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ABSTRACT. Let f(x,y, z) be a cyclic homogeneous polynomial of degree four with three vari-
ables which satisfies(1, 1, 1) = 0. In this paper, we give the necessary and sufficient conditions
to havef(z,y,z) > 0 for any real numbers, y, z. We also give the necessary and sufficient
conditions to havef(x,y, z) > 0 for the case wherf is symmetric and:, y, z are nonnegative

real numbers. Finally, some new inequalities with cyclic homogeneous polynomials of degree
four are presented.
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1. INTRODUCTION

Let z,y, z be real numbers. The fourth degree Schur’s inequality ([3], [5], [7]) is a well-
known symmetric homogeneous polynomial inequality which states that

(1.1) Zx"‘ + :)syzz:v > ny(a:z + 32),

where)  denotes a cyclic sum over, y andz. Equality holds forz = y = z, and forz = 0
andy = z,ory =0andz = z, orz = 0 andx = y.
In [3], the following symmetric homogeneous polynomial inequality was proved

(1.2) Zx4 + 8Z$2y2 >3 <Z xy) (Z x2> ,

with equality forr = y = 2, and forz/2 =y = z,0ry/2 = z = x,0rz/2 = x = y. In
addition, a more general inequality was proved.in [3] for any keal

(1.3) Z(x —y)(x —ky)(z —2)(z — kz) >0,
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with equality forx = y = z, and again for:/k =y = z, ory/k = z = x,0rz/k = x = y.
Notice that this inequality is a consequence of the identity

S =)~ ky)x — )~ k2) = 5 Sy = 2y + 2 — o~ ka)?

In 1992, we established the following cyclic homogeneous inequality [1]:

(1.4) (> :c2)2 >33 4y,

which holds for any real numbers y, z, with equality forz = y = z, and for
x Y z

c 2 dr T 221 2w
Sll’l7 Sln7 Sll’l7

or any cyclic permutation thereof.
Six years later, we established a similar cyclic homogeneous inequality [2],

(1.5) St ayt >2) Aty

which holds for any real numbeisy, z, with equality forz = y = z, and for
. T T 137
rSsin — = ySlIl— = ZSsln ——
9 9

9
or any cyclic permutation thereof.
As shown in[[3], substituting = = + p andz = z + ¢, the inequalitieg|1.4) and (1.5 can
be rewritten in the form
(p* = pg + ¢*)a* + f(p,9)= + g(p,q) > 0,
where the quadratic polynomial efhas the discriminant
6 = —=3(p° — p’q — 2pg® + ¢*)* <0,
and, respectively,
by = =3(p* = 3pg* + ¢*)* < 0.

The symmetric inequalitie§l 1), and (1.3), as well as the cyclic inequalitie.4)
and (1.5)), are particular cases of the inequalityz, y,z) > 0, where f(z,y, z) is a cyclic
homogeneous polynomial of degree four satisfyjfi@, 1,1) = 0. This polynomial has the
general form

(1.6) flz,y,2) = w2x4+7“2x2y2
+(p—i—q—r—w)xysz—pr?’y—qugf,

wherep, ¢, r, w are real numbers. Since the inequalfty, v, z) > 0 with w < 0 does not hold
for all real numbers:, y, z, except the trivial case where = p = ¢ = 0 andr > 0, we will
considerw = 1 throughout this paper.

2. MAIN RESULTS
In 2008, we posted, without proof, the following theorem in the Mathlinks Forum [4].
Theorem 2.1. Letp, ¢, r be real numbers. The cyclic inequality
(2.1) Zx4+r2$2y2+(p+q—r—1)xy22x2p2x3y+q2xy3
holds for any real numbers, y, z if and only if
(2.2) 3(1+7r) > p*+pg+ ¢
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Forp = ¢ = 1 andr = 0, we obtain the fourth degree Schur’s inequalityl). Forp = ¢ = 3
andr = 8 one getg(1.2), while forp = ¢ = k + 1 andr = k(k + 2) one obtaing[1.3)). In
addition, forp = 3, ¢ = 0 andr = 2 one getd(1.4), while forp = 2, ¢ = —1 andr = 0 one

obtains(1.5)).

In the particular cases= 0, = p+ g — 1, ¢ = 0 andp = ¢, by Theorenj 2]1, we have the
following corollaries, respectively.

