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ABSTRACT. Let f(x, y, z) be a cyclic homogeneous polynomial of degree four with three vari-
ables which satisfiesf(1, 1, 1) = 0. In this paper, we give the necessary and sufficient conditions
to havef(x, y, z) ≥ 0 for any real numbersx, y, z. We also give the necessary and sufficient
conditions to havef(x, y, z) ≥ 0 for the case whenf is symmetric andx, y, z are nonnegative
real numbers. Finally, some new inequalities with cyclic homogeneous polynomials of degree
four are presented.
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1. I NTRODUCTION

Let x, y, z be real numbers. The fourth degree Schur’s inequality ([3], [5], [7]) is a well-
known symmetric homogeneous polynomial inequality which states that

(1.1)
∑

x4 + xyz
∑

x ≥
∑

xy(x2 + y2),

where
∑

denotes a cyclic sum overx, y andz. Equality holds forx = y = z, and forx = 0
andy = z, or y = 0 andz = x, or z = 0 andx = y.

In [3], the following symmetric homogeneous polynomial inequality was proved

(1.2)
∑

x4 + 8
∑

x2y2 ≥ 3
(∑

xy
) (∑

x2
)

,

with equality forx = y = z, and forx/2 = y = z, or y/2 = z = x, or z/2 = x = y. In
addition, a more general inequality was proved in [3] for any realk,

(1.3)
∑

(x− y)(x− ky)(x− z)(x− kz) ≥ 0,
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2 VASILE CIRTOAJE

with equality forx = y = z, and again forx/k = y = z, or y/k = z = x, or z/k = x = y.
Notice that this inequality is a consequence of the identity∑

(x− y)(x− ky)(x− z)(x− kz) =
1

2

∑
(y − z)2(y + z − x− kx)2.

In 1992, we established the following cyclic homogeneous inequality [1]:

(1.4)
(∑

x2
)2

≥ 3
∑

x3y,

which holds for any real numbersx, y, z, with equality forx = y = z, and for
x

sin2 4π
7

=
y

sin2 2π
7

=
z

sin2 π
7

or any cyclic permutation thereof.
Six years later, we established a similar cyclic homogeneous inequality [2],

(1.5)
∑

x4 +
∑

xy3 ≥ 2
∑

x3y,

which holds for any real numbersx, y, z, with equality forx = y = z, and for

x sin
π

9
= y sin

7π

9
= z sin

13π

9
or any cyclic permutation thereof.

As shown in [3], substitutingy = x + p andz = x + q, the inequalities(1.4) and(1.5) can
be rewritten in the form

(p2 − pq + q2)x2 + f(p, q)x + g(p, q) ≥ 0,

where the quadratic polynomial ofx has the discriminant

δ1 = −3(p3 − p2q − 2pq2 + q3)2 ≤ 0,

and, respectively,
δ2 = −3(p3 − 3pq2 + q3)2 ≤ 0.

The symmetric inequalities(1.1), (1.2) and (1.3), as well as the cyclic inequalities(1.4)
and (1.5), are particular cases of the inequalityf(x, y, z) ≥ 0, wheref(x, y, z) is a cyclic
homogeneous polynomial of degree four satisfyingf(1, 1, 1) = 0. This polynomial has the
general form

(1.6) f(x, y, z) = w
∑

x4 + r
∑

x2y2

+ (p + q − r − w)xyz
∑

x− p
∑

x3y − q
∑

xy3,

wherep, q, r, w are real numbers. Since the inequalityf(x, y, z) ≥ 0 with w ≤ 0 does not hold
for all real numbersx, y, z, except the trivial case wherew = p = q = 0 andr ≥ 0, we will
considerw = 1 throughout this paper.

2. M AIN RESULTS

In 2008, we posted, without proof, the following theorem in the Mathlinks Forum [4].

