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HOMOTOPY TYPES OF ORBIT SPACES AND THEIR
SELF-EQUIVALENCES FOR THE PERIODIC GROUPS
Z]ax (Z/bxTr) AND Z/a x (Z]b x O})

MAREK GOLASINSKI aAND DACIBERG LIMA GONGCALVES
(communicated by Lionel Schwartz)

Abstract

Let GG be a finite group given in one of the forms listed in the
title with period 2d and X (n) an n-dimensional CTW-complex
with the homotopy type of an n-sphere.

We study the automorphism group Aut (G) to compute the
number of distinct homotopy types of orbit spaces X (2dn —
1)/p with respect to free and cellular G-actions p on all CW-
complexes X (2dn—1). At the end, the groups £(X (2dn—1)/u)
of self homotopy equivalences of orbit spaces X (2dn — 1)/u
associated with free and cellular G-actions p on X (2dn — 1)
are determined.

Introduction.

Given a free and cellular action p of a finite group G with order |G| on a CW-
complex X, write X /u for the corresponding orbit space. The problem of determin-
ing all possible homotopy types of X/u among all free and cellular actions p on
X, as well the group £(X/u) of self homotopy equivalences of X/u has been exten-
sively studied for a number of spaces e.g., in [9]. Notoriously, for an odd dimensional
sphere S?>"~! with a free action of a finite cyclic group Z/k this corresponds to the
classification of lens spaces and the calculation of the groups of it self homotopy
equivalences studied in [4]. A larger family of interesting examples are given by
a free and cellular action of a finite group G with order |G| on a CW-complex
X (2n — 1) with the homotopy type of a (2n — 1)-sphere. Write X (2n — 1)/ for
the corresponding orbit space called a (2n — 1)-spherical space form or a Swan

The authors are grateful to the referee for carefully reading earlier version of the paper and all his
suggestions to make the introduction clear and understandable. The main part of this work has
been done during the visit of the first author to the Department of Mathematics-IME, University
of Sao Paulo during the period July 09—August 08, 2003. He would like to thank the Department
of Mathematics-IME for its hospitality during his stay. This visit was supported by FAPESP,
Projecto Temético Topologia Algébrica, Geométrica e Differencial-2000/05385-8, Ccint-USP and
Projecto 1-Pré-Reitoria de Pesquisa-USP.

Received November 10, 2005, revised February 20, 2006; published on March 9, 2006.

2000 Mathematics Subject Classification: Primary 55M35, 55P15; Secondary 20E22, 20F28, 57517.
Key words and phrases: automorphism group, CW-complex, free and cellular G-action, group of
self homotopy equivalences, Lyndon-Hochschild-Serre spectral sequence, spherical space form.

© 2006, Marek Golasiniski and Daciberg Lima Gongalves. Permission to copy for private use
granted.



Journal of Homotopy and Related Structures, vol. 1(1), 2006 30

(2n — 1)-complez (see e.g., [2]). Taking into account [10], the case of spherical space
forms presents a special interest. Furthermore, Swan [11] has shown that any fi-
nite group with periodic cohomology of period 2d acts freely and cellularly on a
(2d — 1)-dimensional CW-complex of the homotopy type of a (2d — 1)-sphere. It
is worth to mention that useful cohomological and geometric aspects associated to
group actions are presented in [2] and a list of basic conjectures is provided.

Backing to the case of a (2n — 1)-dimensional CW-complex X (2n — 1) with the
homotopy type of a (2n — 1)-sphere, by means of results in [11], it is shown in [12,
Theorem 1.8] that the set of homotopy types of spherical space forms of all free
cellular G-actions on X (2n — 1) is in one-to-one correspondence with the orbits,
which contain a generator of the cyclic group H?"(G) = Z/|G| under the action of
+Aut (G) (see [4] for another approach). This plays also a fundamental role in the
calculation of the group £(X(2n —1)/u) of self homotopy equivalences of the orbit
space X (2n —1)/p.

All finite periodic groups has been completely described by Suzuki-Zassenhaus
and their classification can be found in the table [1, Chapter IV; Theorem 6.15].
The present paper is part of the project to describe the homotopy types of the
orbit spaces and the group of self homotopy equivalences for all periodic groups. It
continues the works of [4, 5, 6, 8], where the cases corresponding to the families
I and IT from the table [1, Chapter IV; Theorem 6.15] with the Suzuki-Zassenhaus
classification of finite periodic groups have been solved. Here we have two goals. The
first one is to calculate the numbers of homotopy types of spherical spaces forms
for the groups Z/a x (Z x T¥) and Z/a x (Z x O}) corresponding to the families
IIT and IV from the table mentioned above. The second one is to determine the
group of homotopy classes of self-equivalences for space forms given by free actions
of those both families of finite periodic groups. The results of [4, 5, 6, 8], taking
care for the groups from families I and II of that table, are essential to make crucial
calculations to develop the main results stated in Theorem 2.2 and Theorem 3.2.

In order to obtain these results, we divide the paper into two parts. The first
part consists of some algebraic results. The automorphism group Aut(A x, G) of
a semi-direct product A x, G of some finite groups A, G leads in [6] to a splitting
short exact sequence

0 — Dery (G, A) — Aut (A x4 G) — Aut (A) x Aut,(G) — 1.

