] \
{

a+b
2

}
. The total variation on[a, b] is 2 and

D (f ; u) = −
∫ a+b

2

a

f (t) dt +

∫ b

a+b
2

f (t) dt =

∫ b

a

sgn

(
t− a + b

2

)
f (t) dt.

Now, if we choosef (t) = sgn
(
t− a+b

2

)
, then we obtain from (3.1) b − a ≤

4E (b− a) , which implies thatE ≥ 1
4
.

The following result can be stated as well:

Theorem 3.2.Assume thatu : [a, b] → R is as in Lemma2.1. If the derivativeu′ is
of bounded variation on[a, b] whilef is L−Lipschitzian on[a, b] , then

(3.4) |D (f ; u)| ≤ 1

6
L (b− a)2

b∨
a

(u′) .

Proof. We have

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ L

∫ b

a

|Φu (t)| dt

≤ L

b− a

b∨
a

(u′)

∫ b

a

(t− a) (b− t) dt =
1

6
L (b− a)2

b∨
a

(u′) ,

where for the second inequality we have used the inequality (2.3).
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Remark2. It is an open problem whether or not the constant1
6

is the best possible
constant in (3.4).

When the integrandf is monotonic, we can state the following result as well:

Theorem 3.3.Assume thatu is as in Theorem3.1. If f is monotonic nondecreasing
on [a, b] , then

|D (f ; u)| ≤ 2 ·
∨b

a (u′)

b− a
·
∫ b

a

∣∣∣∣t− a + b

2

∣∣∣∣ f (t) dt(3.5)

≤



1
2

∨b
a (u′) max {|f (a)| , |f (b)|} (b− a) ;

1

(q+1)1/q

∨b
a (u′) ‖f‖p (b− a)1/q if p > 1, 1

p
+ 1

q
= 1;

∨b
a (u′) ‖f‖1 ,

where‖f‖p :=
(∫ b

a
|f (t)|p dt

) 1
p
, p ≥ 1 are the Lebesgue norms. The constants2

and 1
2

are best possible in (3.5).

Proof. It is well known that, ifp : [α, β] → R is continuous andv : [α, β] →
R is monotonic nondecreasing, then the Riemann-Stieltjes integral

∫ β

α
p (t) dv (t)

exists and
∣∣∣∫ β

α
p (t) dv (t)

∣∣∣ ≤ ∫ β

α
|p (t)| dv (t) . Then, on applying this property for

the integral
∫ b

a
Φu (t) df (t) , we have

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ ∫ b

a

|Φu (t)| df (t)(3.6)

≤
∨b

a (u′)

b− a
·
∫ b

a

(t− a) (b− t) df (t) ,
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where for the last inequality we used (2.3).
Integrating by parts in the Riemann-Stieltjes integral, we have∫ b

a

(t− a) (b− t) df (t) = f (t) (b− t) (t− a)
∣∣∣b
a
−

∫ b

a

[−2t + (a + b)] f (t) dt

= 2

∫ b

a

(
t− a + b

2

)
f (t) dt,

which together with (3.6) produces the first part of (3.5).
The second part is obvious by the Hölder inequality applied for the integral∫ b

a

(
t− a+b

2

)
f (t) dt and the details are omitted.

For the sharpness of the constants we use as examplesu (t) =
∣∣t− a+b

2

∣∣ and
f (t) = sgn

(
t− a+b

2

)
, t ∈ [a, b] . The details are omitted.
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4. Bounds in the Case whenu′ is Lipschitzian

The following result can be stated as well:

Theorem 4.1.Letu : [a, b] → R be absolutely continuous on[a, b] with the property
thatu′ is K−Lipschitzian on(a, b) . If f is of bounded variation, then

(4.1) |D (f ; u)| ≤ 1

8
(b− a)2 K

b∨
a

(f) .

The constant1
8

is best possible in (4.1).

Proof. Utilising (2.8), we have successively:

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣ ≤ sup
t∈[a,b]

|Φu (t)|
b∨
a

(f)

≤ 1

2
K sup

t∈[a,b]

[(b− t) (t− a)]
b∨
a

(f)

=
1

8
(b− a)2 K

b∨
a

(f) ,

and the inequality (4.1) is proved.
Now, for the sharpness of the constant, assume that the inequality holds with a

constantG > 0, i.e.,

(4.2) |D (f ; u)| ≤ G (b− a)2 K
b∨
a

(f) .
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for u andf as in the statement of the theorem.
Consideru (t) := 1

2

(
t− a+b

2

)2
and f (t) = sgn

(
t− a+b

2

)
, t ∈ [a, b] . Then

u′ (t) = t− a+b
2

is K−Lipschitzian with the constantK = 1 and

D (f ; u) =

∫ b

a

sgn

(
t− a + b

2

)
·
(

t− a + b

2

)
dt =

(b− a)2

4
.

