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ABSTRACT. Some new inequalities which counterpart Jensen’s discrete inequality and improve
the recent results from[4] and![5] are given. A related result for generalized means is estab-
lished. Applications in Information Theory are also provided.
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1. INTRODUCTION

Let f : X — R be a convex mapping defined on the linear spacandz; € X, p; > 0
(i=1,..,m)with P, :=>"" p; > 0.
The following inequality is well known in the literature as Jensen’s inequality

(1.1) f <PL me) < PL > pif().
m =1 ™ i=1

There are many well known inequalities which are particular cases of Jensen’s inequality, such
as the weighted arithmetic mean-geometric mean-harmonic mean inequality, the Ky-Fan in-
equality, the Holder inequality, etc. For a comprehensive list of recent results on Jensen'’s in-
equality, see the book [25] and the papers [9]-[15] where further references are given.

In 1994, Dragomir and lonescu [18] proved the following inequality which counterparts (1.1)
for real mappings of a real variable.
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2 |. BUDIMIR, S.S. RAGOMIR, AND J. FECARIC

Theorem 1.1.Let f : I C R — R be a differentiable convex mapping én(! is the interior
ofl),z; €1, p;>0 (i=1,..,n)and) ", p; = 1. Then we have the inequality

(1.2) 0 < szf(xz)_f<zpzxz)
< mef (@) ZPZZEZZPZ (@),

wheref’ is the derivative off on I.

Using this result and the discrete version of the Griss inequality for weighted sums, S.S.
Dragomir obtained the following simple counterpart of Jensen’s inequality [5]:

Theorem 1.2.With the above assumptions fband ifm, M e; andm < z; < M (i=1,...,n),
then we have

This was subsequently applied in Information Theory for Shannon’s and Rényi’s entropy.
In this paper we point out some other counterparts of Jensen’s inequality that are similar to
(1.3), some of which are better than the above inequalities.

2. SOME NEW COUNTERPARTS FOR JENSEN' S DISCRETE INEQUALITY

The following result holds.

Theorem 2.1.Let f : I C R — R be a differentiable convex mapping doinand X e; with
ry <z <---<mpandp; >0 (i=1,..n)with)> " p, = 1. Then we have

(2.1) 0 < szf(«%’z) — f <szxz>

< (w20 (f'(2a) = f(@1)) max {P Peo}

1<k<n
< =) () — £,
wherepP, := Elepi and P, :=1— P,.
Proof. We use the following Griss type inequality due to J. EC€dPé (see for example [25]):

1 < 1 « Qk Qi1
(2 2) Qn E anz ) Qn ; q:a; Qn ; qzbz = ‘an al‘ |bﬂ bl’ 1§k§az£1 |: Q% ’

=1

provided that:, b are two monotonia:—tuples,q is a positive one(),, := >"" ¢, > 0, Q, :=

Zle q; and@kz-i—l = Qn — Q1.

If in (R.2) we choose; = p;, a; = z;, b; = f'(z;) (anda;, b; will be monotonic nondecreasing),
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then we may state that

(2.3) me (7) szszpz )

< (2 — x1) (f'(2n) — f'(21)) max {PyPus1}.

1<k<n-—1

Now, using [(1.R) and (2] 3) we obtain the first inequality[in(2.1).
For the second inequality, we observe that

= 1 1
PkPIcHZPk(l_Pk)SZ(PkﬂLl—Pk)Q:Z—l
forall k € {1,...,n — 1} and then

1
1<r1£1<22< 1 {Pk PkH} = 4’

which proves the last part df (2.1). O

Remark 2.2. It is obvious that the inequality (4.1) is an improvemen{ of|(1.3) if we assume that
the order forz; is as in the statement of Theorém|2.1.

Another result is embodied in the following theorem.