Corollary 2.2. Letp andq be real numbers. The cyclic inequality

(2.3) S att(ptg-Dayz) x>pY aly+q) ay
holds for any real numbers, y, z if and only if

(2.4) PP +pa+q° <3

Corollary 2.3. Letp andq be real numbers. The cyclic inequality

(2.5) Yoatt(ptg-1)> 2P >pd 2Py+qd ay’
holds for any real numbers, y, z if and only if

(2.6) 3p+q) =P +pa+ ¢

Corollary 2.4. Letp andq be real numbers. The cyclic inequality

(2.7) Zx4+r2x2y2+(p—r—1)xysz2pr3y
holds for any real numbers, y, z if and only if

(2.8) 3(147) > p*

Corollary 2.5. Letp andq be real numbers. The symmetric inequality
(2.9) Zm4+r2x2y2 +(2p—1r— 1)xyzZm 2p2xy(x2 + %)
holds for any real numbers, y, z if and only if

(2.10) r>p?—1.

Finding necessary and sufficient conditions such that the cyclic ineq(alfifyholds for any
nonnegative real numbetsy, z is a very difficult problem. On the other hand, the approach
for nonnegative real numbers is less difficult in the case when the cyclic ineq(@&lifyis
symmetric. Thus, in 2008, Le Huu Dien Khue posted, without proof, the following theorem on
the Mathlinks Forum([4].

Theorem 2.6. Let p and r be real numbers. The symmetric inequal{®9) holds for any
nonnegative real numbers y, z if and only if

(2.11) r>(p—1)max{2,p+1}.

From Theorerh 2|1, setting= 1+ /6, ¢ = 1 — v/6 andr = 2, and therp = 3, ¢ = —3 and
r = 2, we obtain the inequalities:

(2.12) (Z m2) (Z i Zmy) > V6 (Z Yy — ny?’) ,
with equality forz = y = 2, and forxr = y/a = z/( or any cyclic permutation, where
a =~ 0.4493 and 3 ~ —0.1009 were found using a computer;

(2.13) (@ + 9+ 277 >3 ay(a® —y* + 22),

with equality forz = y = z, and forxr = y/a = 2/ or any cyclic permutation, where
a ~ 0.2469 and ~ —0.3570.
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From Corollan 2.D, setting = /3 andq = —/3 yields

(2.14) Zx4 — xysz >3 (Z 3y — Zxﬁ) ,

with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation, where
a =~ 0.3767 and ~ —0.5327. Notice that ifz, y, z are nonnegative real numbers, then the best
constant in inequalit 1} is 24/2 (Problem 19, Section 2.3 inl[3], by Pham Kim Hung):

(2.15) Zx4 — xysz > 2¢/2 (Z 3y — ny3> .

From Corollany| 2.B, setting = 1 + v/3 andq = 1, and therp = 1 — /3 andg = 1, we
obtain the inequalities:

(2.16) Z:U4 — Zmy?’ > (1 + \/§> (Z Y — szyz) ,
with equality forz = y = 2, and forr = y/a = 2/ or any cyclic permutation, where
a ~ 0.7760 and§ ~ 0.5274;

(2.17) Z:c4 — nys > (\/g — 1) (Z ry? — Zx3y> ,
with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation, where
a ~ 1.631 andf ~ —1.065.

From Corollar, setting in successipn= V3 andr = 0,p = —v3andr =0,p = 6
andr = 11,p = 2andr = 1/3,p = —landr = —2/3,p =r = (3+21)/2,p =1
andr = —2/3,p =r = (3 —/21)/2, p = V6 andr = 1, we obtain the inequalities below,
respectively:

(2.18) Sat+ (VB-1) Y e = vy ey,

with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation, where
a~ 0.7349 andg ~ —0.1336 (Problem 5.3.10 in [6]);

(2.19) Z:U4+\/§Z:U3y > <1+\/§> mysz,

with equality forz = y = z, and forx = y/a = z/$ or any cyclic permutation, where
a = 7.915 andf ~ —6.668,;

(2.20) Zx4 + 11 Zx2y2 >6 (Z dy + xysz) ,
with equality forz = y = z, and forx = y/a = z/# or any cyclic permutation, where
a ~ 0.5330 and( ~ 2.637;

