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ABSTRACT. Sharp Griss-type inequalities for functions whose derivatives are of bounded vari-
ation (Lipschitzian or monotonic) are given. Applications in relation with the well-kn@&n
bySev, Griss, Ostrowski and Lupas inequalities are provided as well.
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1. INTRODUCTION
In 1998, S.S. Dragomir and I. Fedotov [10] introduced the followBrgss type error func-

tional ,
z/f(t)du(t)—[U()—u AL

in order to approximate thRiemann-Stieltjes mtegrzjl f (t) du (t) by the simpler quantity

b—a/f

In the same paper the authors have shown that
1
(1.1) ID(fiw)] <5 L(M—=m)(b—a),

provided that: is L—Lipschitziani.e., |u (t) — u (s)| < L |t — x| for anyt, s € [a,b] and f is
Riemann integrabland satisfies the condition

[u(a) —u(b

—co<m< f(t) <M< oo foranyte [a,bl.

The constan% is best possible i.1) in the sense that it cannot be replaced by a smaller
guantity.
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2 SEVER S. DRAGOMIR

In [11], the same authors established another resulbfof; «) , namely
b
1
(1.2) D (fiu)] < 5K (b= a)\/ (u),

provided thatu is of bounded variationon [a, b] with the total variation \/* (u) and f is
K —Lipschitzian. Here} is also best possible.
In [8], by introducing thekernel®,, : [a,b] — R given by

(1.3) B, (1) = ﬁ (t—a)u(®) + (-t ula)]—ult), telab,

the author has obtained the followiigegral representation
b
(1.4) D(fiw)= [ w0 1)

whereu, f : [a,b] — R are bounded functions such that the Riemann-Stieltjes intfaéna{t) du (t)

and the Riemann integrg(f f (t) dt exist. By the use of this representation he also obtained the
following bounds forD (f;u),

(1.5) [D(f;u)l

[ sup |®, ()] - \/° (f) if uis continuous ang is of bounded variation;
te[a,b]

IN

L f: |®,, (t)|dt if uis Riemann integrable anflis L-Lipschitzian;

\ f;’ |®,, (t)| dt if uis continuous and is monotonic nondecreasing.

If  is monotonic nondecreasirand K (u) is defined by
4 b a+b
= — >
K (u) (b—a)Q/a (t i )u(t)dt(_o),
then

16)  ID(fu)l < 5L a)[ub) —ula) - K ()] <

L(b—a)[u®)—ula)],

(NN

provided thatf is L—Lipschitzian ona, b] .
Here1 is best possible in both inequalities.
Also, for u monotonic nondecreasing ¢m b] and by defining? (u) as

Q (u) ::ﬁ u (1) sen (t-%”) dt (> 0),
we have
(1.7) D (f;u)] < Ju(d) —u(a) = Q)] \/ (f) < [u®d)—ul@)] \/(f),

provided thatf is of bounded variation ofu, b] . The first inequality in[(1]7) is sharp.
Finally, the case when is convex andf is of bounded variation produces the bound

b

(1) D)l < 3 [ 0) = @] 6 - a) ()

a
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with 1 the best constant (wheri (b) and/, (a) are finite) and iff is monotonic nodecreasing
andu is convex ora, b] , then

(1.9  0<D(f;u)
_s. u’_(bz)):zﬁr(a) /a (t— a;rb>f(t>dt
3 [uo () =, (a)] max{[f (a)],|f (D)} (b~ a)

e [ 0) = @] I, 0= ) i p> 1 P =

[u (0) = !, (@)] I f1ly

where2 and } are sharp constants (whef (b) and/, (a) are finite) and|-, are the usual

IN

1
Lebesgue norms, i.g|f||, := (ff If (@) dt)” ,p> 1.
The main aim of the present paper is to provide sharp upper bounds for the absolute value of
D (f;w) under various conditions far, the derivative of an absolutely continuous functian
and f of bounded variation (Lipschitzian or monotonic). Natural applications foCibleySev
functional that complement the classical results du€¢bysev, Gruss, Ostrowski and Lupas
are also given.

2. PRELIMINARY RESULTS

We have the following integral representationdgf.

Lemma 2.1. Assume that : [a,b] — R is absolutely continuous o, b] and such that the
derivativeu’ exists onfa, b] (eventually except at a finite number of points)z/lis Riemann
integrable ona, b], then

bia/aK(t,s)du’(s), t e la,b],

where the kernek : [a,b]* — R is given by

b—t)(s—a) if s€la,t],
{ (t—a)(b—s) if se(tb].