Theorem 2.3.Letf : I C R — R be a differentiable convex mapping %randm, M e; with
m<z <M (@G=1,.,n)andp, >0 (i=1,..,n)with> " p, = 1. If S is a subset of the
set{1, ...,n} minimizing the expression

Zpi_%

€S

(2.4)

then we have the inequality

(2.5) 0 < Zplf(xl) —f (ZPJ&)
where

Proof. We use the following Griss type inequality due the Andrica and Badea [2]:

(26) QTLZQ’LCL’L 7 Z%az ZQZ [ Ml ml) <M2 mo qu (Qn Z%)

€S €S
provided thatn; < a; < My, me < b; < M, fori = 1,...,n, andS is the subset of1, ..., n}
which minimises the expression

1
ZQi_éQn .

i€S
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Choosingy; = p;, a; = 4, b; = f'(z;), then we may state that

(2.7) 0 < szxzf ;) szszpz (@)
< (M —m) (f(M) = f'(m)))_p (1 - Zm) :

€8 €S

Now, using [(1.R) and (2] 7), we obtain the first inequality{ in}(2.5). For the last part, we observe

that 9
<1<Zp+1_zp.) 1
— 4 €S Z €S Z 4
and the theorem is thus proved. O

The following inequality is well known in the literature as the arithmetic mean-geometric
mean-harmonic-mean inequality:

(2.8) A, (p,z) > G, (p,x) > H, (p,x),
where
A, (p,x) © = me - the arithmetic mean,
=1
Gy (p,x) : =[]zt - the geometric mean,
=1
1 .
H,(p,x) : =— - the harmonic mean,
S
="

and}"  pi=1(p;>0,i=1n).
Using the above two theorems, we are able to point out the following reverse of the AGH -
inequality.
Proposition 2.4. Letz; > 0 (i = 1,...,n) andp, > 0with >  p; = 1.
(1) fay <9 < -+ <2,y < x,, then we have

An (p, )
(2.9) 1 < o) 0

(xn_xl)z
n ) PP,
exp | max { PPy}

K (x, — m1)2] '

IN

< exp|--
- P 4 T1Ty,

(ii) If the setS C {1,...,n} minimizes the expression (2.4), alck m < z; < M < oo
(t=1,...,n), then

A, (p,x) (M —m)® 1 (M —m)’

The proof goes by the inequalitigs (2.1) ahd(2.5), chooging = — In z. A similar result
can be stated fofr,, and H,,.
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Proposition 2.5. Letp > 1andz; > 0,p; >0 (i = 1,...,n) with>_" p;, = 1.
(1) foy <9 <--- <21 < x,, then we have

n n P
(2.11) 0 < Zpixf— (Zplxg)
i=1 i=1

< play—a) (a8t —af ™) dnax { PPy}

< g (xy, — 21) (:Uffl - 3511"71) )

(¢¢) If the setS C {1,...,n} minimizes the expression (2.4), alck m < z; < M < oo
(i=1,...,n), then

(2-12) 0 < ipﬂf - <i pi%’)
i=1 i=1
< pQM —m) (M =)

< ip (M —m) (MP~h —mP1).

Remark 2.6. The above results are improvements of the corresponding inequalities obtained in

5.

Remark 2.7. Similar inequalities can be stated if we choose other convex functions such as:
f(z) =xzlnz,xz > 0o0r f(z) = exp (z), z € R. We omit the details.

3. A CONVERSE INEQUALITY FOR CONVEX MAPPINGS DEFINED ON R"

In 1996, Dragomir and Goh [15] proved the following converse of Jensen’s inequality for
convex mappings oR™.

Theorem 3.1.Let f : R® — R be a differentiable convex mapping Bft and

) @)= (5 G5,

the vector of the partial derivatives,= (2!, ..., 2") € R™.
Ifz; e R (i=1,...,m),p; >0,i=1,....,m,with P, :=>"" p; > 0, then

(3.1) 0 < P_lm szf(%) —f (Pim Z:%%)

The result was applled to different problems in Information Theory by providing different coun-
terpart inequalities for Shannon’s entropy, conditional entropy, mutual information, conditional
mutual information, etc.

For generalizations of (3.1) in Normed Spaces and other applications in Information Theory,
see Matt’s Ph.D dissertation [23].

Recently, Dragomir [4] provided an upper bound for Jensen’s difference

(32) A(fpo) =3 sz ) (%m;pz)
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which, even though it is not as sharp ps|3.1), provides a simpler way, and for applications, a
better way, of estimating the Jensen’s differendesHis result is embodied in the following
theorem.

