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ABSTRACT. Matrix trace inequalities are finding increased use in many areas such as analysis,
where they can be used to generalise several well known classical inequalities, and computational
statistics, where they can be applied, for example, to data fitting problems. In this paper we give
simple proofs of two useful matrix trace inequalities and provide applications to orthogonal
regression and matrix nearness problems.
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1. INTRODUCTION

Matrix trace inequalities are finding increased use in many areas such as analysis, where they
can be used to generalise several well known classical inequalities, and computational statistics,
where they can be applied, for example, to data fitting problems. In this paper we give simple
proofs of two useful matrix trace inequalities and provide applications to orthogonal regression
and matrix nearness problems. The trace inequalities studied have also been applied success-
fully to applications in wireless communications and networking [9], artificial intelligende [12],
predicting climate changé [11] and problems in signal processing [13].

2. A MATRIX TRACE INEQUALITY

The following result contains the basic ideas we need when considering best approximation
problems. Although the result is well known, an alternative proof paves the way for the appli-
cations which follow.

The authors are grateful to Alexei Onatski, Columbia University for comments on an earlier version of this paper leading to improvements.
050-09


mailto:ian.coope@canterbury.ac.nz
mailto:peter.renaud@canterbury.ac.nz
http://www.ams.org/msc/

2 I1.D. CooPE ANDP.F. RENAUD

Theorem 2.1.Let X be an x n Hermitian matrix withrank(X) = r and letQ, be ann x k
matrix, k£ < r, with £ orthonormal columns. Then, for gived, tr(Q; X Qy) is maximized when
Qr = Vi, WwhereV}, = [v1,vq,...,v;] denotes a matrix ok orthonormal eigenvectors of
corresponding to thé largest eigenvalues.

Proof. Let X = V DV* be a spectral decomposition & with 1 unitary andD = diag[A, s,
.., An, the diagonal matrix of (real) eigenvalues ordered so that

(2.1) Mz A== A
Then,
(2.2) tr(Qr X Q) = tr(Z;DZy,) = tr(ZiZ; D) = tr(PD),

whereZ, = V*Q, andP = Z,. Z} is a projection matrix withrank(P) = k. Clearly, then x k
matrix 7, has orthonormal columns if and onlydf, has orthonormal columns. Now

i=1

with0 < P; <1, i=12,....n andZ?:1 P;; = k becauseP is an Hermitian projection
matrix with rankk. Hence,

tr(QrXQk) < L,
whereL denotes the maximum value attained by the linear programming problem:

2. D VI <p, <1l 1=12,....n =k ;.
@3 ;g%zg{ZpMz 0<p <1 =12 Yo }

An optimal basic feasible solution to the LP problém2.3) is easily identified (noting the order-
ing )) ap,; =1, j=12,...kip; =0, =k+1,k+2,... . n,with L = Z’f ;. However,

P = E,E} givestr(PD) = L whereFE}, is the matrix with orthonormal columns formed from
the firstk columns of thex x n identity matrix, thereford (2]2) provides the required result that
Qk =VE,=1V, maximizestr QZXQ’C O

Corollary 2.2. LetY be armm x n matrix withm > n andrank(Y) = r and letQ, € R"* k <
r, be a matrix withk orthonormal columns. Then the Frobenius trace-ndiQy||% =
tr(QrY*Y Q) is maximized for givery’, when@ = V;, whereUSV™* is a singular value
decomposition of andV;, = [vy,va, ..., 1] € R™** denotes a matrix of orthonormal right
singular vectors o™ corresponding to thé largest singular values.

Corollary 2.3. If a minimum rather than maximum is required then substitutektisenallest
eigenvalues/singular values in the above results and reverse the orderihg (2.1).

Theoren] 2.1 is a special case of a more general result established in $gction 3. Alternative
proofs can be found in some linear algebra texts (see, for example [6]). The special case above
and Corollary 2.p have applications in total least squares data fitting.