Theorem 2.1.Letp, q, r be real numbers. The cyclic inequality

(2.1)
∑

x4 + r
∑

x2y2 + (p + q − r − 1)xyz
∑

x ≥ p
∑

x3y + q
∑

xy3

holds for any real numbersx, y, z if and only if

(2.2) 3(1 + r) ≥ p2 + pq + q2.
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CYCLIC HOMOGENEOUSPOLYNOMIAL INEQUALITIES 3

Forp = q = 1 andr = 0, we obtain the fourth degree Schur’s inequality(1.1). Forp = q = 3
andr = 8 one gets(1.2), while for p = q = k + 1 andr = k(k + 2) one obtains(1.3). In
addition, forp = 3, q = 0 andr = 2 one gets(1.4), while for p = 2, q = −1 andr = 0 one
obtains(1.5).

In the particular casesr = 0, r = p + q − 1, q = 0 andp = q, by Theorem 2.1, we have the
following corollaries, respectively.

Corollary 2.2. Letp andq be real numbers. The cyclic inequality

(2.3)
∑

x4 + (p + q − 1)xyz
∑

x ≥ p
∑

x3y + q
∑

xy3

holds for any real numbersx, y, z if and only if

(2.4) p2 + pq + q2 ≤ 3.

Corollary 2.3. Letp andq be real numbers. The cyclic inequality

(2.5)
∑

x4 + (p + q − 1)
∑

x2y2 ≥ p
∑

x3y + q
∑

xy3

holds for any real numbersx, y, z if and only if

(2.6) 3(p + q) ≥ p2 + pq + q2.

Corollary 2.4. Letp andq be real numbers. The cyclic inequality

(2.7)
∑

x4 + r
∑

x2y2 + (p− r − 1)xyz
∑

x ≥ p
∑

x3y

holds for any real numbersx, y, z if and only if

(2.8) 3(1 + r) ≥ p2.

Corollary 2.5. Letp andq be real numbers. The symmetric inequality

(2.9)
∑

x4 + r
∑

x2y2 + (2p− r − 1)xyz
∑

x ≥ p
∑

xy(x2 + y2)

holds for any real numbersx, y, z if and only if

(2.10) r ≥ p2 − 1.

Finding necessary and sufficient conditions such that the cyclic inequality(2.1) holds for any
nonnegative real numbersx, y, z is a very difficult problem. On the other hand, the approach
for nonnegative real numbers is less difficult in the case when the cyclic inequality(2.1) is
symmetric. Thus, in 2008, Le Huu Dien Khue posted, without proof, the following theorem on
the Mathlinks Forum [4].

Theorem 2.6. Let p and r be real numbers. The symmetric inequality(2.9) holds for any
nonnegative real numbersx, y, z if and only if

(2.11) r ≥ (p− 1) max{2, p + 1}.

From Theorem 2.1, settingp = 1 +
√

6, q = 1−
√

6 andr = 2, and thenp = 3, q = −3 and
r = 2, we obtain the inequalities:

(2.12)
(∑

x2
) (∑

x2 −
∑

xy
)
≥
√

6
(∑

x3y −
∑

xy3
)

,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.4493 andβ ≈ −0.1009 were found using a computer;

(2.13) (x2 + y2 + z2)2 ≥ 3
∑

xy(x2 − y2 + z2),

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.2469 andβ ≈ −0.3570.
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From Corollary 2.2, settingp =
√

3 andq = −
√

3 yields

(2.14)
∑

x4 − xyz
∑

x ≥
√

3
(∑

x3y −
∑

xy3
)

,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.3767 andβ ≈ −0.5327. Notice that ifx, y, z are nonnegative real numbers, then the best
constant in inequality(2.14) is 2

√
2 (Problem 19, Section 2.3 in [3], by Pham Kim Hung):

(2.15)
∑

x4 − xyz
∑

x ≥ 2
√

2
(∑

x3y −
∑

xy3
)

.

From Corollary 2.3, settingp = 1 +
√

3 andq = 1, and thenp = 1 −
√

3 andq = 1, we
obtain the inequalities:

(2.16)
∑

x4 −
∑

xy3 ≥
(
1 +

√
3
) (∑

x3y −
∑

x2y2
)

,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.7760 andβ ≈ 0.5274;

(2.17)
∑

x4 −
∑

xy3 ≥
(√

3− 1
) (∑

x2y2 −
∑

x3y
)

,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 1.631 andβ ≈ −1.065.

