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Abstract

In this paper an inequality of Hadamard type for convex functions defined on
a disk in the plane is proved. Some mappings naturally connected with this
inequality and related results are also obtained.
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Let f : I C R — R be a convex mapping defined on the intervadf real
numbers ana, b € I with a < b. The following double inequality

(1.1) f(a;b)gbia/abf(x)dxgw

is known in the literature as Hadamard’s inequality for convex mappings. Note
that some of the classical inequalities for means can be derived frdjnf¢r
appropriate particular selections of the mappfing

In the paper {] (see also§] and [/]) the following mapping naturally con-
nected with Hadamard’s result is considered

H:[0,1] >R, H{) ::ﬁ/abf(ter(l—t)aTer)dm.

The following properties are also proved:

(1) H is convex and monotonic nondecreasing.

(#7) One has the bounds

sup H(t)=H (1) = ! /f(x)dx

te[0,1] b—a

and

inf H(t):H(O):f(a+b).

te[0,1] 2
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Another mapping also closely connected with Hadamard'’s inequality is the
following one [] (see also 1))

1
(b—a)*

F:[0,1] =R, F(t):= //f(tx+(1—t)y)dxdy.

The properties of this mapping are itemized below:

(i) F is convex on0, 1] and monotonic nonincreasing df, 1] and nonde-
creasing o1, 1].

(i7) F is symmetric about. That s,

F(t)=F(1—-t), foralltel0,1].

(77i) One has the bounds

b
sup F'(t)=F(0)=F (1) = ! /f(x)dx

te[0,1] b—a

and

. 1 1 borb x4y a+b
i r0=r(g) =g [ [ (5 amr= 1 (457)

(1v) The following inequality holds

F(t)>max{H(t),H(1—1t)}, foralltelo,1].
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In this paper we will point out a similar inequality to Hadamard’s that ap-
plies to convex mappings defined on a disk embedded in the and/e will
also consider some mappings similar in a sense to the mappiraged ' and

establish their main properties.

For recent refinements, counterparts, generalizations and new Hadamard’s

type inequalities, see the paper$[11] and [L4]-]

] and the book [ 3].
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Let us consider a poird = (a,b) € R? and the diskD (C, R) centered at the
point C' and having the radiug > 0. The following inequality of Hadamard
type holds.

Theorem 2.1.If the mappingf : D (C, R) — R is convex onD (C, R), then
one has the inequality

1
1)  f(C) WRQ//CR e L)

where& (C, R) is the circle centered at the point with radiusR. The above
inequalities are sharp.

Proof. Consider the transformation of the plaRéin itself given by
hZR2—>R2, h:(hl,hg) and A (I,y):

Thenh (D (C, R))

—x+2a, hy(x,y) =—y+20b.
= D (C, R) and since

8(h1,h2):‘ -1 0
0 (z,y) 0 -1

we have the change of variable

e
_//D(QR)f(_

-

dxdy

x + 2a, —y + 2b) dxdy.
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Now, by the convexity off on D (C, R) we also have

%[f(;p)y) +f(—x+2a, —y+25)] > f(aab)

which gives, by integration on the didk (C, R), that

1
2.2) = dzd - —y + 2b) dad
(2.2) 2{//})(07R)f(x,y) xy+//17(o,3)f< x + 2a, —y + 2b) dady

2f(a,b)//D(CR)dxdy:WR2f(a,b).

In addition, as

// f(x,y)dedy = // f(=z+2a,—y + 2b) dzdy,
D(C,R) D(C,R)

then by the inequality4.2) we obtain the first part ofX( 1).
Now, consider the transformation

g=1(91,92) : [0,R] x[0,27] — D (C,R)

given by

. gl(r,e):TCOSQ—l—a’
g.{ g2 (r,0) =rsinf + b, re0,R], §cl0,27].