(2.1) ®, (1) =

(2.2) K (t,s):=

Proof. We give, for simplicity, a proof only in the case whehis defined on the entire interval,
and for which we have used the usual conventionthét) := «, (a),« (b) := «’ (b) and the
lateral derivatives are finite.

Sinceu’ is assumed to be Riemann integrable/@rb] , it follows that the Riemann-Stieltjes

integrals [ (s — a) du’ (s) andftb (b — s)du’ (s) exist for eacht € [a,b]. Now, integrating by
parts in the Riemann-Stieltjes integral, we have succesively

/abK(t,s)du’(s)Z(b—t)/at(s—a)du’(s)+(t—a)/tb(b—s)du'(s)
[l
j—/tbu’(s)ds}
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= (0= [t —a)u' (t) = (u(t) — u(a))]
+(t—a)[=(0—t)u' (1) +u(b) —u(t)
= (t=a)fud) —u(®)] = (0 —1)fu(t) - ula)]

= (b—a)®, (1),
for anyt € [a,b], and the representation (.1) is proved. O

The following result provides a sharp bound fdr,| in the case when/ is of bounded
variation.

Theorem 2.2. Assume that : [a,b] — R is as in Lemma 2|1. If’ is of bounded variation on
[a, ] , then

23 2. < O\ 0y < Lo\ ),

where\/’ (u') denotes the total variation af on [a, b] .
The inequalities are sharp and the constéris best possible.

Proof. It is well known that, ifp : [a, 5] — R is continuous and : [«, 5] — R is of bounded
variation, then the Riemann-Stieltjes integfglp (s) dv (s) exists and

s s
[ p@ae) < s bV o)
Now, utilising the representatiop (2.1) we have successively:
(24) [Py (1)
t b
S — {(b—t) /a (s —a)du (s)| + (t —a) /t (b—s)du (s) ]

INA
SN

S|

¢ b
i [(b—t sup (s —a) \/ (t —a) sup (b—s)~\/(u’)]

s€la,t] @ s€(t,b] i
t—a)(b—1t) |\ ’ t—a)(b—1t)\"
S Vv ] Sy
The second inequality is obvious by the fact thiat- a) (b — ¢) < 1 (b — a)’,t € a,b].
For the sharpness of the inequalities, assume that theredexist>- 0 so that

(t=a)(b=1)\") ’

(2.5) |‘Du(t)\SA'T\/(U)SB@—@)\/(U)
with « as in the assumption of the theorem. Thentfer we get from u) that

w(@+u®) (atb)|_1 Y Y
(2.6) — SZA(b—a\a/ )gB(b—a)\a/(u).
Consider the function: : [a,b] — R, u(t) = \t i| This function is absolutely con-
tinuous, v’ (t) = sgn (t —42), ¢t € a,b \{“‘2”’} and\/" (u') = 2. Then (2.6 E) becomes
bea <1A(b—a) <2B(b—a), whichimplies thatd > 1 andB > 1. 0
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Corollary 2.3. With the assumptions of Theorem|2.2, we have
b
b b 1
2.7) M—u(” )‘szw—a)\/(u’).

2 2

The constang is best possible.

The Lipschitzian case is incorporated in the following result.
Theorem 2.4. Assume that : [a,b] — R is absolutely continuous dia, b] with the property
thatw’ is K —Lipschitzian on(a, b) . Then

(2.8) 1D, (t)] g%(t—a) b—t)K <= (b—a)K.

1
8
The constantg and ; are best possible.

Proof. We utilise the fact that, for ah—Lipschitzian functiorp : [a, 3] — R and a Riemann
integrable function : [, 3] — R, the Riemann-Stieltjes integrﬁfp (s)dv (s) exists and

B B
/ p(s)dv(s) SL/ Ip (s)|ds.
Then, by [(2.11), we have that
(2.9) |D, ()] < 7 i - [(b —t) / (s —a)du (s)| + (t — a) /t (b—s)du (s) }

< bia BK(b—t)(t—a)QnL%K(t—a)(b—t)ﬂ

=L@ (b-DK,

which proves the first part of (2.8). The second part is obvious.
Now, for the sharpness of the constants, assume that there exist the cofisfantsO such
that

(2.10) D, ()| <C(b—1t)(t—a)K <D (b-a)kK,
provided that is as in the hypothesis of the theorem. Fer “i2, we get from [(2.1D) that
(2.11) M _u (“T”) < ZCK (b—a)? < D(b—a)K.