2
(2.21) 32x4 + (Z azy) > 6Z$3y,
with equality forz = y = z, and forx = y/a = z/§ or any cyclic permutation, where
a =~ 0.7156 and3 ~ —0.0390;

2 2
4 3
: > =
(2.22) >t aty =S (Yw)
with equality forz = y = z, and forx = y/a = z/3 or any cyclic permutation, where
a ~ 1.871 andf ~ —2.053;

(2.23) St —ayed > ’ +2\/ﬁ (Z zdy — Zw%f) ,
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with equality forz = y = 2, and forr = y/a = 2/ or any cyclic permutation, where

a ~ 0.570 andS ~ 0.255;

(2.24) Zac4 — Zx?’y > g (Z 2y? — xyzZaj) ,

with equality forz = y = 2, and forxr = y/a = 2/ or any cyclic permutation, where

a ~ 0.8020 and( ~ —0.4446;

(2.25) doat—wyzd x> @ (D a2 =Y o).

with equality forx = y = 2, and forx = y/a = z/( or any cyclic permutation, where

a~ 1528 andf ~ —1.718;
(2.26) Z(:L‘Q —yz)? > \/ézycy(a: — 2)?,

with equality forz = y = 2, and forr = y/a = 2/ or any cyclic permutation, where

a =~ 0.6845 andg ~ 0.0918 (Problem 21, Section 2.3 inl[3]).
From either Corollary 2]5 or Theorém P.6, setting: p? — 1 yields

227) D @ -1 PP +pR-payzd x=p> ay(a® +y7),

which holds for any real numbegsandz, y, z. Forp = k + 1, the inequality(2.27) turns into

[3).
Corollary 2.7. Letz,y, z be real numbers. Ip, ¢, r, s are real numbers such that
(2.28) ptq—r—1<s<2(r+1)+p+q—p*—pq— ¢,
then
(2.29) Zx4+7“2x2y2+sxyz2x2p2$3y+q2xy3.
Let
o r+s+1—p—gq > 0.
3

Since

3147 —a)>p*+pg+ ¢,
by Theoreni 2]1 we have

Zx4+(r—a)2m2y2+(oz+p+q—r—1)xyz2x2p2x3y+q2xy3.

Adding this inequality to the obvious inequality

o (S m) =0
we get(2.29).

From Corollary 2.7, setting = 1, ¢ = r = 0 ands = 2, we get

(2.30) Yoat2wyzd x> aty,

with equality forz = y/a = z/3 or any cyclic permutation, where ~ 0.8020 and 3 ~

—0.4451. Notice that(2.30)) is equivalent to

(2.31) Z(2x2 — =2 —ay+yz)t+4 (Z :L‘y)2 > 0.
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3. PROOF OF THEOREM [2.]
Proof of the SufficiencySince
1
ZnyQ — :EymZx = EZxQ(y —2)%2>0,
it suffices to prove the inequalif2.1)) for the least value of, that is
Pt

1.
3
On this assumption(2.1)) is equivalent to each of the following inequalities:
(3.1) > 20—y = 2% —pry + (p+ Q)yz — gz’ >0,
(3-2) > [3y* =32 — (p+29)xy — (p— Qyz + (2p + q)22]” > 0,

(3.3) 3[22° —y® — 2® — pry + (p + q)yz — qza]?
+ 3y = 32" — (p+ 29)zy — (p — Qyz + (2p + g)za]* > 0.
Thus, the conclusion follows. OJ
Proof of the Necessityrorp = ¢ = 2, we need to show that the conditier™> 3 is necessary to
nave Zx4+TZx2y2+(3—r)xysz222x3y+22xy3
for any real numbers, y, z. Indeed, setting = = = 1 reduces this inequality to
(z—D'+(r=3)(z—-1)*>0,

which holds for any reat if and only if » > 3.
In the other cases (different from= ¢ = 2), by Lemmd 3.]L below it follows that there is a
triple (a,b,c) = (1,b,¢) # (1,1,1) such that

Z[QaQ —b* — ¢ — pab + (p + q)bc — qcal® = 0.

