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Matrix trace inequalities are finding increased use in many areas such as analysis,
where they can be used to generalise several well known classical inequalities,
and computational statistics, where they can be applied, for example, to data fit-
ting problems. In this paper we give simple proofs of two useful matrix trace
inequalities and provide applications to orthogonal regression and matrix near-
ness problems.
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1. Introduction

Matrix trace inequalities are finding increased use in many areas such as analysis,
where they can be used to generalise several well known classical inequalities, and
computational statistics, where they can be applied, for example, to data fitting prob-
lems. In this paper we give simple proofs of two useful matrix trace inequalities
and provide applications to orthogonal regression and matrix nearness problems.
The trace inequalities studied have also been applied successfully to applications in
wireless communications and networkird, [artificial intelligence 2], predicting
climate changel[l] and problems in signal processintf].
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2. A Matrix Trace Inequality

The following result contains the basic ideas we need when considering best approx-
imation problems. Although the result is well known, an alternative proof paves the
way for the applications which follow.

Theorem 2.1.Let X be an xn Hermitian matrix withrank(.X') = r and let@;, be an

n x k matrix, k < r, with & orthonormal columns. Then, for given, tr(Q; X Qx) Trace Inequalities

is maximized whe),, = Vj, whereV, = [vy,v9,...,v;] denotes a matrix ok 1.D. Coope and PF. Renaud

orthonormal eigenvectors df corresponding to thé largest eigenvalues. vol. 10, iss. 4, art. 92, 2009

Proof. Let X = V DV* be a spectral decomposition &f with 1 unitary andD =

diag[\1, Ae, ..., \,], the diagonal matrix of (real) eigenvalues ordered so that Title Page

(2.1) AN >N > >0\, Contents

Then K LY

(2.2) (QEXQx) = tr(Z; DZy) = t2(Z,Z; D) = tx(PD), ) g
Page 4 of 16

whereZ, = V*Q, andP = Z, Z; is a projection matrix witlrank(P) = k. Clearly,
the n x k matrix Z; has orthonormal columns if and only @, has orthonormal Go Back
columns. Now

n Full Screen
tr(PD) = P\
r( ) Zl Close
with0 < P, <1, i =1,2,...,nand) " P, = k becauseP is an Hermitian journal of inequalities
projection matrix with rank. Hence, in pure and applied

i} mathematics
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whereL denotes the maximum value attained by the linear programming problem:

2. A 0<p, <1, ¢=1,2,...,n; ; = .
9 mp{Savsnsiicta S

An optimal basic feasible solution to the LP problentd is easily identified (noting
the ordering?.1)) asp; =1, j=1,2,...,k;p; =0,7=k+1,k+2,...,n,with
L = Y%\, However,P = E.E; givestr(PD) = L where E; is the matrix
with orthonormal columns formed from the firBtcolumns of then x n identity
matrix, therefore4.2) provides the required result th@f, = V £}, = V;,, maximizes
tr Q7 X Q. O

Corollary 2.2. LetY be anm x n matrix withm > n andrank(Y) = r and let
Qi € R™* k < r, be a matrix withk orthonormal columns. Then the Frobenius
trace-norm||Y Qi ||3 = tr(Q;Y*Y Q) is maximized for give’, when@ = V,
whereUSV* is a singular value decomposition &f and V}, = [vy,v9, ..., 0] €
R™* denotes a matrix of orthonormal right singular vectors df corresponding
to thek largest singular values.

Corollary 2.3. If a minimum rather than maximum is required then substitute the

k smallest eigenvalues/singular values in the above results and reverse the order-

ing (2.1).

Theorem2.1is a special case of a more general result established in Section
Alternative proofs can be found in some linear algebra texts (see, for exaéfple [
The special case above and Corollaryhave applications in total least squares data
fitting.
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3. An Application to Data Fitting

Suppose that data is available as a setgdoints in R" represented by the columns

of then xm matrix A and it is required to find the bektdimensional linear manifold

Ly € R™ approximating the set of points in the sense that the sum of squares of the
distances of each data point from its orthogonal projection onto the linear manifold
is minimized. A general point ik, can be expressed in parametric form as

(3.2) z(t) =z + Zyt, te R
wherez is a fixed point inL, and the columns of the x k& matrix Z, can be taken
to be orthonormal. The problem is now to identify a suitablend Z,. Now the
orthogonal projection of a point € R™ onto L, can be written as
proj(a, Ly) = 2 + Z,.Z} (a — 2),
and hence the Euclidean distance frono L, is
dist(a, L) = |la — proj(a, Ly)||2 = |I(I — ZxZy )(a — 2)]]2-