From Corollary 2.4, setting in successionp =
√

3 andr = 0, p = −
√

3 andr = 0, p = 6
andr = 11, p = 2 andr = 1/3, p = −1 andr = −2/3, p = r = (3 +

√
21)/2, p = 1

andr = −2/3, p = r = (3 −
√

21)/2, p =
√

6 andr = 1, we obtain the inequalities below,
respectively:

(2.18)
∑

x4 +
(√

3− 1
)

xyz
∑

x ≥
√

3
∑

x3y,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.7349 andβ ≈ −0.1336 (Problem 5.3.10 in [6]);

(2.19)
∑

x4 +
√

3
∑

x3y ≥
(
1 +

√
3
)

xyz
∑

x,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 7.915 andβ ≈ −6.668;

(2.20)
∑

x4 + 11
∑

x2y2 ≥ 6
(∑

x3y + xyz
∑

x
)

,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.5330 andβ ≈ 2.637;

(2.21) 3
∑

x4 +
(∑

xy
)2

≥ 6
∑

x3y,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.7156 andβ ≈ −0.0390;

(2.22)
∑

x4 +
∑

x3y ≥ 2

3

(∑
xy

)2

,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 1.871 andβ ≈ −2.053;

(2.23)
∑

x4 − xyz
∑

x ≥ 3 +
√

21

2

(∑
x3y −

∑
x2y2

)
,
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CYCLIC HOMOGENEOUSPOLYNOMIAL INEQUALITIES 5

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.570 andβ ≈ 0.255;

(2.24)
∑

x4 −
∑

x3y ≥ 2

3

(∑
x2y2 − xyz

∑
x
)

,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.8020 andβ ≈ −0.4446;

(2.25)
∑

x4 − xyz
∑

x ≥
√

21− 3

2

(∑
x2y2 −

∑
x3y

)
,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 1.528 andβ ≈ −1.718;

(2.26)
∑

(x2 − yz)2 ≥
√

6
∑

xy(x− z)2,

with equality forx = y = z, and forx = y/α = z/β or any cyclic permutation, where
α ≈ 0.6845 andβ ≈ 0.0918 (Problem 21, Section 2.3 in [3]).

From either Corollary 2.5 or Theorem 2.6, settingr = p2 − 1 yields

(2.27)
∑

x4 + (p2 − 1)
∑

x2y2 + p(2− p)xyz
∑

x ≥ p
∑

xy(x2 + y2),

which holds for any real numbersp andx, y, z. Forp = k + 1, the inequality(2.27) turns into
(1.3).

Corollary 2.7. Letx, y, z be real numbers. Ifp, q, r, s are real numbers such that

(2.28) p + q − r − 1 ≤ s ≤ 2(r + 1) + p + q − p2 − pq − q2,

then

(2.29)
∑

x4 + r
∑

x2y2 + sxyz
∑

x ≥ p
∑

x3y + q
∑

xy3.

Let

α =
r + s + 1− p− q

3
≥ 0.

Since
3(1 + r − α) ≥ p2 + pq + q2,

by Theorem 2.1 we have∑
x4 + (r − α)

∑
x2y2 + (α + p + q − r − 1)xyz

∑
x ≥ p

∑
x3y + q

∑
xy3.

Adding this inequality to the obvious inequality

α
(∑

xy
)2

≥ 0,

we get(2.29).
From Corollary 2.7, settingp = 1, q = r = 0 ands = 2, we get

(2.30)
∑

x4 + 2xyz
∑

x ≥
∑

x3y,

with equality forx = y/α = z/β or any cyclic permutation, whereα ≈ 0.8020 andβ ≈
−0.4451. Notice that(2.30) is equivalent to

(2.31)
∑

(2x2 − y2 − z2 − xy + yz)2 + 4
(∑

xy
)2

≥ 0.
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6 VASILE CIRTOAJE

3. PROOF OF THEOREM 2.1

Proof of the Sufficiency.Since∑
x2y2 − xyx

∑
x =

1

2

∑
x2(y − z)2 ≥ 0,

it suffices to prove the inequality(2.1) for the least value ofr, that is

r =
p2 + pq + q2

3
− 1.

