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1. I NTRODUCTION

Let Ap be the class of functions of the form

(1.1) f(z) = zp +
∞∑

k=1

ap+kz
p+k

which are analytic in the open unit diskE = {z ∈ C : |z| < 1}. A functionf ∈ Ap is said to
bep-valently starlike of orderα of it satisfies the condition

Re

{
zf ′(z)

f(z)

}
> α (0 ≤ α < p, z ∈ E).

We denote byS∗p(α).
On the other hand, a functionf ∈ Ap is said to bep-valently close-to-convex functions of

orderα if it satisfies the condition

Re

{
zf ′(z)

g(z)

}
> α (0 ≤ α < p, z ∈ E),

for some starlike functiong(z). We denote byCp(α).
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Forf ∈ Ap given by (1.1), the generalized Bernardi integral operatorFc is defined by

Fc(z) =
c + p

zc

∫ z

0

f(t)tc−1dt

= zp +
∞∑

k=1

c + p

c + p + k
ap+kz

p+k (c + p > 0, z ∈ E).(1.2)

For an analytic functiong, defined inE by

g(z) = zp +
∞∑

k=1

bp+kz
p+k,

Flett [3] defined the multiplier transformIη for a real numberη by

Iηg(z) =
∞∑

k=0

(p + k + 1)−ηbp+kz
p+k (z ∈ E).

Clearly, the functionIηg is analytic inE and

Iη(Iµg(z)) = Iη+µg(z)

for all real numbersη andµ.
For any integern, J. Patel and P. Sahoo [5] also defined the operatorDn, for an analytic

functionf given by (1.1), by

Dnf(z) = zp +
∞∑

k=1

(
p + k + 1

1 + p

)−n

ap+kz
p+k

= f(z) ∗ zp−1

[
z +

∞∑
k=1

(
k + 1 + p

1 + p

)−n

zk+1

]
(z ∈ E),(1.3)

where∗ stands for the Hadamard product or convolution.
It follows from (1.3) that

(1.4) z(Dnf(z))′n−1f(z)−Dnf(z).

We also have

D0f(z) = f(z) and D−1f(z) =
zf ′(z) + f(z)

p + 1
.

If f andg are analytic functions inE, then we say thatf is subordinate tog, written f < g
or f(z) < g(z), if there is a functionw analytic inE, with w(0) = 0, |w(z)| < 1 for z ∈ E,
such thatf(z) = g(w(z)), for z ∈ U . If g is univalent thenf < g if and only if f(0) = g(0)
andf(E) ⊂ g(E).

Making use of the operator notationDn, we introduce a subclass ofAp as follows:

Definition 1.1. For any integern and−1 ≤ B < A ≤ 1, a functionf ∈ Ap is said to be in the
classKn,p(A, B) if

(1.5)
z(Dnf(z))′

zp
<

p(1 + Az)

1 + Bz
,

where< denotes subordination.

For convenience, we write

Kn,p

(
1− 2α

p
,−1

)
= Kn,p(α),
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whereKn,p(α) denote the class of functionsf ∈ Ap satisfying the inequality

Re

{
z(Dnf(z))′

zp

}
> α (0 ≤ α < p, z ∈ E).

We also note thatK0,p(α) ≡ Cp(α) is the class ofp-valently close-to-convex functions of
orderα.

In this present paper, we derive some properties of a certain classKn,p(A, B) by using dif-
ferential subordination.

2. PRELIMINARIES AND M AIN RESULTS

In our present investigation of the general classKn,p(A, B), we shall require the following
lemmas.

Lemma 2.1([4]). If the functionp(z) = 1 + c1z + c2z
2 + · · · is analytic inE, h(z) is convex

in E with h(0) = 1, andγ is complex number such thatRe γ > 0. Then the Briot-Bouquet
differential subordination

p(z) +
zp′(z)

γ
< h(z)

implies

p(z) < q(z) =
γ

zγ

∫ z

0

tγ−1h(t)dt < h(z) (z ∈ E)

andq(z) is the best dominant.

For complex numbersa, b andc 6= 0,−1,−2, . . . , the hypergeometric series

(2.1) 2F1(a, b; c; z) = 1 +
ab

c
z +

a(a + 1)b(b + 1)

2!c(c + 1)
z2 + · · ·

represents an analytic function inE. It is well known by [1] that

Lemma 2.2. Leta, b andc be realc 6= 0,−1,−2, . . . andc > b > 0. Then∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt =
Γ(b)Γ(c− b)

Γ(c)
2F1(a, b; c; z),

2F1(a, b; c; z) = (1− z)−a
2F1

(
a, c− b; c;

z

z − 1

)
(2.2)

and

(2.3) 2F1(a, b; c; z) = 2F1(b, a; c; z).