Since
∨b

a (f) = 2, hence from (4.2) we get(b−a)2

4
≤ 2G (b− a)2, which implies that

G ≥ 1
8
.

The following result may be stated as well:

Theorem 4.2. Let v : [a, b] → R be as in Theorem4.1. If f is L−Lipschitzian on
[a, b] , then

(4.3) |D (f ; u)| ≤ 1

12
(b− a)3 KL.

The constant1
12

is best possible in (4.3).

Proof. We have by (2.8), that:

|D (f ; u)| =
∣∣∣∣∫ b

a

Φu (t) df (t)

∣∣∣∣
≤ L

∫ b

a

|Φu (t)| dt

≤ 1

2
LK

∫ b

a

(b− t) (t− a) dt =
1

12
KL (b− a)3 ,

and the inequality is proved.
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For the sharpness, assume that (4.3) holds with a constantF > 0. Then

(4.4) |D (f ; u)| ≤ F (b− a)3 KL,

providedf andu are as in the hypothesis of the theorem.
Considerf (t) = t− a+b

2
andu (t) = 1

2

(
t− a+b

2

)2
. Thenu′ is Lipschitzian with

the constantK = 1 andf is Lipschitzian with the constantL = 1. Also,

D (f ; u) =

∫ b

a

(
t− a + b

2

)2

dt =
(b− a)3

12
,

and by (4.4) we get(b−a)3

12
≤ F (b− a)3 which implies thatF ≥ 1

2
.

Finally, the case of monotonic integrands is enclosed in the following result.

Theorem 4.3. Let u : [a, b] → R be as in Theorem4.1. If f is monotonic nonde-
creasing, then

|D (f ; u)| ≤ K

∫ b

a

(
t− a + b

2

)
f (t) dt(4.5)

≤



1
4
K max {|f (a)| , |f (b)|} (b− a)2 ;

1

2(q+1)1/q K ‖f‖p (b− a)1+1/q if p > 1, 1
p

+ 1
q

= 1;

1
2
(b− a) K ‖f‖1 .

The first inequality is sharp. The constant1
4

is best possible.
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Proof. We have

|D (f ; u)| ≤
∫ b

a

|Φu (t)| df (t)

≤ 1

2
K

∫ b

a

(b− t) (t− a) df (t)

= K

∫ b

a

(
t− a + b

2

)
f (t) dt

and the first inequality is proved. The second part follows by the Hölder inequality.
The sharpness of the first inequality and of the constant1

4
follows by choosing

u (t) =
∣∣t− a+b

2

∣∣ andf (t) = sgn
(
t− a+b

2

)
. The details are omitted.
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5. Applications for the Čebyšev Functional

The above result can naturally be applied in obtaining various sharp upper bounds
for the absolute value of thěCebyšev functionalC (f, g) defined by

(5.1) C (f, g) :=
1

b− a

∫ b

a

f (t) g (t) dt− 1

b− a

∫ b

a

f (t) dt · 1

b− a

∫ b

a

g (t) dt,

wheref, g : [a, b] → R are Lebesgue integrable functions such thatfg is also
Lebesgue integrable.

There are various sharp upper bounds for|C (f, g)| and in the following we will
recall just a few of them.

In 1934, Grüss [13] showed that

(5.2) |C (f, g)| ≤ 1

4
(M −m) (N − n)

under the assumptions thatf andg satisfy the bounds

(5.3) −∞ < m ≤ f (t) ≤ M < ∞ and −∞ < n ≤ g (t) ≤ N < ∞

for almost everyt ∈ [a, b] , wherem, M, n,N are real numbers. The constant1
4

is
best possible in the sense that it cannot be replaced by a smaller quantity.

Another less known result, even though it was established byČebyšev in 1882
[1], states that

(5.4) |C (f, g)| ≤ 1

12
‖f ′‖∞ ‖g′‖∞ (b− a)2 ,

provided thatf ′, g′ exist and are continuous in[a, b] and‖f ′‖∞ = supt∈[a,b] |f ′ (t)| .
The constant1

12
cannot be replaced by a smaller quantity. TheČebyšev inequality
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also holds iff, g are absolutely continuous on[a, b] , f ′, g′ ∈ L∞ [a, b] and‖·‖∞ is
replaced by theess sup norm‖f ′‖∞ = ess supt∈[a,b] |f ′ (t)| .