3. AN APPLICATION TO DATA FITTING

Suppose that data is available as a setgfoints in R represented by the columns of the
n X m matrix A and it is required to find the bestdimensional linear manifold., € R"
approximating the set of points in the sense that the sum of squares of the distances of each data
point from its orthogonal projection onto the linear manifold is minimized. A general point in
Ly, can be expressed in parametric form as

(3.1) z(t) =24 Zyt, teR"
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wherez is a fixed point inL, and the columns of the x k& matrix Z, can be taken to be
orthonormal. The problem is now to identify a suitablend”,.. Now the orthogonal projection
of a pointa € R™ onto L, can be written as

proj(a, Ly) = 2z + Zx ZE (a — 2),
and hence the Euclidean distance frono L;, is
dist(a, L) = ||a — proj(a, Ly)||2 = ||(I — Zi.Z ) (a — 2)||.

Therefore, the total least squares data-fitting problem is reduced to finding a suitabte
corresponding’, to minimize the sum-of-squares function

55 =3 I = ZZ{)(a; = 2)ll5,

J=1

whereg; is thejth data point {th column ofA). A necessary condition f&#S to be minimized
with respect to: is

0=> (I—-ZZ{)a;—2) = (I - ZZ{) > (a;
7j=1

J=1

Therefore) ™" | (a; — z) lies in the null space off — ZpZT) or equivalently the column space
of Z,. The parametric representatign (3.1) shows that there is no loss of generality in letting

ZT:l(aj —z)=0or
(3.2) z = %Zaj.

Thus, a suitable has been determined and it should be noted that the Valde (3.2) solves the
zero-dimensional case correspondingte 0. It remains to findZ, whenk > 0, which is the
problem:

(3.3) min Y (|1 = ZeZy)(a; — 2|3,

j=1

subject to the constraint that the columnsAf are orthonormal and that satisfies equa-
tion (3.2). Using the properties of orthogonal projections and the definition of the vector 2-
norm, [3.8) can be rewritten

(3.4) mlnz ; "I - 2,78 (a; — 2).

Ignoring the terms in (3]4) independent&f then reduces the problem to

mmz — )" 228 (a; — 2),
or equivalently
(3.5) max tr Z(aj — )" 27 (a; — 2).
j=1
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4 I1.D. CooPE ANDP.F. RENAUD

The introduction of the trace operator |n (3.5) is allowed because the argument to the trace
function is a matrix with only one element. The commutative property of the trace then shows
that problem[(3]5) is equivalent to

max tr Z Zl(a; — 2)(a; — 2)T Z), = maxtr ZF AAT Z,,,
j=1

whereA is the matrix
A=la; —z,a3 —2,...,am, — 2].

Theoren{ 2JL and its corollary then show that the required matfixan be taken to be the
matrix of k left singular vectors of the matrix (right singular vectors ofi”) corresponding to
thek largest singular values.

This result shows, not unexpectedly, that the best point lies on the best line which lies in the
best plane, etc. Moreover, the total least squares problem described above clearly always has a
solution although it will not be unique if thg: + 1)th largest singular value of has the same
value as theth largest. For example, if the data points are the 4 vertices of the unit square in

R?,
0110
A:{o 01 1}’

then any line passing through the centroid of the square is a best line in the total least squares
sense because the matrlxfor this data has two equal non-zero singular values.

The total least squares problem above (also referred to as orthogonal regression) has been
considered by many authors and as is pointed out in [7, p 4]:

“...orthogonal regression has been discovered and rediscovered many times,
often independently.”

The approach taken above differs from that in [3], [4], &nd [7], in that the derivation is more
geometric, it does not require the Eckart-Young-Mirsky Matrix Approximation Theorém [2],
[10] and it uses only simple properties of projections and the matrix trace operator.

4. A STRONGER RESULT

The proof of Theorerh 2|1 relies on maximizing DP) whereD is a (fixed) real diagonal
matrix andP varies over all rank: projections. Since any two rarikprojections are unitarily
equivalent the problem is now to maximizg DU* PU) (for fixed D and P) over all unitary
matricesl/. Generalizing fronP to a general Hermitian matrix leads to the following theorem.

Theorem 4.1.Let A, B ben x n Hermitian matrices. Then

max tr(AU*BU) = Z ;i
i=1

U unitary

where
(4.1) v >a> 2o, and G >0 > >0,
are the eigenvalues of and B respectively, both similarly ordered.

