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Abstract: Matrix trace inequalities are finding increased use in many areas such as analysis,
where they can be used to generalise several well known classical inequalities,
and computational statistics, where they can be applied, for example, to data fit-
ting problems. In this paper we give simple proofs of two useful matrix trace
inequalities and provide applications to orthogonal regression and matrix near-
ness problems.
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1. Introduction

Matrix trace inequalities are finding increased use in many areas such as analysis,
where they can be used to generalise several well known classical inequalities, and
computational statistics, where they can be applied, for example, to data fitting prob-
lems. In this paper we give simple proofs of two useful matrix trace inequalities
and provide applications to orthogonal regression and matrix nearness problems.
The trace inequalities studied have also been applied successfully to applications in
wireless communications and networking [9], artificial intelligence [12], predicting
climate change [11] and problems in signal processing [13].
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2. A Matrix Trace Inequality

The following result contains the basic ideas we need when considering best approx-
imation problems. Although the result is well known, an alternative proof paves the
way for the applications which follow.

Theorem 2.1.LetX be an×n Hermitian matrix withrank(X) = r and letQk be an
n × k matrix,k ≤ r, with k orthonormal columns. Then, for givenX, tr(Q∗

kXQk)
is maximized whenQk = Vk, whereVk = [v1, v2, . . . , vk] denotes a matrix ofk
orthonormal eigenvectors ofX corresponding to thek largest eigenvalues.

Proof. Let X = V DV ∗ be a spectral decomposition ofX with V unitary andD =
diag[λ1, λ2, . . . , λn], the diagonal matrix of (real) eigenvalues ordered so that

(2.1) λ1 ≥ λ2 ≥ · · · ≥ λn.

Then,

(2.2) tr(Q∗
kXQk) = tr(Z∗

kDZk) = tr(ZkZ
∗
kD) = tr(PD),

whereZk = V ∗Qk andP = ZkZ
∗
k is a projection matrix withrank(P ) = k. Clearly,

the n × k matrix Zk has orthonormal columns if and only ifQk has orthonormal
columns. Now

tr(PD) =
n∑

i=1

Piiλi

with 0 ≤ Pii ≤ 1, i = 1, 2, . . . , n and
∑n

i=1 Pii = k becauseP is an Hermitian
projection matrix with rankk. Hence,

tr(Q∗
kXQk) ≤ L,
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whereL denotes the maximum value attained by the linear programming problem:

(2.3) max
p∈Rn

{
n∑

i=1

piλi : 0 ≤ pi ≤ 1, i = 1, 2, . . . , n;
n∑

i=1

pi = k

}
.

An optimal basic feasible solution to the LP problem (2.3) is easily identified (noting
the ordering (2.1)) aspj = 1, j = 1, 2, . . . , k; pj = 0, j = k + 1, k + 2, . . . , n, with
L =

∑k
1 λi. However,P = EkE

∗
k gives tr(PD) = L whereEk is the matrix

with orthonormal columns formed from the firstk columns of then × n identity
matrix, therefore (2.2) provides the required result thatQk = V Ek = Vk maximizes
tr Q∗

kXQk.

Corollary 2.2. Let Y be anm × n matrix withm ≥ n and rank(Y ) = r and let
Qk ∈ Rn×k, k ≤ r, be a matrix withk orthonormal columns. Then the Frobenius
trace-norm||Y Qk||2F = tr(Q∗

kY
∗Y Qk) is maximized for givenY , whenQ = Vk,

whereUSV ∗ is a singular value decomposition ofY and Vk = [v1, v2, . . . , vk] ∈
Rn×k denotes a matrix ofk orthonormal right singular vectors ofY corresponding
to thek largest singular values.

Corollary 2.3. If a minimum rather than maximum is required then substitute the
k smallest eigenvalues/singular values in the above results and reverse the order-
ing (2.1).

Theorem2.1 is a special case of a more general result established in Section3.
Alternative proofs can be found in some linear algebra texts (see, for example [6]).
The special case above and Corollary2.2have applications in total least squares data
fitting.
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3. An Application to Data Fitting

Suppose that data is available as a set ofm points inRn represented by the columns
of then×m matrixA and it is required to find the bestk-dimensional linear manifold
Lk ∈ Rn approximating the set of points in the sense that the sum of squares of the
distances of each data point from its orthogonal projection onto the linear manifold
is minimized. A general point inLk can be expressed in parametric form as

(3.1) x(t) = z + Zkt, t ∈ Rk,

wherez is a fixed point inLk and the columns of then × k matrix Zk can be taken
to be orthonormal. The problem is now to identify a suitablez andZk. Now the
orthogonal projection of a pointa ∈ Rn ontoLk can be written as

proj(a, Lk) = z + ZkZ
T
k (a− z),

and hence the Euclidean distance froma to Lk is

dist(a, Lk) = ||a− proj(a, Lk)||2 = ||(I − ZkZ
T
k )(a− z)||2.

