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Abstract

An integral inequality for convex functions defined on linear spaces is obtained
which contains in a particular case a refinement for the first part of the cele-
brated Hermite-Hadamard inequality. Applications for semi-inner products on
normed linear spaces are also provided.
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1. Introduction
Let X be a real linear space,a, b ∈ X, a 6= b and let[a, b] := {(1− λ) a + λb,
λ ∈ [0, 1]} be thesegmentgenerated bya and b. We consider the function
f : [a, b] → R and the attached functiong (a, b) : [0, 1] → R, g (a, b) (t) :=
f [(1− t) a + tb], t ∈ [0, 1].

It is well known thatf is convex on[a, b] iff g (a, b) is convex on[0, 1], and
the following lateral derivatives exist and satisfy

(i) g′± (a, b) (s) = (5±f [(1− s) a + sb]) (b− a), s ∈ (0, 1)

(ii) g′+ (a, b) (0) = (5+f (a)) (b− a)

(iii) g′− (a, b) (1) = (5−f (b)) (b− a)

where(5±f (x)) (y) are theGâteaux lateral derivatives,we recall that

(5+f (x)) (y) := lim
h→0+

[
f (x + hy)− f (x)

h

]
,

(5−f (x)) (y) := lim
k→0−

[
f (x + ky)− f (x)

k

]
, x, y ∈ X.

The following inequality is the well-known Hermite-Hadamard integral in-
equality for convex functions defined on a segment[a, b] ⊂ X :

(HH) f

(
a + b

2

)
≤
∫ 1

0

f [(1− t) a + tb] dt ≤ f (a) + f (b)

2
,
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which easily follows by the classical Hermite-Hadamard inequality for the con-
vex functiong (a, b) : [0, 1] → R

g (a, b)

(
1

2

)
≤
∫ 1

0

g (a, b) (t) dt ≤ g (a, b) (0) + g (a, b) (1)

2
.

For other related results see the monograph on line [1].
Now, assume that(X, ‖·‖) is a normed linear space. The functionf0 (s) =

1
2
‖x‖2, x ∈ X is convex and thus the following limits exist

(iv) 〈x, y〉s := (5+f0 (y)) (x) = lim
t→0+

[
‖y+tx‖2−‖y‖2

2t

]
;

(v) 〈x, y〉i := (5−f0 (y)) (x) = lim
s→0−

[
‖y+sx‖2−‖y‖2

2s

]
;

for any x, y ∈ X. They are called thelower andupper semi-innerproducts
associated to the norm‖·‖.

For the sake of completeness we list here some of the main properties of
these mappings that will be used in the sequel (see for example [2]), assuming
thatp, q ∈ {s, i} andp 6= q:

(a) 〈x, x〉p = ‖x‖2 for all x ∈ X;

(aa) 〈αx, βy〉p = αβ 〈x, y〉p if α, β ≥ 0 andx, y ∈ X;

(aaa)
∣∣∣〈x, y〉p

∣∣∣ ≤ ‖x‖ ‖y‖ for all x, y ∈ X;

(av) 〈αx + y, x〉p = α 〈x, x〉p + 〈y, x〉p if x, y ∈ X andα ∈ R;
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(v) 〈−x, y〉p = −〈x, y〉q for all x, y ∈ X;

(va) 〈x + y, z〉p ≤ ‖x‖ ‖z‖+ 〈y, z〉p for all x, y, z ∈ X;

(vaa) The mapping〈·, ·〉p is continuous and subadditive (superadditive) in the
first variable forp = s (or p = i);

(vaaa)The normed linear space(X, ‖·‖) is smooth at the pointx0 ∈ X\ {0} if
and only if 〈y, x0〉s = 〈y, x0〉i for all y ∈ X; in general〈y, x〉i ≤ 〈y, x〉s
for all x, y ∈ X;

(ax) If the norm‖·‖ is induced by an inner product〈·, ·〉 , then〈y, x〉i = 〈y, x〉 =
〈y, x〉s for all x, y ∈ X.