Theorem 3.2.Let f : R" — R be a differentiable convex mapping ande R",i =1, ..., m.
Suppose that there exists the vector$ € R™ such that

(3.3) ¢ < x; <P (the order is considered on the co-ordinates)
andm, M € R™ are such that
(3.4) m < Vfz) <M

forall i € {1,...,m}. Thenforallp; >0 (i = 1,...,m) with P,, > 0, we have the inequality

1 — 1 — 1
(3.5) 0< P—m;pzf(ﬂfz) - f <P_m ;M%) < 1 D — o [|M —m]],

where||-|| is the usual Euclidean norm dr™.

He applied this inequality to obtain different upper bounds for Shannon’s and Rényi’'s en-
tropies.

In this section, we point out another counterpart for Jensen’s difference, assuming that the
V —operator is of Holder’s type, as follows.

Theorem 3.3.Let f : R* — R be a differentiable convex mapping angd € R™, p; > 0
(1 =1,...,m)with P,, > 0. Suppose that th€ —operator satisfies a condition of- H —Hdolder
type, i.e.,

(3.6) IVf(z) = Vil < H [z —yl", forall z,y € R",

whereH > 0, r € (0,1] and||-|| is the Euclidean norm.
Then we have the inequality:

] — ] —
7 < — T
(3.7) 0 < P g (Pm;pzxz)
H .
< _2 Z pip; ||z — 4] o
m <j<

Proof. We recall Korkine’s identity,

_sz yuxz < szyh szxz> 2P2 szpj y],x,—xj>, {L‘,QGR”,
P i=1

m 4 i=1

and simply write

PLZ (Vf(zi), ) < szvfxz Zplmz>

Z bipj vf :Bz) Vf(x])v Ti — ‘Tj> :

2,7=1

2P2

m
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Using (3.1) and the properties of the modulus, we have
1 & 1 &
< E ) N — i E e

1 m
spr D pivs [(Vf () = V(). 20— ;)

<
mo =1
1 m
< g O pi IV F (@) = V) o —
m =1
H & )
< o7 > pslle -l
m =1
and the inequality| (3]7) is proved. 0

Corollary 3.4. With the assumptions of Theorem|3.3 and if= max;<;<j<m ||2; — 25|, then
we have the inequality

m m HAr—l—l m
(3.8) 0< Pim sz‘f(ffi) -/ (Pim ZI%L) S < <1 - 22%2) :
=1 m i

=1

Proof. Indeed, as
Yo opwjlle =l <A ST ppy.

1<i<j<m 1<i<j<m
However,
1 & 1 =,
Z pip; =5 (Z Pij — ZPin) =3 (1 - ZM) 7
1<i<j<m 1,j=1 =] i=1
and the inequality| (3]8) is proved. O

The case of Lipschitzian mappings is embodied in the following corollary.

Corollary 3.5. Let f : R" — R be a differentiable convex mapping and € R", p; > 0
(t=1,...,n) with P,, > 0. Suppose that th& —operator is Lipschitzian with the constant
L>0,li.e.,

(3.9) V(@) =Vl < Llz—yl, foralz,yecR"
where||-|| is the Euclidean norm. Then

m

(3.10) 0 < Pim sz‘f(xz‘) —f <Pim ;%%)

i=1
1 & ) 1 &

< L P_Zpl”le - P_szxz
™ =1 ™ o=1

Proof. The argument is obvious by Theorém|3.3, taking into account thatfot,

m m 2
Y il =l = Pu ) il = | D v
=1 =1

1<i<j<m
and||-|| is the Euclidean norm. O

2

Y
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Moreover, if we assume more about the vectorg,_i;, we can obtain a simpler result that
is similar to the one in [4].

Corollary 3.6. Assume thaf is as in Corollary 3.5b. If
(3.11) ¢ <z; <® (onthe co-ordinates)y),® € R" (i=1,..,m),
then we have the inequality

(3.12) 0 < pif(x;) — f (PL szl’z)
i=1 moi=1

LD — o2,
1 Lo

Proof. It follows by the fact that irflR™, we have the following Gruss type inequality (as proved

in [4])

<

2
] — ) ] — 1 )
- - illzil|” — || 5~ iZi|| < [P — ;
(3.13) 7 il = =Yg < 18—l
provided that[(3.7]1) holds. O

Remark 3.7. For some Griss type inequalities in Inner Product Spaces, isee [7].

4. SOME RELATED RESULTS
Start with the following definitions from [3].

Definition 4.1. Let —oco < a < b < oo. ThenCM [a, b] denotes the set of all functions with
domain|a, b] that are continuous and strictly monotonic there.

