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ABSTRACT. The object of the present paper is to drive some properties of certairf¢lagsA, B)
of multivalent analytic functions in the open unit digk

Key words and phrasegp-valently starlike functions of ordet, p-valently close-to-convex functions of order subordina-
tion, hypergeometric series.

2000Mathematics Subject Classificat 0B0C45.

1. INTRODUCTION

Let A, be the class of functions of the form

(1.1) f(2)=2"+> appa?t

k=1

which are analytic in the open unit digk= {z € C : |z] < 1}. Afunction f € A, is said to
be p-valently starlike of ordet of it satisfies the condition

zf’(z)}
Re >a (0<a<pzeFR).
§¢ ( )
We denote by5 (a).

On the other hand, a functiof € A, is said to bep-valently close-to-convex functions of
orderq if it satisfies the condition

Re{zg(lg)} >a (0<a<p,zekE),

for some starlike functiog(z). We denote by, («).
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For f € A, given by [1.1), the generalized Bernardi integral operatds defined by
c+p

F.(2) = = /0 ftetdt

ad C+p k
1.2 :zp—i—g ————a, 1 2" (c+p>0, z€E).
( ) k:10+p+k P+k ( p )

For an analytic functiom, defined inE' by

g(z) =22 + Z bpsr2P T,

k=1
Flett [3] defined the multiplier transforii for a real number by
Ig(z) = Z(p + k4 1), 2P (2 € B).
k=0
Clearly, the function"g is analytic inE' and

I"(I"g(z)) = I""g(2)

for all real numbers) andy.
For any integem, J. Patel and P. Sahoa [5] also defined the oper&tgrfor an analytic

function f given by [1.1), by
- E+1\""
D" f(z) = p+z(p+ + > Qi 2P

E+1+p\ "
Z+Z( 1—|—p) z"”“] (z € B),

wherex stands for the Hadamard product or convolution.
It follows from (1.3) that

(1.4) 2(D"f(2))" 7 f(2) = D" f(2).

We also have P )
0 . 2f'(2) + f(z
D'f(2) = f(z) and D7'f(z) PR

If f andg are analytic functions i/, then we say thaf is subordinate t@, written f < g
or f(z) < g(z), if there is a functionv analytic in £, with w(0) = 0, |w(z)| < 1 for z € E,
such thatf(z) = g(w(z)), for z € U. If g is univalent thenf < g if and only if f(0) = ¢(0)
andf(F) C g(E).

Making use of the operator notatidd*, we introduce a subclass df, as follows:

(1.3) = f(2) % 2P}

Definition 1.1. For any integer and—1 < B < A < 1, afunctionf € A, is said to be in the
classk, ,(A, B) if

D) _ pl+ A2)
zP 1+ Bz

(1.5)
where< denotes subordination.

For convenience, we write
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whereK,, ,(«) denote the class of functiorfse A, satisfying the inequality

Re{w}>a (0<a<p, z€E).

zp

We also note thaf(, ,(a) = C,(«) is the class op-valently close-to-convex functions of
ordera.

In this present paper, we derive some properties of a certain &lasgA, B) by using dif-
ferential subordination.

2. PRELIMINARIES AND MAIN RESULTS

In our present investigation of the general cl&Ss,(A, B), we shall require the following
lemmas.

Lemma 2.1([4]). If the functionp(z) = 1 + ¢12 + 2% + - - - is analytic inE, h(z) is convex
in E with ~(0) = 1, and~ is complex number such th&ie~y > 0. Then the Briot-Bouquet
differential subordination

< h(z)
implies

p(2) < qlz) = Z% /0 PR dt < h(z) (2 € E)
andg(z) is the best dominant.

For complex numbers, b andc # 0, —1, —2, ..., the hypergeometric series
ab  ala+1)bb+1) ,
2.1 Fi(a,b;c;2) =1+ —
( ) 2 1(CL, 7072) + CZ+ 2'C(C+].) <

represents an analytic function i It is well known by [1] that

Lemma 2.2. Leta, bandc be realc # 0, —1, —2, ... andc > b > 0. Then

L I'(WIC(c—b
/0 71— )T (1 — t2) Tt = —< >F((c) >2F1(a, b; c; 2),
(2.2) oF1(a, by 2) = (1 —2) " F (CL, c—b;c Ll)
-
and
(2.3) oFi(a, by ¢;2) = 2 F1(b, a; ¢; 2).