On this assumption,(2.1) is equivalent to each of the following inequalities:

(3.1)
∑

[2x2 − y2 − z2 − pxy + (p + q)yz − qzx]2 ≥ 0,

(3.2)
∑

[3y2 − 3z2 − (p + 2q)xy − (p− q)yz + (2p + q)zx]2 ≥ 0,

(3.3) 3[2x2 − y2 − z2 − pxy + (p + q)yz − qzx]2

+ [3y2 − 3z2 − (p + 2q)xy − (p− q)yz + (2p + q)zx]2 ≥ 0.

Thus, the conclusion follows. �

Proof of the Necessity.Forp = q = 2, we need to show that the conditionr ≥ 3 is necessary to
have ∑

x4 + r
∑

x2y2 + (3− r)xyz
∑

x ≥ 2
∑

x3y + 2
∑

xy3

for any real numbersx, y, z. Indeed, settingy = z = 1 reduces this inequality to

(x− 1)4 + (r − 3)(x− 1)2 ≥ 0,

which holds for any realx if and only if r ≥ 3.
In the other cases (different fromp = q = 2), by Lemma 3.1 below it follows that there is a

triple (a, b, c) = (1, b, c) 6= (1, 1, 1) such that∑
[2a2 − b2 − c2 − pab + (p + q)bc− qca]2 = 0.

Since ∑
a2b2 − abc

∑
a =

1

2

∑
a2(b− c)2 > 0,

we may write this relation as

p
∑

a3b + q
∑

ab3 −
∑

a4 − (p + q − 1)abc
∑

a∑
a2b2 − abc

∑
a

=
p2 + pq + q2

3
− 1.

On the other hand, since(2.1) holds for(a, b, c) (by hypothesis), we get

r ≥ p
∑

a3b + q
∑

ab3 −
∑

a4 − (p + q − 1)abc
∑

a∑
a2b2 − abc

∑
a

.

Therefore,

r ≥ p2 + pq + q2

3
− 1,

which is the desired necessary condition. �

Lemma 3.1. Let p andq be real numbers. Excepting the casep = q = 2, there is a real triple
(x, y, z) = (1, y, z) 6= (1, 1, 1) such that

(3.4)
∑

[2x2 − y2 − z2 − pxy + (p + q)yz − qzx]2 = 0.

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 67, 10 pp. http://jipam.vu.edu.au/

http://jipam.vu.edu.au/


CYCLIC HOMOGENEOUSPOLYNOMIAL INEQUALITIES 7

Proof. We consider two cases:p = q 6= 2 andp 6= q.

Case 1.p = q 6= 2.

It is easy to prove that(x, y, z) = (1, p− 1, 1) 6= (1, 1, 1) is a solution of the equation(3.4).

Case 2.p 6= q.

The equation(3.4) is equivalent to{
2y2 − z2 − x2 − pyz + (p + q)zx− qxy = 0

2z2 − x2 − y2 − pzx + (p + q)xy − qyz = 0.

Forx = 1, we get

(3.5)

{
2y2 − z2 − 1− pyz + (p + q)z − qy = 0

2z2 − 1− y2 − pz + (p + q)y − qyz = 0.

Adding the first equation multiplied by 2 to the second equation yields

(3.6) z[(2p + q)y − p− 2q] = 3y2 + (p− q)y − 3.

Under the assumption that(2p + q)y − p − 2q 6= 0, substitutingz from (3.6) into the first
equation,(3.5) yields

(3.7) (y − 1)(ay3 + by2 + cy − a) = 0,

where
a = 9− 2p2 − 5pq − 2q2,

b = 9 + 6p− 6q − 3p2 + 3q2 + 2p3 + 3p2q + 3pq2 + q3,

c = −9 + 6p− 6q − 3p2 + 3q2 − p3 − 3p2q − 3pq2 − 2q3.