1
Za2b2 - acha = §Za2(b— c)? >0,
we may write this relation as
py a’b+qy ab® =3 a' —(p+q—Dabcy a p*+pg+q*

Since

1.
> a?b? —abcd a 3
On the other hand, sind@.1)) holds for(a, b, ¢) (by hypothesis), we get
p>.a*b+qd> ab® =Y a*— (p+q—1abcd a
r> :
- > a?b? —abcd a
Therefore,
2 2
ps P +1;q e
which is the desired necessary condition. O

Lemma 3.1. Letp andq be real numbers. Excepting the case- ¢ = 2, there is a real triple
(z,y,2) = (1,y,2) # (1,1,1) such that

(3.4) Z[2x2 —y* =22 —pry + (p+ q)yz — qzx]* = 0.
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Proof. We consider two casep:= ¢ # 2 andp # q.
Case 1.p = q # 2.
Itis easy to prove thatr, y, z) = (1,p — 1,1) # (1,1, 1) is a solution of the equatiof3.4).
Case 2.p #q.
The equatior(3.4)) is equivalent to
{ 22 — 22— 2 —pyz+ (p+q)zx — qry =0
222 —2? —y? —pzx+ (p+ q)ry — quz = 0.
Forx =1, we get

20 — 2> —1—pyz+(p+qz—qy=0
35 { Yy — 2 pyz+(p+q)z — qu

22" —1—y* —pz+(p+qy—qyz=0.
Adding the first equation multiplied by 2 to the second equation yields
(3.6) 22p+qy—p—2¢ =39+ (p— )y — 3.
Under the assumption thé&p + q)y — p — 2¢ # 0, substitutingz from (i3.6)) into the first
equation,(3.5)) yields
(3.7) (y = 1)(ay® + by® + cy — a) = 0,
where
a=9—2p> —5pg — 2¢°,
b=9+6p—6q—3p* + 3¢* + 2p* + 3p’q + 3pg* + ¢°,
c=—9+46p—6q — 3p* + 3¢> — p* — 3p’q — 3pg® — 2¢°.
The equation(3.7) has a real root;; # 1. To prove this claim, it suffices to show that the
equationay® + by? + cy — a = 0 does not have a root of 1; that is to show that ¢ # 0. This
is true because
btc=12(p—q) - 6" —¢*) +p° — ¢°
= (p— q)(12 = 6p — 6¢ + p* + ¢* + pq),

and
p—q#0,
4(12 — 6p — 6q 4+ p* + ¢* + pq) > 48 — 24(p + q) + 3(p + ¢)*
=3(p+q—4)°
> 0.

Fory =y, and(2p + q)y1 — p — 2q # 0, from (3.6) we get
_ 3yt (p— @y — 3
2p+ @y —p—2¢

and the conclusion follows. Thus, it remains to consider tBat+ ¢)y; — p — 2¢ = 0. In

this case, we havep + ¢ # 0 (since2p + ¢ = 0 providesp + 2¢q = 0, which contradicts the
hypothesi® # ¢), and hence

_pt+2q
Moy
Fory = v, from we get3(yf — 1) + (p — q)y1 = 0, which yields
(3.8) 2p+q)(p+29) =9 +q)
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Substitutingy; into the first equatiorf3.5), we get
2p+q)2" = (P*+ ¢ +pg)z +p+2¢ = 0.

To complete the proof, it suffices to show that this quadratic equation has real roots. Due to
(3.8)), we need to prove that

(p® +¢* +pqg)® > 36(p + q).

For the nontrivial casg + ¢ > 0, let us denote = p + ¢, s > 0, and write the conditioif3.8)
as9s — 2s? = pq. Sincedpg < s?, we find thats > 4. Therefore,

(p* + ¢* +pq)* —36(p+q) = 9(s* — 35)* — 365 = 9s(s — 1)%(s — 4) > 0.

4. PROOF OF THEOREM [2.6

The conditionr > (p — 1)max{2,p + 1} is equivalent tor > p*> — 1 for p > 1, and
r>2p—1)forp <1.

Proof of the SufficiencyBy Theoreni 2.1, if- > p* — 1, then the inequality2.9) is true for any
real numbers:, y, z. Thus, it only remains to consider the case when 1 andr > 2(p — 1).