Applying inequality (HH) for the convex functionf0 (x) = 1
2
‖x‖2 , one may

deduce the inequality

(1.1)

∥∥∥∥x + y

2

∥∥∥∥2

≤
∫ 1

0

‖(1− t) x + ty‖2 dt ≤ ‖x‖2 + ‖y‖2

2

for any x, y ∈ X. The same (HH) inequality applied forf1 (x) = ‖x‖ , will
give the following refinement of the triangle inequality:

(1.2)

∥∥∥∥x + y

2

∥∥∥∥ ≤ ∫ 1

0

‖(1− t) x + ty‖ dt ≤ ‖x‖+ ‖y‖
2

, x, y ∈ X.

In this paper we point out an integral inequality for convex functions which
is related to the first Hermite-Hadamard inequality in (HH) and investigate its
applications for semi-inner products in normed linear spaces.
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2. The Results
We start with the following lemma which is also of interest in itself.

Lemma 2.1. Let h : [α, β] ⊂ R → R be a convex function on[α, β]. Then for
anyγ ∈ [α, β] one has the inequality

1

2

[
(β − γ)2 h′+ (γ)− (γ − α)2 h′− (γ)

]
(2.1)

≤
∫ β

α

h (t) dt− (β − α) h (γ)

≤ 1

2

[
(β − γ)2 h′− (β)− (γ − α)2 h′+ (α)

]
.

The constant1
2

is sharp in both inequalities.
The second inequality also holds forγ = α or γ = β.

Proof. It is easy to see that for any locally absolutely continuous functionh :
(α, β) → R, we have the identity

(2.2)
∫ γ

α

(t− α) h′ (t) dt +

∫ β

γ

(t− β) h′ (t) dt = h (γ)−
∫ β

α

h (t) dt

for anyγ ∈ (α, β) , whereh′ is the derivative ofh which exists a.e. on(α, β) .

Sinceh is convex, then it is locally Lipschitzian and thus (2.2) holds. More-
over, for anyγ ∈ (α, β), we have the inequalities

(2.3) h′ (t) ≤ h′− (γ) for a.e.t ∈ [α, γ]
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and

(2.4) h′ (t) ≥ h′+ (γ) for a.e.t ∈ [γ, β] .

If we multiply (2.3) by t− α ≥ 0, t ∈ [α, γ] and integrate on[α, γ] , we get

(2.5)
∫ γ

α

(t− α) h′ (t) dt ≤ 1

2
(γ − α)2 h′− (γ)

and if we multiply (2.4) by β − t ≥ 0, t ∈ [γ, β], and integrate on[γ, β] , we
also have

(2.6)
∫ β

γ

(β − t) h′ (t) dt ≥ 1

2
(β − γ)2 h′+ (γ) .

If we subtract (2.6) from (2.5) and use the representation (2.2), we deduce the
first inequality in (2.1).

Now, assume that the first inequality (2.1) holds withC > 0 instead of1
2
,

i.e.,

(2.7) C
[
(β − γ)2 h′+ (γ)− (γ − α)2 h′− (γ)

]
≤
∫ β

α

h (t) dt− (β − α) h (γ) .

Consider the convex functionh0 (t) := k
∣∣t− α+β

2

∣∣, k > 0, t ∈ [α, β]. Then

h′0+

(
α + β

2

)
= k, h′0−

(
α + β

2

)
= −k, h0

(
α + β

2

)
= 0
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and ∫ β

α

h0 (t) dt =
1

4
k (β − α)2 .

If in (2.7) we chooseh = h0, γ = α+β
2

, then we get

C

[
1

4
(β − α)2 k +

1

4
(β − α)2 k

]
≤ 1

4
k (β − α)2

which givesC ≤ 1
2

and the sharpness of the constant in the first part of (2.1) is
proved.

If eitherh′+ (α) = −∞ or h′− (β) = −∞, then the second inequality in (2.1)
holds true.

Assume thath′+ (α) andh′− (β) are finite. Sinceh is convex on[α, β] , we
have

(2.8) h′ (t) ≥ h′+ (α) for a.e.t ∈ [α, γ] (γ may be equal toβ)

and

(2.9) h′ (t) ≤ h′− (β) for a.e.t ∈ [γ, β] (γ may be equal toα) .