Lemma 2.3([6]). Let φ(z) be convex andg(z) is starlike inE. Then forF analytic inE with
F (0) = 1, φ∗Fg

φ∗g (E) is contained in the convex hull ofF (E).

Lemma 2.4([2]). Letφ(z) = 1 +
∞∑

k=1

ckz
k andφ(z) < 1+Az

1+Bz
. Then

|ck| ≤ (A−B).

Theorem 2.5.Letn be any integer and−1 ≤ B < A ≤ 1. If f ∈ Kn,p(A, B), then

(2.4)
z(Dn+1f(z))′

zp
< q(z) <

p(1 + Az)

1 + Bz
(z ∈ E),
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where

(2.5) q(z) =


2F1(1, p + 1; p + 2;−Bz)

+p+1
p+2

Az2F1(1, p + 2; p + 3;−Bz), B 6= 0;

1 + p+1
p+2

Az, B = 0,

andq(z) is the best dominant of (2.4). Furthermore,f ∈ Kn+1,p(ρ(p, A, B)), where

(2.6) ρ(p, A, B) =


p2F1(1, p + 1; p + 2; B)

−p(p+1)
p+2

A2F1(1, p + 2; p + 3; B), B 6= 0;

1− p+1
p+2

A, B = 0.

Proof. Let

(2.7) p(z) =
z(Dn+1f(z))′

pzp
,

wherep(z) is analytic function withp(0) = 1.
Using the identity (1.4) in (2.7) and differentiating the resulting equation, we get

(2.8)
z(Dnf(z))′

pzp
= p(z) +

zp′(z)

p + 1
<

1 + Az

1 + Bz
(≡ h(z)).

Thus, by using Lemma 2.1 (forγ = p + 1), we deduce that

p(z) < (p + 1)z−(p+1)

∫ z

0

tp(1 + At)

1 + Bt
dt(≡ q(z))

= (p + 1)

∫ 1

0

sp(1 + Asz)

1 + Bsz
ds

= (p + 1)

∫ 1

0

sp

1 + Bsz
ds + (p + 1)Az

∫ 1

0

sp+1

1 + Bsz
ds.(2.9)

By using (2.2) in (2.9), we obtain

p(z) < q(z) =


2F1(1, p + 1; p + 2;−Bz)

+p+1
p+2

Az2F1(1, p + 2; p + 3;−Bz), B 6= 0;

1 + p+1
p+2

Az, B = 0.

Thus, this proves (2.5).
Now, we show that

(2.10) Re q(z) ≥ q(−r) (|z| = r < 1).

Since−1 ≤ B < A ≤ 1, the function(1 + Az)/(1 + Bz) is convex(univalent) inE and

Re

(
1 + Az

1 + Bz

)
≥ 1− Ar

1−Br
> 0 (|z| = r < 1).

Setting

g(s.z) =
1 + Asz

1 + Bsz
(0 ≤ s ≤ 1, z ∈ E)
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anddµ(s) = (p + 1)spds, which is a positive measure on[0, 1], we obtain from (2.9) that

q(z) =

∫ 1

0

g(s, z)dµ(s) (z ∈ E).

Therefore, we have

Re q(z) =

∫ 1

0

Re g(s, z)dµ(s) ≥
∫ 1

0

1− Asr

1−Bsr
dµ(s)

which proves the inequality (2.10).
Now, using (2.10) in (2.9) and lettingr → 1−, we obtain

Re

{
z(Dn+1f(z))′

zp

}
> ρ(p, A, B),

where

ρ(p, A, B) =


p2F1(1, p + 1; p + 2; B)

−p(p+1)
p+2

A2F1(1, p + 2; p + 3; B), B 6= 0

p− p(p+1)
p+2

A, B = 0.

This proves the assertion of Theorem 2.5. The result is best possible because of the best domi-
nant property ofq(z). �

PuttingA = 1− 2α
p

andB = −1 in Theorem 2.5, we have the following:

Corollary 2.6. For any integern and0 ≤ α < p, we have

Kn,p(α) ⊂ Kn+1,p(ρ(p, α)),

where

(2.11) ρ(p, α) = p · 2F1(1, p + 1; p + 2;−1)− p(p + 1)

p + 2
(1− 2α)2F1(1, p + 2; p + 3;−1).