Lemma 2.3([6]). Let¢(z) be convex ang(z) is starlike in£. Then forF' analytic in £ with

F(0) = 1, %£4(E) is contained in the convex hull #f(E).
*g

Lemma 2.4([2]). Letg(z) =1+ i crz® andg(z) < 4z Then
k=1

1+Bz
cx| < (A - B).
Theorem 2.5.Letn be any integerand-1 < B < A< 1.If f € K,,,(A, B), then
D (2)) p(l + Az)
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where
2 Fi(1,p+ 1;p+2;—Bz)
(2.5) o) =4 ThaAnR(Lp+2p+3-B2), B£O;
1
1 + ZI2AZ B — O,

andg(z) is the best dominant df (2.4). Furthermoges K,,1,(p(p, A, B)), where

(p+1) )
(2.6) p(p, A, B) = ;12 A P1(1 p+2;p+3;B), B#0;
+1 .
§+2A B =0.
Proof. Let
Z(Dn+1f<z)),
2.7 e S o
(2.7) p(2) P

wherep(z) is analytic function withp(0) = 1.
Using the identity[(1}4) in(2]7) and differentiating the resulting equation, we get

A(D"f(2)) (z)  1+Az,_
28) =)+ T < (= b)),
Thus, by using Lemma 2.1 (for = p + 1), we deduce that
_ (1 + At)
(p+1) 7 e
o) <+ =[BT = o(2)
LsP(1+ Asz)
_(p+1)/0 14 Bsz ds
1 gP L
(2.9) = (p+ 1)/O T Bszds +(p+ 1)Az/O T Bszds

By using [2.2) in[(2.P), we obtain
oFi(L,p+1;p+ 2; —Bz)

p(z) < q(z) — —|—p+1A22F1(1 p—|—2 p_|_3 Bz> B 75 O;

+1 _
1—1—1’;2142 B =0.

Thus, this proves (2,5).
Now, we show that

(2.10) Req(z) > q(—r) (]2|=r<1).
Since—1 < B < A < 1, the function(1 + Az)/(1 4+ Bz) is convex(univalent) irt’ and

1+ A 1-A
Re( i Z>> >0 (|z| =r < 1).

1+Bz) ~ 1—DBr
Setting
1+ Asz
2= —>" <s<1 E
9(s2) = 5. (0<s<1, z€B)
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anddu(s) = (p + 1)sPds, which is a positive measure g 1], we obtain from[(2)9) that

o) = [ ol 2)ints) (=€ B).
Therefore, we have
Req(z):/o Reg(s, z)du(s) Z/O

which proves the inequality (2.]L0).
Now, using [(2.1D) in[(2]9) and letting— 1, we obtain

L1 — Asr
1- Bsrd'u(s)

Dn+1 !
e [ 0
zp
where
p2Fi(1,p+1;p+2; B)
+1 . .
p(p, A, B) = —2et) A Fy(Lp+2p+ 3 B), B#0
b= pg:g)A’ B =0.
This proves the assertion of Theorgm|2.5. The result is best possible because of the best domi-
nant property ofj(z). >

PuttingA =1 — 2 andB = —1in Theore, we have the following:

Corollary 2.6. For any integem and0 < « < p, we have

Kn’p(Oé) - Kn+1,p(p(pa Oé)),
where

+1
(2.11) p(p,a) =p-2F1(L,p+1L;p+2;—1) — plo+ 1)

p+2

(1 —=2a)Fi(1,p+2;p+3;—1).
The result is best possible.

Takingp = 1 in Corollary[2.6, we have the following:

Corollary 2.7. For any integem and0 < a < 1, we have
K, (0) C Knya(9(ar)),
where

o0

(2.12) (o) =1+4(1—20) )

k=1
Theorem 2.8. For any integern and0 < a < p, if f(2) € K,11,(a), thenf € K, ,(«) for
|z| < R(p), whereR(p) = “HVIHEHD® The result is best possible.

p+1

1

et

Proof. Sincef(z) € K,+1,(a), we have
(D" ()
zPp
wherew(z) = 1+ w;z +wyz + - - - is analytic and has a positive real partin Making use of

logarithmic differentiation and using identity (1.4) [n (2.13), we get

(2.14) w —a=(p—a) {w(z) + %(21)] :

(2.13) =a+(p—a)w(z), (0<a<p),
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Now, using the well-known (by [5])
|z’ (2)] < 2r 1—r

Row(z) = 1—12 and Rew(z)21+r (Jz] =7 < 1),
in (2.14), we get
T e
1 w(z)
> 0= @) Rewls { p—l—lRew(Z)}

1—r 2r
2(])—04) 11— 2
14+r p—|—11 r

It is easily seen that the right-hand side of the above expression is positie<f R(p) =
“HVILEHD® Hencef € K, ,(a) for |2| < R(p).

p+1
To show that the boung(p) is best possible, we consider the functipr A, defined by
(DM f(2) 1—2
T_omL(p—a)lJrZ (z € E).
Noting that
2(D"f(2)) B 11—z 1 —2z
2P a=p=a 1+z 1+p—|—1(p—|—1)(1—z2)
1—2 +1)—(p+1)22 -2z
Cp—a). {@ )= (p+ 1= }
1+=2 p+1)—(p+1)z
=0
for z = %W we complete the proof of Theor.8. O

Puttingn = —1,p = 1 and0 < « < 1 in Theorenj 2.8, we have the following:

Corollary 2.9. If Re f'(z) > «, thenRe{zf"(z) + 2f'(2)} > afor |z| < Hf

Theorem 2.10.