If we multiply (2.8) by t − α ≥ 0, t ∈ [α, γ] and integrate on[α, γ] , then we
deduce

(2.10)
∫ γ

α

(t− α) h′ (t) dt ≥ 1

2
(γ − α)2 h′+ (α)
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and if we multiply (2.9) by β − t ≥ 0, t ∈ [γ, β], and integrate on[γ, β] , then
we also have

(2.11)
∫ β

γ

(β − t) h′ (t) dt ≤ 1

2
(β − γ)2 h′− (β) .

Finally, if we subtract (2.10) from (2.11) and use the representation (2.2), we
deduce the second inequality in (2.1). Now, assume that the second inequality
in (2.1) holds with a constantD > 0 instead of1

2
, i.e.,

(2.12)
∫ β

α

h (t) dt− (β − α) h (γ)

≤ D
[
(β − γ)2 h′− (β)− (γ − α)2 h′+ (α)

]
.

If we consider the convex functionh0 (t) = k
∣∣t− α+β

2

∣∣, k > 0, t ∈ [α, β], then
we haveh′0− (β) = k, h′0+ (α) = −k and by (2.12) applied forh0 in γ = α+β

2

we get
1

4
k (β − α)2 ≤ D

[
1

4
k (β − α)2 +

1

4
k (β − α)2

]
,

giving D ≥ 1
2

which proves the sharpness of the constant1
2

in the second in-
equality in (2.1).

Corollary 2.2. With the assumptions of Lemma2.1and ifγ ∈ (α, β) is a point
of differentiability forh, then

(2.13)

(
α + β

2
− γ

)
h′ (γ) ≤ 1

β − α

∫ β

α

h (t) dt− h (γ) .
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Now, recall that the following inequality, which is well known in the litera-
ture as the Hermite-Hadamard inequality for convex functions, holds

(2.14) h

(
α + β

2

)
≤ 1

β − α

∫ β

α

h (t) dt ≤ h (α) + h (β)

2
.

The following corollary provides both a sharper lower bound for the differ-
ence,

1

β − α

∫ β

α

h (t) dt− h

(
α + β

2

)
,

which we know is nonnegative, and an upper bound.

Corollary 2.3. Leth : [α, β] → R be a convex function on[α, β]. Then we have
the inequality

0 ≤ 1

8

[
h′+

(
α + β

2

)
− h′−

(
α + β

2

)]
(β − α)(2.15)

≤ 1

β − α

∫ β

α

h (t) dt− h

(
α + β

2

)
≤ 1

8

[
h′− (β)− h′+ (α)

]
(β − α) .

The constant1
8

is sharp in both inequalities.

Example 2.1. Assume that−∞ < α < 0 < β < ∞ and consider the convex
functionh : [α, β] → R, h (x) = exp |x| . We have

h′ (x) =


−e−x if x < 0,

ex if x > 0;
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andh′− (0) = −1, h′+ (0) = 1. Also,∫ β

α

h (t) dt =

∫ 0

α

e−xdx +

∫ β

0

exdx = exp (β) + exp (−α)− 2.

Now, if α+β
2
6= 0, then by (2.15) we deduce the elementary inequality

0 ≤ exp (β) + exp (−α)− 2

β − α
− exp

∣∣∣∣α + β

2

∣∣∣∣(2.16)

≤ 1

8
[exp (β) + exp (−α)] (β − α) .

If α+β
2

= 0 and if we denoteβ = a, a > 0, thusα = −a and by (2.15) we also
have

(2.17)
1

2
a ≤ exp (a)− 1

a
− 1 ≤ 1

2
a exp (a) .

The reader may produce other elementary inequalities by choosing in an
appropriate way the convex functionh. We omit the details.

We are now able to state the corresponding result for convex functions de-
fined on linear spaces.

Theorem 2.4.LetX be a linear space,a, b ∈ X, a 6= b andf : [a, b] ⊂ X → R
be a convex function on the segment[a, b]. Then for anys ∈ (0, 1) one has the
inequality

1

2

[
(1− s)2 (5+f [(1− s) a + sb]) (b− a)(2.18)

−s2 (5−f [(1− s) a + sb]) (b− a)
]
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≤
∫ 1

0

f [(1− t) a + tb] dt− f [(1− s) a + sb]

≤ 1

2

[
(1− s)2 (5−f (b)) (b− a)− s2 (5+f (a)) (b− a)

]
.