The result is best possible.

Takingp = 1 in Corollary 2.6, we have the following:

Corollary 2.7. For any integern and0 ≤ α < 1, we have

Kn(δ) ⊂ Kn+1(δ(α)),

where

(2.12) δ(α) = 1 + 4(1− 2α)
∞∑

k=1

1

k + 2
(−1)k.

Theorem 2.8. For any integern and0 ≤ α < p, if f(z) ∈ Kn+1,p(α), thenf ∈ Kn,p(α) for

|z| < R(p), whereR(p) =
−1+

√
1+(p+1)2

p+1
. The result is best possible.

Proof. Sincef(z) ∈ Kn+1,p(α), we have

(2.13)
z(Dn+1f(z))′

zp
= α + (p− α)w(z), (0 ≤ α < p),

wherew(z) = 1 + w1z + w2z + · · · is analytic and has a positive real part inE. Making use of
logarithmic differentiation and using identity (1.4) in (2.13), we get

(2.14)
z(Dnf(z))′

zp
− α = (p− α)

[
w(z) +

zw′(z)

p + 1

]
.
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Now, using the well-known (by [5])

|zw′(z)|
Re w(z)

≤ 2r

1− r2
and Re w(z) ≥ 1− r

1 + r
(|z| = r < 1),

in (2.14), we get

Re

{
z(Dnf(z))′

zp
− α

}
= (p− α) Re w(z)

{
1 +

1

p + 1

Re zw′(z)

Re w(z)

}
≥ (p− α) Re w(z)

{
1− 1

p + 1

|zw′(z)|
Re w(z)

}
≥ (p− α)

1− r

1 + r

{
1− 1

p + 1

2r

1− r2

}
.

It is easily seen that the right-hand side of the above expression is positive if|z| < R(p) =
−1+

√
1+(p+1)2

p+1
. Hencef ∈ Kn,p(α) for |z| < R(p).

To show that the boundR(p) is best possible, we consider the functionf ∈ Ap defined by

z(Dn+1f(z))′

zp
= α + (p− α)

1− z

1 + z
(z ∈ E).

Noting that

z(Dnf(z))′

zp
− α = (p− α) · 1− z

1 + z

{
1 +

1

p + 1

−2z

(p + 1)(1− z2)

}
= (p− α) · 1− z

1 + z

{
(p + 1)− (p + 1)z2 − 2z

(p + 1)− (p + 1)z2

}
= 0

for z =
−1+

√
1+(p+1)2

p+1
, we complete the proof of Theorem 2.8. �

Puttingn = −1, p = 1 and0 ≤ α < 1 in Theorem 2.8, we have the following:

Corollary 2.9. If Re f ′(z) > α, thenRe{zf ′′(z) + 2f ′(z)} > α for |z| < −1+
√

5
2

.

Theorem 2.10.
(a) If f ∈ Kn,p(A, B), then the functionFc defined by (1.2) belongs toKn,p(A, B).
(b) f ∈ Kn,p(A, B) implies thatFc ∈ Kn,p(η(p, , c, A, B)) where

η(p, c, A, B) =


p2F1(1, p + c; p + c + 1; B)

−p(p+c)
p+c+1

A2F1(1, p + c + 1; p + c + 2; B), B 6= 0

p− p(p+c)
p+c+1

A, B = 0.

Proof. Let

(2.15) φ(z) =
z(DnFc(z))′

pzp
,

whereφ(z) is an analytic function withφ(0) = 1. Using the identity

(2.16) z(DnFc(z))′nf(z)− cDnFc(z)

in (2.15) and differentiating the resulting equation, we get

z(Dnf(z))′

pzp
= φ(z) +

zφ′(z)

p + c
.
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Sincef ∈ Kn,p(A, B),

φ(z) +
zφ′(z)

p + c
<

1 + Az

1 + Bz
.