(a) If f € K,,,(A, B), then the functiorF, defined by[(1]2) belongs @, (A, B).
(b) f € K,,,(A, B) implies thatF, € K, ,(n(p, ,c, A, B)) where

pFi(Lp+cep+c+1;B)

n(p,c, A, B) = prﬁA F(l,p+c+Lp+c+2;B), B#0
p— pgfctr?A’ B=0.
Proof. Let
_ Z(D"F(2))
(2.15) P(z) = T
whereg(z) is an analytic function witl(0) = 1. Using the identity
(2.16) (D F(2))" f(2) — eD"Fo(2)
in (2.15) and differentiating the resulting equation, we get
2(D™f(z)) 29 (z
DIE _ 4.y 1 20,
pz p+c
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Sincef € K, ,(A, B),
2¢'(z) 1+ Az
+ <

9() p+c 1+ Bz
By Lemmd 2.1, we obtaiit,(z) € K, ,(A, B). We deduce that
14+ Az
(2.17) P(2) <q(2) < 178

whereg(z) is given by [2.5) and is the best dominant|of (2.17).
This proves part (a) of the theorem. Proceeding as in Thelorerh 2.10, part (b) follows]

PuttingA = 1 — 22 andB = —11in Theore, we have the following:
Corollary 2.11. If f € K, ,(A, B) for0 < a < p, thenF, € K,, ,H(p, c, ), where
Hp,c,0) =p-2F(Lp+ep+ce+1;-1)
__ptce
p+c+1
Settingc = p = 1 in Theorenj 2.10, we get the following result.
Corollary 2.12. If f € K,,,(«) for 0 < o < 1, then the function

2 z
G(z2) = —/ f(t)dt
ZJo
belongs to the clask,(d(«)), whered(«) is given by|(2.12).
Theorem 2.13.For any integern and0 < a < p andc > —p, if F, € K, ,(a) then the

function f defined byl) belongs 1, ,(«) for |z| < R(p,c) = SRR VAL AL W The resultis
best possible.

(p—2a)Fi(L,p+ep+c+1;—1).

Proof. SinceF., € K, ,(a), we write

(2.18) @

wherew(z) is analytic,w(0) = 1 andRew(z) > 0in E. Using [2.16) in[(2.18) and differenti-
ating the resulting equation, we obtain

(2.19) Re{w—a} :(p—a)Re{w(z)+M}.

zP p+c
Now, by following the line of proof of Theorefn 2.8, we get the assertion of Theprem 2[13.

Theorem 2.14.Let f € K,,,(A, B) and¢(z) € A, convex ink. Then
(f *x9(2))(2) € Knp(A, B).
Proof. Sincef(z) € K, ,(A, B),

=a+ (p— a)w(z),

2(D™f(z)) _ 1+ Az

pzP 1+ Bz
Now
AD"(f * 9)(2)) _ 6(2) * 2(D"f)
paP * ¢(2) ¢(z) * pa?
o) LN
(2.20) oL
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Then applying Lemmpa 2.3, we deduce that
o)+ L 1y,
&(z) * pzP 1+ Bz
Hence(f * ¢(2))(2) € K, ,(A, B).
Theorem 2.15.Let a functionf(z) defined by[(1]1) be in the clag§, ,(A, B). Then
pA=B)(p+k+ 1)

2.21 a < for k=1,2,....
The result is sharp.
Proof. Sincef(z) € K, ,(A, B), we have
2(D™f(z)) 1+ Az
o =¢(z) and ¢(z) < T B2
Hence
(2.22) 2AD"f(2))"¢(z) and ¢(z) =1+ 2.
k=1
From (2.22), we have
n I = 1 + p " + ,
(D" f(2)) == (Zp‘*‘; (p+k+1) ptk2’ )
— P p+
Dz +; p+k+1) (p+ k)apirz
= pz? (1 + Z ckzk>
k=1
Therefore
14+p " B
(2.23) (m) (p+ k)apir = peg.

By using Lemma 214 i (2.23),

(52) " 0+ F)lapssl
p

:|Ck|§A—B

Hence
p(A-B)(p+k+1)"

(1+p)"(p+k)

The equality sign in[(2.21) holds for the functigrgiven by

, pP 4+ p(A-B—1)2°
N 1—2z '

|ap+k| <

(2.24) (D" f(2))

Hence

D'f(z)) 1+(A-B-1)z 1+A4
2(D"f(z) _14( L A N
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The functionf(z) defined in[(2.24) has the power series representatid in

o p(A—B)(p+k+1)"
Z+Z (I+p)(p+Fk) &
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