Therefore, the total least squares data-fitting problem is reduced to finding a suitable
z and correspondingZk to minimize the sum-of-squares function

SS =
m∑

j=1

||(I − ZkZ
T
k )(aj − z)||22,

whereaj is thejth data point (jth column ofA). A necessary condition forSS to be
minimized with respect toz is

0 =
m∑

j=1

(I − ZkZ
T
k )(aj − z) = (I − ZkZ

T
k )

m∑
j=1

(aj − z).
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Therefore,
∑m

j=1(aj − z) lies in the null space of(I − ZkZ
T
k ) or equivalently the

column space ofZk. The parametric representation (3.1) shows that there is no loss
of generality in letting

∑m
j=1(aj − z) = 0 or

(3.2) z =
1

m

m∑
j=1

aj.

Thus, a suitablez has been determined and it should be noted that the value (3.2)
solves the zero-dimensional case corresponding tok = 0. It remains to findZk when
k > 0, which is the problem:

(3.3) min
m∑

j=1

||(I − ZkZ
T
k )(aj − z)||22,

subject to the constraint that the columns ofZk are orthonormal and thatz satisfies
equation (3.2). Using the properties of orthogonal projections and the definition of
the vector 2-norm, (3.3) can be rewritten

(3.4) min
m∑

j=1

(aj − z)T (I − ZkZ
T
k )(aj − z).

Ignoring the terms in (3.4) independent ofZk then reduces the problem to

min
m∑

j=1

−(aj − z)T ZkZ
T
k (aj − z),

or equivalently

(3.5) max tr
m∑

j=1

(aj − z)T ZkZ
T
k (aj − z).
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The introduction of the trace operator in (3.5) is allowed because the argument to the
trace function is a matrix with only one element. The commutative property of the
trace then shows that problem (3.5) is equivalent to

max tr
m∑

j=1

ZT
k (aj − z)(aj − z)T Zk ≡ max tr ZT

k ÂÂT Zk,

whereÂ is the matrix

Â = [a1 − z, a2 − z, . . . , am − z].

Theorem2.1and its corollary then show that the required matrixZk can be taken to
be the matrix ofk left singular vectors of the matrix̂A (right singular vectors of̂AT )
corresponding to thek largest singular values.

This result shows, not unexpectedly, that the best point lies on the best line which
lies in the best plane, etc. Moreover, the total least squares problem described above
clearly always has a solution although it will not be unique if the(k + 1)th largest
singular value ofÂ has the same value as thekth largest. For example, if the data
points are the 4 vertices of the unit square inR2,

A =

[
0 1 1 0
0 0 1 1

]
,

then any line passing through the centroid of the square is a best line in the total least
squares sense because the matrixÂ for this data has two equal non-zero singular
values.

The total least squares problem above (also referred to as orthogonal regression)
has been considered by many authors and as is pointed out in [7, p 4]:

“ . . . orthogonal regression has been discovered and rediscovered many
times, often independently.”
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The approach taken above differs from that in [3], [4], and [7], in that the deriva-
tion is more geometric, it does not require the Eckart-Young-Mirsky Matrix Approx-
imation Theorem [2], [10] and it uses only simple properties of projections and the
matrix trace operator.
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4. A Stronger Result

The proof of Theorem2.1 relies on maximizingtr(DP ) whereD is a (fixed) real
diagonal matrix andP varies over all rankk projections. Since any two rankk
projections are unitarily equivalent the problem is now to maximizetr(DU∗PU)
(for fixed D andP ) over all unitary matricesU . Generalizing fromP to a general
Hermitian matrix leads to the following theorem.

Theorem 4.1.LetA, B ben× n Hermitian matrices. Then

max
U unitary

tr(AU∗BU) =
n∑

i=1

αiβi,

where

(4.1) α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn

are the eigenvalues ofA andB respectively, both similarly ordered.

Clearly, Theorem2.1can be recovered since a projection of rankk has eigenvalues1,
repeatedk times and0 repeatedn− k times.

Proof. Let {ei}n
i=1 be an orthonormal basis of eigenvectors ofA corresponding to

the eigenvalues{αi}n
i=1, written in descending order. Then

tr(AU∗BU) =
n∑

i=1

e∗i AU∗BUei =
n∑

i=1

(Aei)
∗U∗BUei =

n∑
i=1

αie
∗
i U

∗BUei.