Consideru : [a,0] — R, u(t) = 1|t — «2|*. Thenu' (t) = t — 2% is Lipschitzian with the
constantX’ = 1 and [2.11) becomes

1 1

“(b—a)’<=C(—a)’<D(b-a),

8 4
which implies that” > £ andD > &. O

Corollary 2.5. With the assumptions of Theorgm|2.4, we have

(2.12) M o (“T“’M % (b—a? K.

The constan§ is best possible.
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Remark 2.6. If «" is absolutely continuous and.|| , := esssup;e, ) [u” (t)| < oo, then we
can takek” = [lu"| . , and we have fron] (28) that

1 " 2 "
5 (t=a) (b —=1) [u’ll 8(b—a) [0"]] o

The constantg and; are best possible ih (2./13).
From [2.12) we also get

219 Al (1) < 0 0P

in which £ is the best possible constant.

(2.13) @y ()] <

3. BOUNDS IN THE CASE WHEN #’ 1S OF BOUNDED VARIATION
We can start with the following result:

Theorem 3.1. Assume that : [a,b] — R is as in Lemma 2|1. I’ and f are of bounded
variation on|a, b] , then

(3.1) D(fu)l < 5 b-a)V @)\ ()

and the constanj is best possible i (3.1).

Proof. We use the following representation of the functiobg(lf;«) obtained in|[8] (see also
[9] or [6]):

(3.2) D (fiu) = / B, (1) df (1)

Then we have the bound
b

b
D= [ e <t>\ < s .01/ (1
1 b b
") su —a)(b—
< 5=, V) s (i JRVE
= 0-a)\ @)V,

where, for the last inequality we have usgd|2.3).
To prove the sharpness of the const?,rﬂssume that there is a const&nt> 0 such that

b b
(3.3) ID(f;u) <E@®b—a)\/ () \/ ()

Consideru : [a,b] — R, u(t) = [t — “t2|. Thenu/ (t) = sgn (t — 452), ¢ € [a, 0]\ {%52}.
The total variation orja, b] is 2 and

/ £t dt+/ F () dt = /sgn(t—a;b)f(t)dt.

Now, if we choosef (t) = sgn (¢ — “42) , then we obtain fron] (3|1)—a < 4E (b — a) , which
implies that? > 1. O
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The following result can be stated as well:

Theorem 3.2. Assume that. : [a,b] — R is as in Lemma 2]1. If the derivativéis of bounded
variation on|a, b] while f is L—Lipschitzian ona, b] , then

b

(3.4 D(fru)l < gL —af\/ W)

b b
/ o, (1) df (1) < L / B, (1) dt
b b

<V [e-ae-oa

Proof. We have

|D (f:u)| =

where for the second inequality we have used the inequplity (2.3). O

Remark 3.3. It is an open problem whether or not the constafs the best possible constant

in (3.4).
When the integrand is monotonic, we can state the following result as well:

Theorem 3.4. Assume that is as in Theorerp 3|1. If is monotonic nondecreasing ¢ b] ,
then

Vi) [
@) (2 Y [T ga
( 1V (@) max{|f (a >|,|f< )} (b —a);

b .
<{ VA I, (- @) i p> 1, e i

a+b

L Ve @) If1 s

1
where||f|, := fab If ()] dt) ", p > 1 are the Lebesgue norms. The constangd 1 are
best possible i 5).

Proof. It is well known that, ifp : [«, 5] — R is continuous and : [«, 5] — R is monotonic
nondecreasing, then the Riemann-Stieltjes integfai dv (t) exists an(# fﬁ (t)dv (t )‘ <

fﬁ Ip (t)| dv (t) . Then, on applying this property for the mteg[fab@ t)df (t), we have

/ab@u(t)df(t)' s/a 2. (0] df (1)

/ b
2t [ - o-0a o),

where for the last inequality we uséd (2.3).

(3.6) 1D (f;u)| =

<

J. Inequal. Pure and Appl. Math8(4) (2007), Art. 117, 13 pp. http://jipam.vu.edu.au/
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Integrating by parts in the Riemann-Stieltjes integral, we have

b b
[a-ae-ns0-roe-0¢-of - [ 2@

:2/: (t—a;b)f(t)dt,

which together with[(3]6) produces the first part[of [3.5).

The second part is obvious by the Holder inequality applied for the intﬁl(al— oty f(t) dt
and the details are omitted.

For the sharpness of the constants we use as examfiles- |t — “%| andf (¢) = sgn (t — “2)
t € [a,b]. The details are omitted. O

b

bl

4. BOUNDS IN THE CASE WHEN %/ IS LIPSCHITZIAN
The following result can be stated as well:

Theorem 4.1. Letw : [a,b] — R be absolutely continuous da, b] with the property that/’ is
K —Lipschitzian ona, b) . If f is of bounded variation, then

(@.1) D)l < - K\ ().

a

The constant is best possible irj (4.1).