Then we have
cos sinf |

8(91792) —
—rsinf rcosf ’

d(r,0)
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Thus, we have the change of variable

[ erists = [ [ 11000 o [55

2T
= / f (rcosf + a,rsin® + b) rdrdo.
0

drdf

Note that, by the convexity of on D (C, R), we have

f(rcos@+a,rsinf +b) = ( (Rcos® + a, Rsin® +b) + <1 — L) (a,b))

R

f(Rcos®+a,Rsin® +b) + (1 — %) f(a,b),

r

bd

which yields that

2

f(rcosf+a,rsinf +b rgr—f Rcos@ + a, Rsinf + b)+r 1- = f(a,b
R R

for all (r,8) € [0, R] x [0, 27].
Integrating on0, R] x [0, 27] we get

(2.3)
// (x,y d:de</ —dr/ f(RcosO+a,Rsin® +b)do
D(C,R)

27
+f(a,b)/ d@/ r 1—ﬁ dr
0 0 R

2 2
:R?/o f(Rcos@+a,Rsin6+b)d9+%f(a,b).
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Now, consider the curve : [0, 27] — R? given by

v

Then~ ([0, 27]) =
length)

/ f()dl(y)
&(C,R)

{ z (0) := Rcosf + a, 0 e [0,27].

y(0) := Rsinf + b,

S (C, R) and we write (integrating with respect to arc

/0 @ 0).y0) (EOF + 5O do

2m
R/ f(Rcosf+ a, Rsinf + b) db.
0

By the inequality £.3) we obtain

2
J[ ot [ peae) S @)
D(C,R) 6&(C,R)

which gives the following inequality which is interesting in itself

s TR? // D(C,R)

As we proved that

Py <goss [ F@RG) G ).

1
C g—// x,1y) dxdy,
)< D(C,R)f (z,y) dxdy
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then by the inequality4.4) we deduce the inequality

1

(2.5) (O < 5% . f)dli(v).

Finally, by (2.5) and @.4) we have

1 // 2 1 1
—s [(z,y)dedy < — fO)di(y)+3f(C
On Hadamard’s Inequality on a
< 55 / f()dl(v) Disk
2mR C.R) S.S. Dragomir
and the second part o2 (1) is proved.
Now, consider the mag, : D (C,R) — R, fo(z,y) = 1. Thus Title Page
L= fo(A(@y)+ 1= (u,2)) contents
Thereforef, is convex onD (C, R) — R. We also have ¢ >
1 Go Back
= )dxdy =1 and — dl(v)=1
fo(C L, R2 //D(CR (z,y) dzdy = R /@(C,R) fo(v)dl(v) ) Close
Quit

which shows us the inequalitie8.() are sharp. O
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As above, assume that the mappifig D (C, R) — R is a convex mapping on
the disk centered at the poifit = (a,b) € R? and having the radiug > 0.
Consider the mapping/ : [0, 1] — R associated with the functiofand given

by
H) = / /D o @@+ (0 =0 O dady

which is well-defined for alt € [0, 1].
The following theorem contains the main properties of this mapping.

Theorem 3.1. With the above assumption, we have:
(i) The mappingd is convex ono, 1].

(#7) One has the bounds

(3.1) inf H(t)=H(0)=f(C)
and

(3.2) sup H(t)=H (1) = é //D(CR) f (z,y) dzdy.

te(0,1]

(74i) The mappingd is monotonic nondecreasing ¢ 1].
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Proof. (i) Lett, ¢, € [0,1] anda, 3 > 0 with a + 3 = 1. Then we have

H (aty + fts) — WLRQ// CR)f(a(tl(:c,y)+(1—t1)C)
+ B ( t2 z,y) 1—t2)C’))dxdy

< // + (1 —t1) C)dady
D(CR
+6 ﬁ // D(C.R f (tQ (‘T’ y) T <1 N t2) C) dxdy On Hadamard’s Inequality on a
) Disk
= aH () + BH (t2), ,
S.S. Dragomir
which proves the convexity af on [0, 1].
(77) We will prove the following identity Title Page
(3 3) i (t) 1 // s ( ) drd Contents
: =~ z,y) drdy
T2 R? D(C,tR) 44 44
forall ¢t € (0, 1]. < 4
Fix ¢ in (0, 1] and consider the transformatign= (v, ) : R* — R? given Go Back
oy Cl
Uz, y) =tr+(1-1)a, 2 058
: R*;
{ n(zy) =ty+ (1 —1)b, (@,9) € R Quit
theng (D (C, R)) = D (C,tR). Page 12 of 25

Indeed, for all(z,y) € D (C, R) we have
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which shows thaty,n) € D (C,tR), and conversely, for alf),n) €
D (C,tR), it is easy to see that there exists, y) € D (C, R) so that

g (z,y) = (¥,n).