By Lemma 2.1, we obtainFc(z) ∈ Kn,p(A, B). We deduce that

(2.17) φ(z) < q(z) <
1 + Az

1 + Bz
,

whereq(z) is given by (2.5) and is the best dominant of (2.17).
This proves part (a) of the theorem. Proceeding as in Theorem 2.10, part (b) follows.�

PuttingA = 1− 2α
p

andB = −1 in Theorem 2.8, we have the following:

Corollary 2.11. If f ∈ Kn,p(A, B) for 0 ≤ α < p, thenFc ∈ Kn,pH(p, c, α), where

H(p, c, α) = p · 2F1(1, p + c; p + c + 1;−1)

− p + c

p + c + 1
(p− 2α)2F1(1, p + c; p + c + 1;−1).

Settingc = p = 1 in Theorem 2.10, we get the following result.

Corollary 2.12. If f ∈ Kn,p(α) for 0 ≤ α < 1, then the function

G(z) =
2

z

∫ z

0

f(t)dt

belongs to the classKn(δ(α)), whereδ(α) is given by (2.12).

Theorem 2.13.For any integern and 0 ≤ α < p and c > −p, if Fc ∈ Kn,p(α) then the

functionf defined by (1.1) belongs toKn,p(α) for |z| < R(p, c) =
−1+

√
1+(p+c)2

p+c
. The result is

best possible.

Proof. SinceFc ∈ Kn,p(α), we write

(2.18)
z(DnFc)

′

zp
= α + (p− α)w(z),

wherew(z) is analytic,w(0) = 1 andRe w(z) > 0 in E. Using (2.16) in (2.18) and differenti-
ating the resulting equation, we obtain

(2.19) Re

{
z(Dnf(z))′

zp
− α

}
= (p− α) Re

{
w(z) +

zw′(z)

p + c

}
.

Now, by following the line of proof of Theorem 2.8, we get the assertion of Theorem 2.13.�

Theorem 2.14.Letf ∈ Kn,p(A, B) andφ(z) ∈ Ap convex inE. Then

(f ∗ φ(z))(z) ∈ Kn,p(A, B).

Proof. Sincef(z) ∈ Kn,p(A, B),

z(Dnf(z))′

pzp
<

1 + Az

1 + Bz
.

Now
z(Dn(f ∗ φ)(z))′

pzp ∗ φ(z)
=

φ(z) ∗ z(Dnf)′

φ(z) ∗ pzp

=
φ(z) ∗ z(Dnf(z))′

pzp pzp

φ(z) ∗ pzp
.(2.20)
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Then applying Lemma 2.3, we deduce that

φ(z) ∗ z(Dnf(z))′

pzp pzp

φ(z) ∗ pzp
<

1 + Az

1 + Bz
.

Hence(f ∗ φ(z))(z) ∈ Kn,p(A, B). �

Theorem 2.15.Let a functionf(z) defined by (1.1) be in the classKn,p(A, B). Then

(2.21) |ap+k| ≤
p(A−B)(p + k + 1)n

(1 + p)n(p + k)
for k = 1, 2, . . . .

The result is sharp.

Proof. Sincef(z) ∈ Kn,p(A, B), we have

z(Dnf(z))′

pzp
≡ φ(z) and φ(z) <

1 + Az

1 + Bz
.

Hence

(2.22) z(Dnf(z))′pφ(z) and φ(z) = 1 +
∞∑

k=1

ckz
k.

From (2.22), we have

z(Dnf(z))′ = z

(
zp +

∞∑
k=1

(
1 + p

p + k + 1

)n

ap+kz
p+k

)′

= pzp +
∞∑

k=1

(
1 + p

p + k + 1

)n

(p + k)ap+kz
p+k

= pzp

(
1 +

∞∑
k=1

ckz
k

)
.

Therefore

(2.23)

(
1 + p

p + k + 1

)n

(p + k)ap+k = pck.

By using Lemma 2.4 in (2.23),(
1+p

p+k+1

)n

(p + k)|ap+k|

p
= |ck| ≤ A−B.

Hence

|ap+k| ≤
p(A−B)(p + k + 1)n

(1 + p)n(p + k)
.

The equality sign in (2.21) holds for the functionf given by

(2.24) (Dnf(z))′ =
pzp−1 + p(A−B − 1)zp

1− z
.

Hence
z(Dnf(z))′

pzp
=

1 + (A−B − 1)z

1− z
<

1 + Az

1 + Bz
for k = 1, 2, . . . .
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The functionf(z) defined in (2.24) has the power series representation inE,

f(z) = zp +
∞∑

k=1

p(A−B)(p + k + 1)n

(1 + p)n(p + k)
zp+k.

�
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