The equation(3.7) has a real rooty1 6= 1. To prove this claim, it suffices to show that the
equationay3 + by2 + cy − a = 0 does not have a root of 1; that is to show thatb + c 6= 0. This
is true because

b + c = 12(p− q)− 6(p2 − q2) + p3 − q3

= (p− q)(12− 6p− 6q + p2 + q2 + pq),

and
p− q 6= 0,

4(12− 6p− 6q + p2 + q2 + pq) > 48− 24(p + q) + 3(p + q)2

= 3(p + q − 4)2

≥ 0.

Fory = y1 and(2p + q)y1 − p− 2q 6= 0, from (3.6) we get

z1 =
3y2

1 + (p− q)y1 − 3

(2p + q)y1 − p− 2q
,

and the conclusion follows. Thus, it remains to consider that(2p + q)y1 − p − 2q = 0. In
this case, we have2p + q 6= 0 (since2p + q = 0 providesp + 2q = 0, which contradicts the
hypothesisp 6= q), and hence

y1 =
p + 2q

2p + q
.

Fory = y1, from (3.6) we get3(y2
1 − 1) + (p− q)y1 = 0, which yields

(3.8) (2p + q)(p + 2q) = 9(p + q).
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Substitutingy1 into the first equation(3.5), we get

(2p + q)z2 − (p2 + q2 + pq)z + p + 2q = 0.

To complete the proof, it suffices to show that this quadratic equation has real roots. Due to
(3.8), we need to prove that

(p2 + q2 + pq)2 ≥ 36(p + q).

For the nontrivial casep + q > 0, let us denotes = p + q, s > 0, and write the condition(3.8)
as9s− 2s2 = pq. Since4pq ≤ s2, we find thats ≥ 4. Therefore,

(p2 + q2 + pq)2 − 36(p + q) = 9(s2 − 3s)2 − 36s = 9s(s− 1)2(s− 4) ≥ 0.

�

4. PROOF OF THEOREM 2.6

The conditionr ≥ (p − 1) max{2, p + 1} is equivalent tor ≥ p2 − 1 for p ≥ 1, and
r ≥ 2(p− 1) for p ≤ 1.

Proof of the Sufficiency.By Theorem 2.1, ifr ≥ p2− 1, then the inequality(2.9) is true for any
real numbersx, y, z. Thus, it only remains to consider the case whenp ≤ 1 andr ≥ 2(p − 1).
Writing (2.9) as∑

x4 + xyz
∑

x−
∑

xy(x2 + y2) + (1− p)
[∑

xy(x2 + y2)− 2
∑

x2y2
]

+ (r − 2p + 2)
(∑

x2y2 − xyz
∑

x
)
≥ 0,

we see that it is true because∑
x4 + xyz

∑
x−

∑
xy(x2 + y2) ≥ 0

(Schur’s inequality of fourth degree),∑
xy(x2 + y2)− 2

∑
x2y2 =

∑
xy(x− y)2 ≥ 0

and ∑
x2y2 − xyz

∑
x =

1

2

∑
x2(y − z)2 ≥ 0.

�

Proof of the Necessity.We need to prove that the conditionsr ≥ 2(p − 1) andr ≥ p2 − 1 are
necessary such that the inequality(2.9) holds for any nonnegative real numbersx, y, z. Setting
y = z = 1, (2.9) becomes

(x− 1)2[x2 + 2(1− p)x + 2 + r − 2p] ≥ 0.

Forx = 0, we get the necessary conditionr ≥ 2(p− 1), while for x = p− 1, we get

(p− 2)2(r + 1− p2) ≥ 0.

If p 6= 2, then this inequality provides the necessary conditionr ≥ p2 − 1. Thus, it remains
to show that forp = 2, we have the necessary conditionr ≥ 3. Indeed, settingp = 2 and
y = z = 1 reduces the inequality(2.9) to

(x− 1)2[(x− 1)2 + r − 3] ≥ 0.

Clearly, this inequality holds for any nonnegativex if and only if r ≥ 3. �
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5. OTHER RELATED I NEQUALITIES

The following theorem establishes other interesting related inequalities with symmetric ho-
mogeneous polynomials of degree four.