In 1970, A. Ostrowski [16] considered a mixture between Grüss andČebyšev
inequalities by proving that

(5.5) |C (f, g)| ≤ 1

8
(b− a) (M −m) ‖g′‖∞ ,

provided thatf satisfies (5.3) andg is absolutely continuous andg′ ∈ L∞ [a, b] .
Three years after Ostrowski, A. Lupaş [14] obtained another bound forC (f, g)

in terms of the Euclidean norms of the derivatives. Namely, he proved that

(5.6) |C (f, g)| ≤ 1

π2
(b− a) ‖f ′‖2 ‖g

′‖2 ,

provided thatf andg are absolutely continuous andf ′, g′ ∈ L2 [a, b] . Here 1
π2 is

also best possible.
Recently, Cerone and Dragomir [2], proved the following result:

(5.7) |C (f, g)| ≤ inf
γ∈R

‖g − γ‖∞ · 1

b− a

∫ b

a

∣∣∣∣f (t)− 1

b− a

∫ b

a

f (s) ds

∣∣∣∣ dt,

providedf ∈ L [a, b] andg ∈ C [a, b] .
As particular cases of (5.7), we can state the results:

(5.8) |C (f, g)| ≤ ‖g‖∞
1

b− a

∫ b

a

∣∣∣∣f (t)− 1

b− a

∫ b

a

f (s) ds

∣∣∣∣ dt

if g ∈ C [a, b] andf ∈ L [a, b] and

(5.9) |C (f, g)| ≤ 1

2
(M −m)

1

b− a

∫ b

a

∣∣∣∣f (t)− 1

b− a

∫ b

a

f (s) ds

∣∣∣∣ dt,
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wherem ≤ g (x) ≤ M for x ∈ [a, b] . The constants1 in (5.8) and1
2

in (5.9) are best
possible. The inequality (5.9) has been obtained before in a different way in [5].

For generalisations in abstract Lebesgue spaces, best constants and discrete ver-
sions, see [3]. For other results on thěCebyšev functional, see [6], [7] and [12].

Now, assume thatg : [a, b] → R is Lebesgue integrable on[a, b] . Then the
functionu (t) :=

∫ t

a
g (s) ds is absolutely continuous on[a, b] and we can consider

the function

(5.10) Φ̃g (t) := Φu (t) =

∫ t

a

g (s) ds− t− a

b− a

∫ b

a

g (s) ds, t ∈ [a, b] .

Utilising Lemma2.1, we can state the following representation result.

Lemma 5.1. If g is absolutely continuous, then

(5.11) Φ̃g (t) =
1

b− a

∫ b

a

K (t, s) dg (s) , t ∈ [a, b] ,

whereK is given by (2.2).

As a consequence of Theorems2.2and2.4, we also have the inequalities:

Proposition 5.2. Assume thatg is Lebesgue integrable on[a, b] .

(i) If g is of bounded variation on[a, b] , then

(5.12)
∣∣∣Φ̃g (t)

∣∣∣ ≤ (t− a) (b− t)

b− a

b∨
a

(g) ≤ 1

4
(b− a)

b∨
a

(g) .

The inequalities are sharp and1
4

is best possible.
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(ii) If g is K−Lipschitzian on[a, b] , then

(5.13)
∣∣∣Φ̃g (t)

∣∣∣ ≤ 1

2
(b− t) (t− a) K ≤ 1

8
(b− a)2 K.

The constants1
2

and 1
8

are best possible.

We notice that the functionsg1 : [a, b] → R, g1 (t) = sgn
(
t− a+b

2

)
andg2 :

[a, b] → R, g (t) =
(
t− a+b

2

)
realise equality in (5.12) and (5.13), respectively.

Now, we observe that foru (t) =
∫ t

a
g (s) ds, s ∈ [a, b] , we have the identity:

(5.14) D (f, u) = (b− a) C (f, g) .

Utilising this identity and Theorems3.1and3.3, we can state the following result.

Proposition 5.3. Assume thatg is of bounded variation on[a, b] .

(i) If f is of bounded variation on[a, b] , then

(5.15) |C (f, g)| ≤ 1

4

b∨
a

(g) ·
b∨
a

(f) .

The constant1
4

is best possible in (5.15).

(ii) If f is monotonic nondecreasing, then

|C (f, g)|(5.16)

≤ 2
b∨
a

(g) · 1

(b− a)2

∫ b

a

(
t− a + b

2

)
f (t) dt
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≤



1
2
·
∨b

a (g) max {|f (a)| , |f (b)|} ;

1

(q+1)1/q

∨b
a (g) ‖f‖p (b− a)−1/p if p > 1, 1

p
+ 1

q
= 1;

1
b−a

∨b
a (g) ‖f‖1 .

The multiplicative constants2 and 1
2

are best possible in (5.16).

Finally, by Theorems4.1 – 4.3 we also have the following sharp bounds for the
Čebyšev functionalC (f, g) .

Proposition 5.4. Assume thatg is K−Lipschitzian on[a, b] .