The constant1
2

is sharp in both inequalities.
The second inequality also holds fors = 0 or s = 1.

Proof. Follows by Lemma2.1applied for the convex functionh (t) = g (a, b) (t) =
f [(1− t) a + tb], t ∈ [0, 1], and the choicesα = 0, β = 1, andγ = s.

Corollary 2.5. If f : [a, b] → R is as in Theorem2.4and Gâteaux differentiable
in c := (1− λ) a + λb, λ ∈ (0, 1) along the direction(b− a), then we have the
inequality:

(2.19)

(
1

2
− λ

)
(5f (c)) (b− a) ≤

∫ 1

0

f [(1− t) a + tb] dt− f (c) .

The following result related to the first Hermite-Hadamard inequality for
functions defined on linear spaces also holds.

Corollary 2.6. If f is as in Theorem2.4, then

0 ≤ 1

8

[
5+f

(
a + b

2

)
(b− a)−5−f

(
a + b

2

)
(b− a)

]
(2.20)

≤
∫ 1

0

f [(1− t) a + tb] dt− f

(
a + b

2

)
≤ 1

8
[(5−f (b)) (b− a)− (5+f (a)) (b− a)] .
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The constant1
8

is sharp in both inequalities.

Now, letΩ ⊂ Rn be an open and convex set inRn.
If F : Ω → R is a differentiable convex function onΩ, then, obviously, for

any c̄ ∈ Ω we have

∇F (c̄) (ȳ) =
n∑

i=1

∂F (c̄)

∂xi

· yi, ȳ ∈ Rn,

where ∂F
∂xi

are the partial derivatives ofF with respect to the variablexi

(i = 1, . . . , n) .
Using (2.18), we may state that(

1

2
− λ

) n∑
i=1

∂F
(
λā + (1− λ) b̄

)
∂xi

· (bi − ai)(2.21)

≤
∫ 1

0

F
[
(1− t) ā + tb̄

]
dt− F

(
(1− λ) ā + λb̄

)
≤ (1− λ)2

n∑
i=1

∂F
(
b̄
)

∂xi

· (bi − ai)− λ2

n∑
i=1

∂F (ā)

∂xi

· (bi − ai)

for any ā, b̄ ∈ Ω andλ ∈ (0, 1) .
In particular, forλ = 1

2
, we get

0 ≤
∫ 1

0

F
[
(1− t) ā + tb̄

]
dt− F

(
ā + b̄

2

)
(2.22)

≤ 1

8

n∑
i=1

(
∂F
(
b̄
)

∂xi

− ∂F (ā)

∂xi

)
· (bi − ai) .
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In (2.22) the constant1
8

is sharp.
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3. Applications for Semi-Inner Products
Let (X, ‖·‖) be a real normed linear space. We may state the following results
for the semi-inner products〈·, ·〉i and〈·, ·〉s.
Proposition 3.1. For anyx, y ∈ X andσ ∈ (0, 1) we have the inequalities:

(1− σ)2 〈y − x, (1− σ) x + σy〉s − σ2 〈y − x, (1− σ) x + σy〉i(3.1)

≤
∫ 1

0

‖(1− t) x + ty‖2 dt− ‖(1− σ) x + σy‖2

≤ (1− σ)2 〈y − x, y〉i − σ2 〈y − x, y〉s .

The second inequality in (3.1) also holds forσ = 0 or σ = 1.

The proof is obvious by Theorem2.4applied for the convex functionf (x) =
1
2
‖x‖2, x ∈ X.
If the space issmooth, then we may put[x, y] = 〈x, y〉i = 〈x, y〉s for each

x, y ∈ X and the first inequality in (3.1) becomes

(3.2) (1− 2σ) [y − x, (1− σ) x + σy]

≤
∫ 1

0

‖(1− t) x + ty‖2 dt− ‖(1− σ) x + σy‖2 .

An interesting particular case one can get from (3.1) is the one forσ = 1
2
,

0 ≤ 1

8
[〈y − x, y + x〉s − 〈y − x, y + x〉i](3.3)

≤
∫ 1

0

‖(1− t) x + ty‖2 dt−
∥∥∥∥x + y

2

∥∥∥∥2
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≤ 1

4
[〈y − x, y〉i − 〈y − x, x〉s] .