Theorem 5.1.Letx, y, z be real numbers, and let

A =
∑

x4 −
∑

x2y2, B =
∑

x2y2 − xyz
∑

x,

C =
∑

x3y − xyz
∑

x, D =
∑

xy3 − xyz
∑

x.

Then,

(5.1) AB = C2 − CD + D2 ≥ C2 + D2

2
≥

(
C + D

2

)2

≥ CD.

Moreover, ifx, y, z are nonnegative real numbers, then

(5.2) CD ≥ B2.

The equalityAB = CD holds forx + y + z = 0, and forx = y, or y = z, or z = x, while the
equalityCD = B2 holds forx = y = z, and forx = 0, or y = 0, or z = 0.

Proof. The inequalities in Theorem 5.1 follow from the identities:

D − C = (x + y + z)(x− y)(y − z)(z − x),

AB − CD = (x + y + z)2(x− y)2(y − z)2(z − x)2,

AB −
(

C + D

2

)2

=
3

4
(x + y + z)2(x− y)2(y − z)2(z − x)2,

AB − C2 + D2

2
=

1

2
(x + y + z)2(x− y)2(y − z)2(z − x)2,

CD −B2 = xyz(x + y + z)(x2 + y2 + z2 − xy − yz − zx)2.

�

Remark 1. We obtained the identityAB = C2−CD+D2 in the following way. For3(r+1) =
p2 + pq + q2, by Theorem 2.1 we have

A + (1 + r)B − pC − qD ≥ 0,

which is equivalent to

Bp2 + (Bq − 3C)p + Bq2 − 3Dq + 3A ≥ 0.

Since this inequality holds for any realp andB ≥ 0, the discriminant of the quadratic ofp is
non-positive; that is

(Bq − 3C)2 − 4B(Bq2 − 3Dq + 3A) ≤ 0,

which is equivalent to

B2q2 + 2B(C − 2D)q + 4AB − 3C2 ≥ 0.

Similarly, the discriminant of the quadratic ofq is non-positive; that is

B2(C − 2D)2 −B2(4AB − 3C2) ≤ 0,

which yieldsAB ≥ C2 − CD + D2. Actually, this inequality is an identity.
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Remark 2. The inequalityCD ≥ B2 is true if

k2C − 2kB + D ≥ 0

for any realk. This inequality is equivalent to∑
yz(x− ky)2 ≥ (k − 1)2xyz

∑
x,

which follows immediately from the Cauchy-Schwarz inequality(∑
x
) [∑

yz(x− ky)2
]
≥ (k − 1)2xyz

(∑
x
)2

.

On the other hand, assuming thatx = min{x, y, z} and substitutingy = x + p andz = x + q,
wherep, q ≥ 0, the inequalityCD ≥ B2 can be rewritten as

A1x
4 + B1x

3 + C1x
2 + D1x ≥ 0,

with
A1 = 3(p2 − pq + q2)2 ≥ 0,

B1 = 4(p + q)(p2 − pq + q2)2 ≥ 0,

C1 = 2pq(p2 − pq + q2)2 + pq(p2 − q2)2 + (p3 + q3)2 − 2p2q2(p2 + q2) + 5p3q3 ≥ 0,

D1 = pq[p5 + q5 − pq(p3 + q3) + p2q2(p + q)] ≥ 0.
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[7] D.S. MITRINOVIĆ, J. PĚCARIĆ AND A.M. FINK, Classical and New Inequalities in Analysis,
Kluwer Academic Publishers, Dordrecht/Boston/London, 1993.

J. Inequal. Pure and Appl. Math., 10(3) (2009), Art. 67, 10 pp. http://jipam.vu.edu.au/

http://www.mathlinks.ro/Forum/viewtopic.php?t=186179
http://www.mathlinks.ro/Forum/viewtopic.php?t=186179
http://jipam.vu.edu.au/

	1. Introduction
	2. Main Results
	3. Proof of Theorem 2.1
	4. Proof of Theorem 2.6
	5. Other Related Inequalities
	References