(i) If f is of bounded variation, then

(5.17) |C (f, g)| ≤ 1

8
· (b− a) K

b∨
a

(f) .

The constant1
8

is best possible.

(ii) If f is L−Lipschitzian, then

(5.18) |C (f, g)| ≤ 1

12
(b− a)2 KL.

The constant1
12

is best possible in (5.18).
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(iii) If f is monotonic nondecreasing, then

|C (f, g)| ≤ K · 1

b− a

∫ b

a

(
t− a + b

2

)
f (t) dt(5.19)

≤



1
4
K (b− a) max {|f (a)| , |f (b)|} ;

1

2(q+1)1/q K (b− a)1/q ‖f‖p if p > 1, 1
p

+ 1
q

= 1;

1
2
K ‖f‖1 .

The first inequality is sharp. The constant1
4

is best possible.

Remark3. The inequalities (5.15) and (5.17) were obtained by P. Cerone and S.S.
Dragomir in [4, Corollary 3.5]. However, the sharpnes of the constants1

4
and1

8
were

not discussed there. Inequality (5.18) is similar to theČebyšev inequality (5.4).
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Appl. Math. Lett.,18 (2005), 603–611.

[3] P. CERONEAND S.S. DRAGOMIR, A refinement of the Grüss inequality and
applications,Tamkang J. Math.,38(1) (2007), 37–49. PreprintRGMIA Res.
Rep. Coll.,5(2) (2002), Art. 14. [ONLINEhttp://rgmia.vu.edu.au/
v8n2.html ].

[4] P. CERONEAND S.S. DRAGOMIR, New upper and lower bounds for the Ce-
bysev functional,J. Inequal. Pure and Appl. Math., 3(5) (2002), Art. 77. [ON-
LINE http://jipam.vu.edu.au/article.php?sid=229 ].

[5] X.-L. CHENG AND J. SUN, Note on the perturbed trapezoid inequality,J. In-
equal. Pure & Appl. Math.,3(2) (2002), Art. 21. [ONLINEhttp://jipam.
vu.edu.au/article.php?sid=181 ].

[6] S.S. DRAGOMIR, A generalisation of Grüss’ inequality in inner product
spaces and applications,J. Math. Anal. Appl.,237(1999), 74–82.

[7] S.S. DRAGOMIR, Some integral inequalities of Grüss type,Indian J. Pure and
Appl. Math.,31(4) (2000), 397–415.

[8] S.S. DRAGOMIR, Inequalities of Grüss type for the Stieltjes integral and ap-
plications,Kragujevac J. Math.,26 (2004), 89–112.

http://jipam.vu.edu.au
mailto:sever.dragomir@vu.edu.au
http://jipam.vu.edu.au
http://rgmia.vu.edu.au/v8n2.html
http://rgmia.vu.edu.au/v8n2.html
 http://jipam.vu.edu.au/article.php?sid=229
 http://jipam.vu.edu.au/article.php?sid=181
 http://jipam.vu.edu.au/article.php?sid=181


Grüss-type Inequalities

Sever S. Dragomir

vol. 8, iss. 4, art. 117, 2007

Title Page

Contents

JJ II

J I

Page 28 of 28

Go Back

Full Screen

Close

[9] S.S. DRAGOMIR, A generalisation of Cerone’s identity and applications,Tam-
sui Oxford J. Math. Sci.,23(1) (2007), 79–90.RGMIA Res. Rep. Coll.,8(2)
(2005), Art. 19. [ONLINE:http://rgmia.vu.edu.au/v8n2.html ].

[10] S.S. DRAGOMIR AND I. FEDOTOV, An inequality of Grüss type for
Riemann-Stieltjes integral and application for special means,Tamkang J.
Math.,29(4) (1998), 287–292.

[11] S.S. DRAGOMIRAND I. FEDOTOV, A Grüss type inequality for mappings
of bounded variation and applications to numerical analysis,Nonlinear Funct.
Anal. Appl.(Korea),6(3) (2001), 415–433.

[12] S.S. DRAGOMIRAND S. WANG, An inequality of Ostrowski-Grüss type and
its applications to the estimation of error bounds for some special means and
for some numerical quadrature results,Comp. & Math. with Applic., 33(11)
(1997), 15–20.

[13] G. GRÜSS, Über das maximum das absoluten Betrages von
1

b−a

∫ b

a
f (x) g (x) dx − 1

(b−a)2

∫ b

a
f (x) dx ·

∫ b

a
g (x) dx, Math. Z., 39 (1934),

215–226.

[14] ZHENG LIU, Refinement of an inequality of Grüss type for Riemann-Stieltjes
integral,Soochow J. Math.,30(4) (2004), 483–489.
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