Clearly, Theorem 2]1 can be recovered since a projection of iamks eigenvalues, re-
peatedt times and) repeatedh — k times.
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Proof. Let {¢;}?_, be an orthonormal basis of eigenvectorsioforresponding to the eigenval-

ues{a;}", written in descending order. Then
tr(AU*BU) = Y " efAU*BUe; = » (Ae;)'U"BUe; = > a;e;U*BUe;.
=1 =1 =1
Let B = V*DV, whereD is diagonal and’ is unitary. WritinglW’ = VU gives
tI‘(AU*BU) = ZO&ZQ:W*DWQ = Z pijaiﬁjy

i=1 i,j=1
where the3;’s are the elements on the diagonallefi.e. the eigenvalues d? and

pij = |(Wea);|*.
Note that sincél’ is unitary, the matrix® = [p;;], is doubly stochastic, i.e., has non-negative

entries and whose rows and columns sum to 1. The theorem will therefore follow once it is
shown that fory; > oy > --- > a,, andgy > 5o > --- > 3,

(4.2) H[;?lfi Z i 3ipij = Z i,
=1 i=1

where the maximum is taken over all doubly stochastic mattites p;;].
For fixed P doubly stochastic, let

X = Z @ 3jpij-
ij=1
If P # I, let k be the smallest indeksuch thatp;; # 1. (Note that forl < k,p;, = 1 and
thereforep,; = 0if ¢ < kandi # j, also ifj < kK andi # j). Sincep, < 1, then for
somel > k, py > 0. Likewise, for somen > k, p,.. > 0. These imply thap,,;, # 1. The
inequalities above mean that we can choose0 such that the matri¥’ is doubly stochastic
where

p;m = Prk T €,
p;gl =Prl — €,
Pt = Pk — €,
Prnt = Dmi + €

andp;; = p;; in all other cases.

If we write .
X = Z azﬂjp;ja
ij=1
then

X — X = €larfr — arfi — i + o)
= e(ap — am) (B — B1)

>0

which means that the tertn, «;5;p;; is not decreased. Cleartycan be chosen to reduce a
non-diagonal term iP to zero. After a finite number of iterations of this process it follows that
P = I maximizes this term. This proves (4.2) and hence Theprem 4.1. O
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6 I1.D. CooPE ANDP.F. RENAUD

Corollary 4.2. If a minimum rather than maximum is required then reverse the ordering for
one of the set$ (4.1).

Note that this theorem can also be regarded as a generalization of the classical result that
if {o;}y, {B;}1=, are real sequences th&n «;5,(;) is maximized over all permutatiors of
{1,2,...,n} when{a;} and{s3,, } are similarly ordered.

5. AMATRIX NEARNESS PROBLEM

Theoren] 411 also allows us to answer the following problem, B are Hermitiam x n
matrices, what is the smallest distance betwdesnd a matrixB’ unitarily equivalentto B?
Specifically, we have:

Theorem5.1.Let A, B be Hermitiann xn matrices with ordered eigenvaluas > oy > -+ > ay,
andpg, > (3, > --- > [3, respectively. Leff - || denote the Frobenius norm. Then

(5.1) min |4~ Q"BQ|| =

Q@ unitary

Proof.
|A = Q" BQ|]” = tr(A - Q*BQ)’
= tr(A%) + tr(B?) — 2tr(AQ*BQ)

(Note that ifC, D are Hermitiantr(C'D) is real [1].)
So by Theorer 4|1

min [|A — Q*BQ||* = tr(A?) + tr(B?) — 2mgxtr(AQ*BQ)

:Za?—l—Zﬂf—QZaiﬂi
:Z(ai—ﬁi)2

and the result follows. O

An optimal () for problem [(5.1) is clearly given b§) = VU* whereU, V' are orthonormal
matrices of eigenvectors of, and B respectively (corresponding to similarly ordered eigen-
values). This follows becausé¢ = UD,U*, B = V DgV*, whereD,,, Ds denote the diagonal
matrices of eigenvalueisy; }, {3;} respectively and so

|IA = Q*BQI]> = ||Ds — U*Q*VDgV*QUI|?
= (a; =) i Q=VU".

Problem [(5.1) is a variation on the well-knov@rthogonal Procrustes Problersee, for
example,[[4],[[5]) where an orthogonal (unitary) matrix is sought to solve

min [|A — BQ||.

Q@ unitary

In this cased and B are no longer required to be Hermitian (or even square). A minimiging
for this problem can be obtained from a singular value decompositiétt af[4, p 601].
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