The inequality (3.3) provides a refinement and a counterpart for the first
inequality (1.1).

If we consider now two linearly independent vectorsx, y ∈ X and apply
Theorem2.4for f (x) = ‖x‖, x ∈ X, then we get

Proposition 3.2.For any linearly independent vectorsx, y ∈ X andσ ∈ (0, 1) ,
one has the inequalities:

1

2

[
(1− σ)2 〈y − x, (1− σ) x + σy〉σ

‖(1− σ) x + σy‖
− σ2 〈y − x, (1− σ) x + σy〉i

‖(1− σ) x + σy‖

]
(3.4)

≤
∫ 1

0

‖(1− t) x + ty‖ dt− ‖(1− σ) x + σy‖

≤ 1

2

[
(1− σ)2 〈y − x, y〉i

‖y‖
− σ2 〈y − x, x〉s

‖x‖

]
.

The second inequality also holds forσ = 0 or σ = 1.

We note that if the space is smooth, then we have

(3.5)

(
1

2
− σ

)
· [y − x, (1− σ) x + σy]

‖(1− σ) x + σy‖

≤
∫ 1

0

‖(1− t) x + ty‖ dt− ‖(1− σ) x + σy‖ ,
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and forσ = 1
2
, (3.4) will give the simple inequality

0 ≤ 1

8

[〈
y − x,

x+y
2∥∥x+y
2

∥∥
〉

s

−

〈
y − x,

x+y
2∥∥x+y
2

∥∥
〉

i

]
(3.6)

≤
∫ 1

0

‖(1− t) x + ty‖ dt−
∥∥∥∥x + y

2

∥∥∥∥
≤ 1

8

[〈
y − x,

y

‖y‖

〉
i

−
〈

y − x,
x

‖x‖

〉
s

]
.

The inequality (3.6) provides a refinement and a counterpart for the first in-
equality in (1.2).

Moreover, if we assume that(H, 〈·, ·〉) is an inner product space, then by
(3.6) we get for anyx, y ∈ H with ‖x‖ = ‖y‖ = 1 that

(3.7) 0 ≤
∫ 1

0

‖(1− t) x + ty‖ dt−
∥∥∥∥x + y

2

∥∥∥∥ ≤ 1

8
‖y − x‖2 .

The constant1
8

is sharp.
Indeed, ifH = R, 〈a, b〉 = a · b, then takingx = −1, y = 1, we obtain

equality in (3.7).
We give now some examples.

1. Let `2 (K) , K = C, R; be the Hilbert space of sequencesx = (xi)i∈N with
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∑∞
i=0 |xi|2 < ∞. Then, by (3.7), we have the inequalities

0 ≤
∫ 1

0

(
∞∑
i=0

|(1− t) xi + tyi|2
) 1

2

dt−

(
∞∑
i=0

∣∣∣∣xi + yi

2

∣∣∣∣2
) 1

2

(3.8)

≤ 1

8
·
∞∑
i=0

|yi − xi|2 ,

for anyx, y ∈ `2 (K) provided
∑∞

i=0 |xi|2 =
∑∞

i=0 |yi|2 = 1.

2. Let µ be a positive measure,L2 (Ω) the Hilbert space ofµ−measurable
functions onΩ with complex values that are2−integrable onΩ, i.e., f ∈
L2 (Ω) iff

∫
Ω
|f (t)|2 dµ (t) < ∞. Then, by (3.7), we have the inequalities

0 ≤
∫ 1

0

(∫
Ω

|(1− λ) f (t) + λg (t)|2 dµ (t)

) 1
2

dλ(3.9)

−

(∫
Ω

∣∣∣∣f (t) + g (t)

2

∣∣∣∣2 dµ (t)

) 1
2

≤ 1

8
·
∫

Ω

|f (t)− g (t)|2 dµ (t)

for anyf, g ∈ L2 (Ω) provided
∫

Ω
|f (t)|2 dµ (t) =

∫
Ω
|g (t)|2 dµ (t) = 1.
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