We have the change of variable

//D(C’tmf(@/},n)dwdnz// . f(¢($,y),n(x,y))‘g((;b:;j))‘dxdy

= // )+ (1—1)(a,b)) tzdxdy On Hadamard’s Inequality on a
D(C,R) Disk
_ 2 2
=R ( S.S. Dragomir
smce‘ ((¢ ’7)) = t2, which gives us the equality3(3).
Title Page
Now, by the inequality%.1), we have
Contents
1
[ rewdsyz f(0) « | »
Tt* R ) Jpcur)
< | 2
which gives usH (t) > f(C) forall t € [0,1] and sinceH (0) = f (C), cUBaX
we obtain the bound3(1).
Close
Quit
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By the convexity off on the diskD (C, R) we have

1
w1 )+ (=07 (@) dedy

t
— 7T_RQ//D(C’R)f(ac,y)daz:aly—i-(1—15)JC<C)

t // 1—1¢
< L fla)dudy+ oy [ o) dady
mR? D(C,R) ( ) mR? D(C,R) ( )

H(t) <

1 On Hadamard’s? Inequality on a
= —3 [ (@,y) dzdy. Disk
m R //D(C,R) S.S. Dragomir
As we have |
H(1l)=—; // f (z,y) dzdy, Title Page
mR* J Jpc,r)
Contents
then the bound3.2) holds.
_ _ < 33
(7i7) Let0 < t; < ty < 1. Then, by the convexity of the mappirg we have p R
H(ty) —H{t) A Ht)-HO) Go Back
o — 1 - 131 -

Close
asH (t;) > H (0) for all t; € [0,1]. This proves the monotonicity of the Quit
mappingH in the intervall0, 1].

0 Page 14 of 25
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inequality
1
h:[0,1] =R, h(t):={ 2ntR
f(@),

wheref : D (C, R) — Ris a convex mapping on the digk (C, R) centered at

the pointC' = (a, b) € R? and having the same radiis

The main properties of this mapping are embodied in the following theorem.

Theorem 3.2. With the above assumptions one has:
(z) The mapping: : [0, 1] — R is convex or0, 1].

(#7) One has the bounds

(3.4) inf h(t)=h(0) = f(C)
t€[0,1]
and
1
3.5 sup h(t)=h(l) = —
(3.5) g &) =h{1) =57 o

(#4i) The mapping: is monotonic nondecreasing ¢i 1].

(iv) We have the inequality

H(t)<h(t) forallte]|0,1].

/ FO) Ly (), te (01,
S(C,tR)

f(y)dli(v).
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Proof. For a fixedt in [0, 1] consider the curve

7:{96((9):151%00594-@, 0 e [0,21].

y(0) =tRsin6 + b,

Then~ ([0, 27]) = & (C,tR) and

1
27TtR G(C,tR) f (7) dl (f)/>
=3 1tR / ﬂf (tRcos@ + a,tRsinf + b) \/(x (9))2 +(y (6))2d6
m 0
1 2

= — f(tRcos@ + a,tRsinf + b) db.
2m 0

We note that, then

1 2
h(t) = 2—/ f(tRcosf +a,tRsinf +b) do
T Jo

2w
S f(t(Rcosf, Rsinf) + (a,b)) do
2 Jo

forallt € [0,1].

(1) Letty, ty € [0,1] ande, 5 > 0 with o + 3 = 1. Then, by the convexity of
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f we have that

27
h(aty + Bty) = %/ f(alti (Rcosf, Rsinf) + (a,b)]
0
+ B[ta (Rcosf, Rsind) + (a,b)]) df

< a- % /O%f (t1 (Rcosf, Rsinf) + (a,b)) do
1 2
+0 - o /0 f(t2(Rcos, Rsin6) + (a,b)) df On Hadamard;.sl:equality ona
= ah <t1) + R (tz) S.S. Dragomir
which proves the convexity af on [0, 1].
(iv) In the above theorem we showed that Title Page
1 Contents
H(t) = e //D(CJR) f(z,y)dzdy forall t € (0,1]. » "
By Hadamard’s inequalityX 1) we can state that < >
1 1 Go Back
o / /D o f(z,y) dedy < i /6 (Cw)f (V) dl () Close
which gives us that Quit
H(t)<h(t) forallte (0,1]. Page 17 of 25
As it is easy to see tha (0) = h(0) = f(C), then the inequality em- e

bodied in(iv) is proved. http://jipam.vu.edu.au
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(#7) The bound 8.4) follows by the above considerations and we shall omit the
details.