Let B = V ∗DV, whereD is diagonal andV is unitary. WritingW = V U gives

tr(AU∗BU) =
n∑

i=1

αie
∗
i W

∗DWei =
n∑

i,j=1

pijαiβj,
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where theβj ’s are the elements on the diagonal ofD, i.e. the eigenvalues ofB and

pij = |(Wei)j|2 .

Note that sinceW is unitary, the matrixP = [pij], is doubly stochastic, i.e., has non-
negative entries and whose rows and columns sum to 1. The theorem will therefore
follow once it is shown that forα1 ≥ α2 ≥ · · · ≥ αn andβ1 ≥ β2 ≥ · · · ≥ βn

(4.2) max
[pij ]

n∑
i,j=1

αiβjpij =
n∑

i=1

αiβi,

where the maximum is taken over all doubly stochastic matricesP = [pij].
For fixedP doubly stochastic, let

χ =
n∑

i,j=1

αiβjpij.

If P 6= I, let k be the smallest indexi such thatpii 6= 1. (Note that forl < k, pll = 1
and thereforepij = 0 if i < k andi 6= j, also if j < k andi 6= j). Sincepkk < 1,
then for somel > k, pkl > 0. Likewise, for somem > k, pmk > 0. These imply
thatpml 6= 1. The inequalities above mean that we can chooseε > 0 such that the
matrixP ′ is doubly stochastic where

p′kk = pkk + ε,

p′kl = pkl − ε,

p′mk = pmk − ε,

p′ml = pml + ε

andp′ij = pij in all other cases.
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If we write

χ′ =
n∑

i,j=1

αiβjp
′
ij,

then

χ′ − χ = ε(αkβk − αkβl − αmβk + αmβl)

= ε(αk − αm)(βk − βl)

≥ 0

which means that the term
∑

αiβjpij is not decreased. Clearlyε can be chosen to
reduce a non-diagonal term inP to zero. After a finite number of iterations of this
process it follows thatP = I maximizes this term. This proves (4.2) and hence
Theorem4.1.

Corollary 4.2. If a minimum rather than maximum is required then reverse the or-
dering for one of the sets (4.1).

Note that this theorem can also be regarded as a generalization of the classical
result that if{αi}n

i=1, {βi}n
i=1 are real sequences then

∑
αiβσ(i) is maximized over

all permutationsσ of {1, 2, . . . , n} when{αi} and{βσ(i)} are similarly ordered.
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5. A Matrix Nearness Problem

Theorem4.1also allows us to answer the following problem. IfA, B are Hermitian
n × n matrices, what is the smallest distance betweenA and a matrixB′ unitarily
equivalentto B? Specifically, we have:

Theorem 5.1. Let A, B be Hermitiann × n matrices with ordered eigenvalues
α1 ≥ α2 ≥ · · · ≥ αn and β1 ≥ β2 ≥ · · · ≥ βn respectively. Let|| · || denote the
Frobenius norm. Then

(5.1) min
Q unitary

||A−Q∗BQ|| =

√√√√ n∑
i=1

(αi − βi)2.

Proof.

||A−Q∗BQ||2 = tr(A−Q∗BQ)2

= tr(A2) + tr(B2)− 2 tr(AQ∗BQ)

(Note that ifC, D are Hermitian,tr(CD) is real [1].)
So by Theorem4.1

min ||A−Q∗BQ||2 = tr(A2) + tr(B2)− 2 max
Q

tr(AQ∗BQ)

=
∑

α2
i +

∑
β2

i − 2
∑

αiβi

=
∑

(αi − βi)
2

and the result follows.

An optimal Q for problem (5.1) is clearly given byQ = V U∗ whereU, V are
orthonormal matrices of eigenvectors ofA, andB respectively (corresponding to
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similarly ordered eigenvalues). This follows becauseA = UDαU∗, B = V DβV ∗,
whereDα, Dβ denote the diagonal matrices of eigenvalues{αi}, {βi} respectively
and so

||A−Q∗BQ||2 = ||Dα − U∗Q∗V DβV ∗QU ||2

=
∑

(αi − βi)
2 if Q = V U∗.

Problem (5.1) is a variation on the well-knownOrthogonal Procrustes Problem
(see, for example, [4], [5]) where an orthogonal (unitary) matrix is sought to solve

min
Q unitary

||A−BQ||.

In this caseA andB are no longer required to be Hermitian (or even square). A
minimizingQ for this problem can be obtained from a singular value decomposition
of B∗A [4, p 601].
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