Definition 4.2. Let —co < a < b < oo, and letf € CM [a,b]. Then, for each positive
integern, eachn—tuplex = (x4, ...,x,), wherea < z; < b (j =1,2,...,n), and eachm-tuple
p = (p1,p2, -, pn) , Wherep; > 0 (j =1,2,..,n) and}"7 | p; = 1, let My (z,y) denote the

(weighted) mean
/ {ijf <xj>} .

We may state now the following result.

Theorem 4.1.LetS be the subset dfl, ..., n} which minimizes the expressifn, ¢ p; — 1/2|.
If f,g € CM |a,b], then

sup {|My (,p) = My (2.} < Q- | ()| [ (Foa™)| - lo) = ata)P.

provided that the right-hand side of the inequality is finite, where, as above,

() o)

and||-|| . is the usual sup-norm.

Proof. Let, asinl[3],h = fog !, n>1,

€T = (-ler?a "'7xn) andp = (p17p27 7pn)
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be as in the Definitiop 4]2, ang = ¢ (z;) ( = 1,2,...,n). By the mean-value theorem, for
some in the open interval joining (a) to f(b), we have

My(z,p) — My(x,p) = [ {ijf(fﬂj)} - [h {ijg(%)}]

= (ffl)/(oé) ijf(xj) —h{ijg(xj)}]
= (ffl)/(oé) ijh(yj) —h{ijy]}]

Using the mean-value theorem a second time, we conclude that there exists:paints., z,
in the open interval joining(a) to g(b), such that

My (2,p) = My (z,p) = (™) (@) [p1{(1 = p)ya = pago — -+ — Patn} B (1)
+po {—p1y1 + (L —p2) Yo — -+ — Puiyn} W (22)
+ e
00 {=p1ys — p2yo — -+ (1= pa) Y} 1 (20)]

= () (@) [pi{p2 (1 —92) + - +pa (1 — ya)} H(21)
+po{p1 (Y2 — 1) + -+ Pn (Y2 — yn) } B (22)

0 A1 (Yo — 1) + -+ Pt (Yo — Y1)} 1 (20)]

= () (@) D pips (i — ) W (=) — K (%)}

1<i<j<n

Using the mean value theorem a third time, we conclude that there existspgifits< : < j < n)
in the open interval joining(a) to g(b), such that

(F ) (a) Z pip; (i — y;) {1 (z:) — 1'(z)}

1<i<j<n

=(F N (@) D pipi i — ) (2 — ) B (wiy)-

1<i<j<n

Consequently,

|My (z,p) — My (z,p)| < ‘(f_l)/ (Oé)‘ > pipilyi — il - |z — - (B (i)l
1<i<j<n

N L S S 1 P AR

1<i<j<n

< Joy
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IN

(by the Cauchy-Buniakowski-Schwartz inequality)

H(ff S opwilvi—ul’ | D ppila—

1<i<j<n 1<i<j<n

< (by the Andrica and Badea result)

< ). m¢(;@)@—%¥)mwﬂmﬁ

¢(;ﬁ>0_gyﬁmwﬂmﬁ
)

= Q|| rea™ | -la®) - g(a

and the theorem is proved. O

Corollary 4.2. If f,g € CM [a, b], then
sup {105 ) = My ey < @3 |5 (£)

provided that the right hand side of the inequality exists.

IN

Jres

Joory

2

-1g(b) — g(a)

o0

Proof. This follows at once from the fact that

, 1
! 2
( ) f f 1

and

(fog ) = (g'og™) (f”og(gll)o—g_(lf)'go g (9" 09" _ E (Jg‘_/’)'} og .
O

Remark 4.3. This establishes Theorem 4.3 from [3] and replaces the multiplicative féctor
by Q. In Corollary[4.2, we also replaced the multiplicative facidoy Q.