Therefore, the total least squares data-fitting problem is reduced to finding a suitable
z and corresponding, to minimize the sum-of-squares function

SS =Y I = ZuZ{)(a; — )13,
j=1
whereq; is the jth data point {th column ofA). A necessary condition fa¥S to be
minimized with respect to is

m

0=> (I-ZZ)a; —2) = (I = ZZ{) Y (a;

7j=1 7j=1
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Therefore,y""" | (a; — z) lies in the null space of/ — Z,Z]) or equivalently the
column space of/,. The parametric representatidih ) shows that there is no loss
of generality in lettingd _™" | (a; — z) = 0 or

1 m
(3.2) Z=— Z a;.
j=1
Thus, a suitable has been determined and it should be noted that the valde ( e lrcpElies
solves the zero-dimensional case correspondig=td). It remains to findZ, when 12} E3536 &1 (313 IR el
k > 0’ Wh|Ch |S the prob'em: vol. 10, iss. 4, art. 92, 2009
(3.3) min Y |[(T = ZuZ{)(a; — 2)|13, Title Page
j=1
: . . Content
subject to the constraint that the columnsZfare orthonormal and thatsatisfies oments
equation 8.2). Using the properties of orthogonal projections and the definition of <« »
the vector 2-norm,{.3) can be rewritten p R
(3.4) min Z "I - 2,75 (a; — 2). Page 7 of 16
Go Back
Ignoring the terms in3.4) mdependent o¥,. then reduces the problem to
Full Screen
mlnz - )7, 7 (aj — 2), Close
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The introduction of the trace operator in ) is allowed because the argument to the
trace function is a matrix with only one element. The commutative property of the
trace then shows that problem %) is equivalent to

maxtrz ZE(a; — 2)(a; — 2)T Zy = maxtr ZF AAT 7,
j=1

whereA is the matrix Trace Inequalities

N I.D. Coope and P.F. Renaud

A= [CL1 — 2,02 — Z,...,Qm — Z] vol. 10, iss. 4, art. 92, 2009

Theorem?.1and its corollary then show that the required maffixcan be taken to
be the matrix of: left singular vectors of the matrix (right singular vectors ofi”)
corresponding to thg largest singular values.

This result shows, not unexpectedly, that the best point lies on the best line which Contents
lies in the best plane, etc. Moreover, the total least squares problem described above
clearly always has a solution although it will not be unique if thet- 1)th largest
singular value ofd has the same value as thth largest. For example, if the data < 4
points are the 4 vertices of the unit squarerih

Title Page

44 44

Page 8 of 16
0110
A:{O()ll}’ Go Back
then any line passing through the centroid of the square is a best line in the total least FUllsarzer
squares sense because the matrifor this data has two equal non-zero singular Close

values.

The total least squares problem above (also referred to as orthogonal regression) journal of inequalities
has been considered by many authors and as is pointed aytar]: in pure and applied
mathematics

“...orthogonal regression has been discovered and rediscovered many ceon: uua-creL

times, often independently.”
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The approach taken above differs from that3h [4], and [7], in that the deriva-
tion is more geometric, it does not require the Eckart-Young-Mirsky Matrix Approx-

imation Theorem], [10] and it uses only simple properties of projections and the
matrix trace operator.
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4. A Stronger Result

The proof of Theoren?.1 relies on maximizingr(DP) whereD is a (fixed) real
diagonal matrix andP varies over all rank: projections. Since any two rank
projections are unitarily equivalent the problem is now to maximiz&U*PU)

(for fixed D and P) over all unitary matrice$¢/. Generalizing fromP to a general
Hermitian matrix leads to the following theorem.

Trace Inequalities

Theorem 4.1.Let A, B ben x n Hermitian matrices. Then 1.D. Coope and PF. Renaud

vol. 10, iss. 4, art. 92, 2009

max tr(AU*BU) = Z a; 3,

U unitary
Title Page
where
Contents
(4.1) ar>a>->a, and B> B> >,
. . - <« >
are the eigenvalues of and B respectively, both similarly ordered.