Proof. Utilising (2.8), we have successively:
b

/ O, (1) df (t)’ < sup [®, (1) \/ (f)

tela,b|

1D (f;u)] =

a

(=l

< Ksup [(b—1)(t —a)] \/
tela,b] a

b

1
= g(b—a)zK\/(f),
and the inequality] (4]1) is proved.

Now, for the sharpness of the constant, assume that the inequality holds with a constant
G>0,lie.,

a

(4.2) D (fiu)| <G (b—a)’K\/(f).

for w and f as in the statement of the theorem.
Consideru (t) := 1 (¢t — “T*”)Z andf (t) = sgn (t — %), ¢ € [a,b]. Thenu' (t) = t — =2
is K —Lipschitzian with the constamt’ = 1 and

D(f;u):/absgn<t_a;b) | (t_a;b>dt: (b—4a)2'

Since\/’ (f) = 2, hence from 2) we get=2" < 2G (b — a)?, which implies thatG >
1
1 0
8

The following result may be stated as well:
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Theorem 4.2.Letv : [a,b] — R be as in Theoremn 4.1. ffis L—Lipschitzian ona, b], then
1
(4.3) D (fiu)] < 7 (b—a)’ KL.

The constant; is best possible inf (4.3).
Proof. We have by[(28), that:

Dl =| [ e @yar <t>]

b
< L/ @, (1)) dt

1 1
—LK/ (b—t)(t—a)dt = —KL(b—a)’,
2 12

b

and the inequality is proved.
For the sharpness, assume that|(4.3) holds with a constant. Then

(4.4) D (f;w)| < F(b-a)’ KL,
providedf andw are as in the hypothesis of the theorem.

Considerf (t) =t — 2 andu (t) = 1 (t — “T“’)Q . Thenu/ is Lipschitzian with the constant
K = 1andf is Lipschitzian with the constarit = 1. Also,

D (f;u) z/ab (t— “;b)th: (6120)37

and by ) we ge@ < F (b — a)” which implies that” > 1. O
Finally, the case of monotonic integrands is enclosed in the following result.
Theorem 4.3.Letu : [a,b] — R be as in Theorein 4.1. Jfis monotonic nondecreasing, then

b
@s) i<k [ (=250 s
L max (17 @)1 )]} 60— )

1+1 .
2(q+1)1 Hf”( )+/q pr>17z—1)—|-%:1;

IN

s (b—a)K|fll;.
The first inequality is sharp. The constanis best possible.
Proof. We have

D (fiu)] < / 1, (1)] df (2)
b
<3k [ o=n@—adaw

:K/ab (t—a;b)f(t)dt

and the first inequality is proved. The second part follows by the Holder inequality.
The sharpness of the first inequality and of the constafdllows by choosingu (t) =
|t — <] andf (t) = sgn (t — 52) . The details are omitted. O
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5. APPLICATIONS FOR THE CEBYSEV FUNCTIONAL

The above result can naturally be applied in obtaining various sharp upper bounds for the
absolute value of th€ebysSev functional’ (f, g) defined by

(5.1) £.9) /ﬁf dﬁ—b_a/ﬁf dt - gayw

wheref, g : [a,b] — R are Lebesgue integrable functions such lf@ts also Lebesgue inte-
grable.

There are various sharp upper bounds|€of f, g)| and in the following we will recall just a
few of them.

In 1934, Griuss [13] showed that

(5.2) 1C(f.9)l <5 (M m) (N —n)
under the assumptions thAandg satisfy the bounds
(5.3) —co<m< f(t)<M<oo and —oco<n<g(t)<N<x

for almost every € [a,b], wherem, M, n, N are real numbers. The const%rits best possible
in the sense that it cannot be replaced by a smaller quantity.
Another less known result, even though it was establishe@diySev in 1882 [1], states that

(5.4) (9l <35 PN Nl (5 ),

provided thatf’, ¢’ exist and are continuous {n, b] and || f'||, = sup,c(, 4 | ()| . The con-

stant% cannot be replaced by a smaller quantity. f]ubyéev inequality also holds jif g are
absolutely continuous ofu, b, f',¢' € L [a,b] and||-||_ is replaced by thesssup norm
1f']l oo = esssupyeian [f' ()] - 3

In 1970, A. Ostrowski [16] considered a mixture between GrisCGein/Sev inequalities by
proving that

(55) C (9l < 5 (b= a) (M —m) ...

provided thatf satisfies[(5]3) and is absolutely continuous and € L [a, b] .
Three years after Ostrowski, A. Lupas [14] obtained another bound {gt g) in terms of
the Euclidean norms of the derivatives. Namely, he proved that

(5.6) C (91 < = (b= ) 17, 'l

provided thatf and g are absolutely continuous and, ¢’ € Ls[a,b]. Here % is also best
possible.