5. APPLICATIONS IN INFORMATION THEORY

We give some new applications for Shannon’s entropy

- 1
= pilog, —,
i=1 pi
whereX is a random variable with the probability distributitm ), _—

Theorem 5.1.Let X be as above and assume that> p, > --- > p. orp; < py < --- < p,.
Then we have the inequality

(pl _pr)
(5.1) 0 <log,r — H, (X) < Wf?]?é {PiPrs1} .
Proof. We choose in Theorem 2.¥(z) = —log,x, x > 0, %; = - (i =1,...,7). Then we

haver; <z, < --- <z, and by ) we obtain

1 1 1 1
0 <log,r— H,(X) < (— - —) (I + I) max { PP},

1<k<r
Dr b1 Pr P
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which is equivalent td (5]1). The same inequality is obtained & p, < --- <p,. O
Theorem 5.2. Let X be as above and suppose that

pv o =max{pli=1,..,r},

Pm ¢ =min{pli=1,...,r}.

If Sis a subset of the s¢t., ..., 7} minimizing the expressidi}_, ¢ p; — 1/2
estimation

, then we have the

(p]V[ - pm)2

: < - <0 ,
(5.2) 0<log,r—Hy(X)<Q b parpn

Proof. We shall choose in Theorgm 2.3,

1 _
flx)=—=logyx, © >0, z; = — (2'2177«),
p,

)

Thenm = L, M = L, f'(z) = — 7 and the inequalit3) becomes:

- )
p m

0 < log,r— Y pilog,—

A
L)
E‘p_x

(wpl
g\\
T |-
|
=3
|-
~—
N
|
Tl =
JEY QS
~

Inb PMPm
hence the estimatiof (5.2) is proved. O
Consider the Shannon entropy
a 1
53 H(X)=H,(X)= piln —
(5.3) (X) = H (X) = 3 _piln

and Rényi’s entropy of order (o € (0,00) \ {1})

1 ~
1_aln<;pi>.

Using the classical Jensen’s discrete inequality for convex mappings, i.e.,

(5.5) f (ZM@) < szf(%),

wheref : I C R — R is a convex mapping oA, x; € I (i=1,...,r) and(p;)
probability distribution, for the convex mappirnfgz) = — In x, we have

(5.6) In (i}%%) > ipl- Inz;.
i=1 i=1

Chooser; = p¢~* (i =1,...,7) in (5.6) to obtain
In (ZP?) > (a—1) Zpi Inp;,
=1 =1

(1—a)[Hy (X)-H(X)] >0.

(5.4) Hi (X) =

is a

i=1,r

which is equivalent to
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Now, if o € (0,1),thenH, (X) < H(X), andifa > 1thenH}, (X) > H (X). Equal-
ity holds iff (pi)i:H is a uniform distribution and this fact follows by the strict convexity

of —In (). This inequality also follows as a special case of the following well known fact:
Hp, (X) is a nondecreasing function of. See for example [26] or [22].

Theorem 5.3. Under the above assumptions, given that= min,_i; p;, py = max;_1 pi,
then we have the inequality

a— a—1)2
(pM b Pm 1)

(5.7) 0<(1-a)[Hg(X)-HX)] <Q 52"
Py P

Y

forall o € (0,1) U (1, 00).
Proof. If a € (0,1), then
a1 a—1 a—1

T; ‘=P € [pM y Pm }

and ifa € (1,00), then
z=pi e [pitpi ] fori e {1, ... n}.

Applying Theoren 2]3 for; := p?~* and f(z) = — In x, and taking into account thgt(z) =
—1, we obtain

(1) [Hia (X) = H (X)]

(

a—1 _ a—1 _ 1 1 ;
Q (pm pM ) ( p?n_l + P?W_l) |f « E (07 1)7
<
| Qs =) (< ) i ae(Loo)
( 2
(e )
Q T if ae€(0,1),
B a—1_ a—1 2
Q'% if ae(l,o00)
\ Py Pm
o — o — 2
PNC it )
ey
forall « € (0,1) U (1, 00) and the theorem is proved. O

Using a similar argument to the one in Theotenj 5.3, we can state the following direct appli-
cation of Theorerh 213.

Theorem 5.4.Let(p;),_— be asin Theore@.& Then we have the inequality

i=1,r
_ 1\ 2
(p5r ' —pi )
P]?;[—lpa—l
m

(5.8) 0<(1-0a)Hy(X)-—Inr—alnG,(p) <Q-

)

forall a € (0,1) U (1, 00).

Remark 5.5. The above results improve the corresponding results from [5]/and [4] with the
constant) which is less thar.

Acknowledgement 1. The authors would like to thank the anonymous referee for valuable
comments and for the references![26] and [22].
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