Clearly, Theoren2.1can be recovered since a projection of rarilas eigenvalues, < >
repeated: times and) repeated: — k times. Page 10 of 16
Proof. Let {e;} , be an orthonormal basis of eigenvectorsAtorresponding to Go Back
the elgenvalue$aZ » ., written in descending order. Then

Full Screen
tr(AU*BU) = Z e;AU*BUe; = (Ae;)*'U*BUe; = Y ae;UBUe;. Close
=1 =1 =1
Let B = V*DV, whereD is diagonal and’ is unitary. Writingi’ = VU gives R
in pure and applied
n " mathematics
tr(AUBU) = ZO‘ZB:W*DW@ = Z Pijif;, issn: 1443-575k
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where the3;’s are the elements on the diagonallofi.e. the eigenvalues d@# and
pij = |(Wei),|*.

Note that sincéV is unitary, the matrix? = [p;;], is doubly stochastic, i.e., has non-
negative entries and whose rows and columns sum to 1. The theorem will therefore
follow once it is shown that fotv, > ag > --- > o, andfy > G, > -+ > 3,

Trace Inequalities

n n
(42) max aiﬁjpij — Z aiﬁiy I.D. Coope and PF. Renaud
[pi;] ij=1 i—1 vol. 10, iss. 4, art. 92, 2009
where the maximum is taken over all doubly stochastic mattites p;;]. _
For fixed P doubly stochastic, let Title Page
n Contents
X Zaiﬁjp"j' «“« 3
7,7=1
< >

If P +# I, letk be the smallest indexsuch thap;; # 1. (Note that forl < k,p; = 1
and therefore,; = 0if i < kand: # j, also ifj < k andi # j). Sincepy, < 1, Page 11 of 16
then for somé > k, p,; > 0. Likewise, for somen > k, p,.. > 0. These imply

thatp,, # 1. The inequalities above mean that we can cheose0 such that the Go Back
matrix P’ is doubly stochastic where Full Screen
Dk, = Dik + €, Close
p%l = Pkl — € . . s
;o journal of inequalities
p?jlk = Pmk — & in pure and applied
Pt = Pmi + € mathematics

’ . issn: 1443-575k
andp;; = p;; in all other cases.
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If we write .
X/ - Z alﬁ]p;jy
i,j=1
then

X — x = €(ofe — B — B + anf)
= e — am)(Br — 31)
0

v

which means that the terth’ «;3;p;; is not decreased. Cleartycan be chosen to
reduce a non-diagonal term A to zero. After a finite number of iterations of this

process it follows tha” = I maximizes this term. This proveg.f) and hence
Theoremd.1. N

Corollary 4.2. If a minimum rather than maximum is required then reverse the or-
dering for one of the sets4(1).

Note that this theorem can also be regarded as a generalization of the classical
result that if{o; }7_,, {3;}7_, are real sequences th@n o, 3, is maximized over
all permutations of {1,2,...,n} when{«;} and{z3,;} are similarly ordered.
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5. A Matrix Nearness Problem

Theorem4.1 also allows us to answer the following problem Aif B are Hermitian
n X n matrices, what is the smallest distance betwdesnd a matrixB’ unitarily
equivalentto B? Specifically, we have:

Theorem 5.1. Let A, B be Hermitiann x n matrices with ordered eigenvalues
ap > ag > >ap and By > By > --- > [, respectively. Let| - || denote the
Frobenius norm. Then

(5.2) min_||A - Q"BQ|| =

@ unitary

Proof.
|A = Q" BQ|]” = tr(A - Q*BQ)”
= tr(A?%) + tr(B?) — 2tr(AQ* BQ)

(Note that ifC, D are Hermitianfr(C' D) is real [1].)
So by Theoreml. 1

min ||[A — Q*BQ||* = tr(4?) + tr(B?) — 2 max tr(AQ*BQ)

= Z(Oéz‘ - @‘)2
and the result follows. O

An optimal @ for problem §.1) is clearly given by = VU* whereU,V are
orthonormal matrices of eigenvectors 4f and B respectively (corresponding to
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similarly ordered eigenvalues). This follows because- UD,U*, B = VDgV*,
whereD,,, Dz denote the diagonal matrices of eigenvalfies}, {5;} respectively
and so

14 = Q" BQII* = ||Da — U"Q"V DsV*QUI|”
=> (w—p) it Q=VU"

Problem £.1) is a variation on the well-know@rthogonal Procrustes Problem
(see, for exampled], [5]) where an orthogonal (unitary) matrix is sought to solve

min ||A — BQ]|.
Q@ unitary || QH
In this caseA and B are no longer required to be Hermitian (or even square). A

minimizing @ for this problem can be obtained from a singular value decomposition
of B*A [4, p 601].
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