Recently, Cerone and Dragomiir [2], proved the following result:
(5.7) IC(f.9)l < inf llg =7 -

veER
providedf € L{a,b] andg € C'[a,b].

1 b
— ds| dt
- / f(s)ds
As particular cases of (5.7), we can state the results:
1 b
— / f(s)ds|dt

J. Inequal. Pure and Appl. Matt8(4) (2007), Art. 117, 13 pp. http://jipam.vu.edu.au/
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if g€ Cla,bjandf € L[a,b] and

o -m o [ [ o

wherem < g (xz) < M for z € [a,b]. The constants in ) ands in ) are best possible.
The inequality[(5.9) has been obtained before in a different way in [5].
For generalisations in abstract Lebesgue spaces, best constants and discrete versions, see [3].
For other results on théebySev functional, see![6],/[7] and [12].
Now, assume that : [a,b] — R is Lebesgue integrable da, b] . Then the function: (¢) :=
f; g (s) ds is absolutely continuous dn, b] and we can consider the function

(5.9) C(f.9)l < dt,

DO | —

t—a

(5.10) D, (1) ::@u(t):/g(s)ds—b_a/g(s)ds, t € la,bl.

Utilising Lemmg 2.1, we can state the following representation result.

Lemma 5.1. If g is absolutely continuous, then

[ K, e,

(5.11) b, (t) =

whereK is given by|[(Z.R).
As a consequence of Theorejms| 2.2 2.4, we also have the inequalities:

Proposition 5.2. Assume thag is Lebesgue integrable dn, b] .
(i) If g is of bounded variation ofw, b] , then

(512) 4,0 < 0N g < LoV ().

The inequalities are sharp ar&jis best possible.
(i) If g is K—Lipschitzian ora, ], then
(5.13)

b, (1) g%(b—t)(t—a)Kg (b—a) K.

ool —

The constantg and 3 are best possible.

We notice that the functiong : [a,b] — R, g; (t) = sgn (¢t — 2t2) andg, : [a,b] — R,
g (t) = (t — “$2) realise equality in (5.12) an (5/13), respectively.

Now, we observe that far (t) = [ g (s)ds, s € [a,b] , we have the identity:
(5.14) D(fu)=(0-a)C(f,g).

Utilising this identity and Theorens 3.1 and|3.4, we can state the following result.

Proposition 5.3. Assume thag is of bounded variation ofu, b] .
(i) If f is of bounded variation ofu, b] , then

(5.15) CUal< V@V

The constani is best possible in (5.15).

J. Inequal. Pure and Appl. Matt8(4) (2007), Art. 117, 13 pp. http://jipam.vu.edu.au/
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(i) If fis monotonic nondecreasing, then
b

1 b a+b
519 CUol=2V 0 gt [ (-157) s

( %\/Z (g)max{|f (a)|,|f (B)|};

b — .
V@I, -0 i p>1, Ll

IN

= Vo (@) 11l
The multiplicative constantsand ; are best possible iff (5.16).

Finally, by Theorem$ 4|1 F 4.3 we also have the following sharp bounds fat¢bgSev
functionalC (f, g) .

Proposition 5.4. Assume thag is K —Lipschitzian ora, b] .
(i) If fis of bounded variation, then
b

(5.17) C (o)l < g b-a K\ ().
The constan§ is best possible.
(ii) If fis L—Lipschitzian, then
(5.18) C(7.0)] < 15 (b~ a)* KL,

The constant; is best possible i (5.18).
(i) If fis monotonic nondecreasing, then

b
(5.19) !C(f,gﬂéK-bia/a (t—a;rb>f(t)dt
1K (b= a)max{|f (a)], |f ()]}

IN

1 .
s =) L, W p> 1 Tl =1

KL
The first inequality is sharp. The constapis best possible.

Remark 5.5. The inequalities(5.15) anfl (5]17) were obtained by P. Cerone and S.S. Dragomir
in [4, Corollary 3.5]. However, the sharpnes of the constér&ad% were not discussed there.

Inequality ) Is similar to théebyéev inequalit4).
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