By the convexity off on the diskD (C, R) we have

ht) = i/ﬂf(t[(RcosQ,RsinQ)%—(a,b)]—l—(l—t)(a,b))d9

IN

t- —/ f(RcosO+a,Rsinf +b) df

+(1—t)f(a,b)%/oﬂd9

IN

t- —/ f(RcosO+a,Rsinf +b) df

2

1
+(1—t) — f(Rcosf + a, Rsinf + b) df

2w 0
1 27
— f(RcosO+a, Rsinf +b)df = h(1),

o J,
for all t € [0, 1], which proves the bound(5).

(7i7) Follows by the above considerations as in the ThedseimWe shall omit
the details.

O

For a convex mapping defined on the dislO (C, R) we can also consider
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the mapping

g (t, (z,y)) = //D(CR y)+ (1 —1t)(z,u)) dzdu

which is well-defined for alt € [0, 1] and(z,y) € D (C, R).

The main properties of the mappiga@re enclosed in the following proposi-
tion.

Proposition 3.3. With the above assumptions on the mappirgne has:
(z) Forall (z,y) € D(C,R), the mapy (-, (z,y)) is convex ono, 1].
(1) Forall t € [0, 1], the mapy (¢, -) is convex orD (C, R).

Proof. (i) Letty, t; € [0,1] anda, 8 > 0 with o + 3 = 1. By the convexity
of f we have

oo+, @) = o [ ploln )+ 0 -0 o)
+ 5 t2 z,y) + (1 —t2) (2,u)]) dzdu
Sar— //D(CR (t1 (z,y) + (1 —t1) (2,u)) dzdu
+ - —// e f(ta(z,y)+ (1 —t2) (2,u)) dzdu

= ayg (t1, (z,y)) + By (t2, (x,v)),

forall (x,y) € D (C, R), and the statement is proved.
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(1) Let(z1,v1), (z2,92) € D (C, R) anda, 5 > 0 with « + = 1. Then

g(t a(xlayl) +ﬁ w?ayQ

//m (t (@1 p) + (1= ) (2,)

+ﬁ (2, 92) + (1 = 1) (2,u))] dzdu
‘TR // D(C,R) t(z,9) + (1 =) (z,u)) dedu

On Hadamard’s Inequality on a

+ﬁ7§// F(t(22,2) + (1 — 1) (2,u)) dzdu pisk
7T D(C,R) S.S. Dragomir
= ag (t7 (xla yl)) + ﬁg (t7 <x27 y2)) 9
forall t € [0, 1], and the statement is proved. Title Page
0 Contents
By the use of this mapping we can introduce the following application as pp >
well
< | 2
G:[0,1] =R, G(t // y)) dzdy
D(C,R) Go Back
whereg is as above. p—
The main properties of this mapping are embodied in the following theorem.
Quit

Theorem 3.4. With the above assumptions we have:

Page 20 of 25
(i) Forall s € [0, 3]

1 1
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and for allt € [0, 1] one has

G-t =G(1).

(77) The mappind= is convex on the interval, 1].

(77i) One has the bounds

inf G (t) =G (1)
te[0,1]
//// (x—i—z y+u) dxdydzdu
7TR2 (C,R)xD(C,R)
> f(C
and
sup G (1) = G (0) = G 1):%// £ (2, y) dady.
te[0,1] TR D(C,R)

(1v) The mappind= is monotonic nonincreasing o[rﬁ),
on [1,1].

%} and nondecreasing

(v) We have the inequality

(3.6) G(t)>max{H (t),H(1—-1t)}, forallte]0,1].
Proof. The statement§) and(i:) are obvious by the properties of the mapping

g defined above and we shall omit the details.
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(73i) By (z) and(ii) we have

el PACR <A Gl 20(%), forallt € [0, 1]

2

which proves the first bound ifiii).
Note that the inequality

1
G (5) - f (C) On Hadamard’s Inequality on a
Disk
follows by (3.6) for ¢ = 1 and taking into account thaf (1) > f (C). S.S. Dragomir
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(// )+ (1—1)(z,u)) dzdu) dxdy e Tage
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44 44
(WR2)
| 4
X tf(x,y)mR* + (1 —t // flz,u dzdu} dzdy
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! Close
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forall t € [0, 1], and the second bound {i1) is also proved.

(7v) The argument is similar to the proof of Theoré&m (iii) (see alsof]) and
we shall omit the details.

(v) By Theorem2.1we have that

G0 =g [, o) ey

2000 = o [[ 0@+ (-0 (00 dedy
= H (1

forall ¢t € [0, 1].
AsG (t) =G (1 —t) > H (1 —t), we obtain the desired inequalit.().
The theorem is thus proved.
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