Writing as
Zx4 + a:ysz — Zwy(m2 +y*) + (1 —p) [Zmy(mz +y%) — QZnyz]
+(r—2p+2) (ZnyZ — xysz) >0,
we see that it is true because

Zx4+xyz2x—2xy(x2+y2) >0

(Schur’s inequality of fourth degree),

S ay(a® +97) -2 2= ayle—y)> =0
Zx%ﬁ—xyzZacz %Zx2(y—z)2 > 0.

and

O

Proof of the NecessityVe need to prove that the conditions> 2(p — 1) andr > p? — 1 are
necessary such that the inequalf2y9)) holds for any nonnegative real numbetg, z. Setting

y=z=1, becomes
(x —1)?2* +2(1 —p)z + 2+ 7 — 2p] > 0.
Forx = 0, we get the necessary condition> 2(p — 1), while forz = p — 1, we get
(p—20°(r+1-p%) >0

If p # 2, then this inequality provides the necessary condition p?> — 1. Thus, it remains
to show that forp = 2, we have the necessary condition> 3. Indeed, setting = 2 and
y = z = 1 reduces the inequalit2.9)) to

(z—1?[(x —1)*+7r—3]>0.
Clearly, this inequality holds for any nonnegativée and only if r > 3. O
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5. OTHER RELATED INEQUALITIES

The following theorem establishes other interesting related inequalities with symmetric ho-
mogeneous polynomials of degree four.

Theorem 5.1. Letx, y, z be real numbers, and let

A:Z:BA‘—szyQ, B:Zx2y2—xy22$,
C:ZxSy—xysz, D:Z$y3—xyzzgs.

Then,
24 D2 D\?
(5.1) AB:(ﬂ—(JDH)?zC;r z(cg ) > CD.
Moreover, ifx, y, z are nonnegative real numbers, then
(5.2) CD > B>

The equalityAB = C'D holds forx + y + z = 0, and forz = y, ory = z, or z = x, while the
equalityC'D = B? holds forx = y = 2, and forz = 0,0ry = 0, or z = 0.

Proof. The inequalities in Theorem 5.1 follow from the identities:
D—C=(+y+z)(z—y)ly—2)(z—2)
AB = CD = (z+y+2)*(x —y)*(y — 2)*(z — 2)*,

A5 - (C+ D) - §(x+y+2)2<w —y)*(y — 2)*(z — 2)*,

2 4
C*+D? 1 ) ) ) )
AB — ——— =Sz +y+2) (e —y)(y - 2)°(z —2),

CD—B*=ayz(x +y+2)(2* +y* + 22 — 2y —yz — 22)%
O

Remark 1. We obtained the identity B = C*—C' D+ D? in the following way. FoB(r+1) =
p® + pq + ¢2, by Theorenf 2]1 we have

A+(1+r)B—pC —¢D >0,
which is equivalent to
Bp* + (Bq — 3C)p+ Bq* —3Dq + 3A > 0.

Since this inequality holds for any realand B > 0, the discriminant of the quadratic pfis
non-positive; that is

(Bq —3C)* —4B(Bq¢*> — 3Dq + 3A) <0,
which is equivalent to

B%*¢* + 2B(C — 2D)q + 4AB — 3C* > 0.
Similarly, the discriminant of the quadratic @is non-positive; that is

B%*(C —2D)* — B*(4AB — 3C?) <0,

which yieldsAB > C? — CD + D?. Actually, this inequality is an identity.
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Remark 2. The inequalityCD > B?is true if
k*C —2kB+D >0
for any realk. This inequality is equivalent to
Y yrle —ky)® > (k—1)%2yz Y,

which follows immediately from the Cauchy-Schwarz inequality

(Z x) [Z yz(z — ky)Q] > (k—1)%zyz <Z x>2 :

On the other hand, assuming that min{x, y, z} and substituting = =z + p andz = z + g,
wherep, ¢ > 0, the inequalityC’D > B? can be rewritten as

Azt + Bia® + Cya® + Dyz > 0,

with
Ay =30" —pg+¢°)* >0,
By =4(p+q)(p* —pa + ¢*)* > 0,
Ci = 2pg(P* — pa+ ¢*)* +pa(0* — *)* + (0* + ¢°)° = 20°P(p* + ¢*) + 5p°¢° > 0,
Dy =pglp” + ¢ = pa(’ + ¢°) + P’ (p + q)] > 0.
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