Section 1 makes use of this to achieve automorphisms of the groups in question.
This is the approach to develop in Proposition 1.1 and Proposition 1.2 the groups
Der,, (G, A) and Aut (A) x Aut,(G), respectively.

Then, in the second part, we present geometric interpretations of those algebraic
results in terms of G-actions. Section 2 uses the group Aut (A) x Aut, (G) established
in Proposition 1.2 and Lyndon-Hochschild-Serre spectral sequence to deal with the
number of homotopy types of spherical space forms for actions of the groups Z/a x
(Z/bx Tr) and Z/a x (Z/b x OF). The main results of this section are stated in

Theorem 2.2. Let v = (y1,72) : Z/bx Ty — (Z/a)* and 7 = (11, 72) : Z/bx OF —
(Z/a)* be actions with (a,b) = (ab,6) =1 and n > 3, where v1 : Z/b — (Z/a)*,
Yo 1 Ty — (Z/a)* and 71 : ZJb — (Z/a)*, 72 : Of — (Z/a)* are appropriate
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restrictions of v and T, respectively. Then:
2k[0(7),2]—1 n
(1) card K7l (Z]/M*)/N = ottt +13 00 (a, K[0(7), 2)O . (20 (b, K[E(7), 2])

O(3m=m0  k[l(v),2])~t for some 0 <t <2 and 0 <t < 1;
(2) card KZITE0 oy /= = 241 x 377 10(a K[U(T), 2O, oy (b KT, 2)

for some 0 <t < 1.

Then, Corollary 2.3 says that the number of such homotopy types of those space
forms coincides with that of (4n — 1)-lens spaces studied in [4] provided the least
period of the groups in question is < 4.

The group of crossed homomorphisms Der, (G, A) studied in Proposition 1.1
plays a key role in Section 3 dealing with the structure of groups (X (2dn —1)/u)
of self homotopy equivalences for spherical space forms X (2dn — 1)/ with respect
to free and cellular Z/a x (Z/b x T} )— and Z/a x (Z /b x O} )—actions p, respectively.
We point out that by means of [4, Proposition 3.1] (see also [10, Theorem 1.4]),
the group £(X(2k — 1)/u) is independent of the action g on X (2k — 1). Writing
X (2k — 1)/G for the corresponding orbit space, we close the paper with

Theorem 3.2. Let v = (y1,72) : Z/b x Ty — (Z/a)* (resp. T = (11, 72) : Z]/b %
Or — (Z/a)*) be an action with (a,b) = (ab,6) = 1 for n > 3. If the group
Zja xy (Z/b x Ty) (resp. Z/a x, (Z/b x O})) acts freely and cellularly on a CW -
complex X (2k[€(v),2] — 1) (resp. X (2k[€(T),2] — 1)) then

E(X(2k[(7),2) = 1)/(Z/a x~ (Z/b x T}))) = Der, (Z/b x T}, Z]/a)»

(ECX(2K[U1). 2] — 1)/(Z/a)) x £, (X(2KE(B),2] — 1)/(Z/b)) X Sax
3n—no
2/ <<3n—no,kw<v>,z]>)

(resp. E(X(2k[4(7),2] — 1)/ (Z/a x+ (Z/b x O}))) = Der, (Z/b x O}, Z/a)x
(E(X(2K[l(m1), 2] = 1)/(Z/a)) x &, (X (2K[€(5),2] — 1)/(Z/b)) x Opnx

Z <<33k[a>z]>>>

which deals with explicit formulae for those groups of self homotopy equivalences.

Approaching of homotopy types of spherical space forms and their self homotopy
equivalences for the rest of the groups from the table in [1, Chapter IV; Theorem
6.15], or more precisely for the family of VI of this table, is in progress.

1. Algebraic backgrounds.
Let a finite group G be given by an extension
1-G —-G—Gy—1,

where the orders of groups Gy and G are relatively prime. We recall that by [7]
any automorphism of G leaves the subgroup G invariant and consequently, there
is a map 9 : Aut (G) — Aut (G1) x Aut (G2) of automorphism groups. Given an
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H-action « : H — Aut (A) on an abelian group A write Der,, (H, A) for the abelian
group of crossed homomorphisms. For H-actions o : H — Aut (4;) and ay : H —
Aut (A2) consider the obvious induced action (ag, ) : H — Aut (A; X As). Then,
an isomorphism

(%) Der(a, ay) (H, A1 X As) — Dery, (H, A1) x Der,, (H, As)

follows.

Now, let 0 = A — G — H — 1 be a short exact sequence, with A an abelian
group. Then, there is an obvious H-action o : H — Aut (A). If groups A and H are
finite with relatively prime orders then the cohomology group H'(H, A) vanishes
(see e.g., [1, Corollary 5.4]) and consequently, Der,, (H, A) = A/AH where AH is the
subgroup of A consisting of all elements fixed under the action of H. Furthermore,
by [6, Lemma 1.2] this sequence 0 — A — G — H — 1 of finite groups yields the
exact sequence

0 — Derg (H, A) — Aut(G) % Aut (A) x Aut (H).

For an action « : G — Aut (4), let A x, G denote the semi-direct product of
A and G with respect to the action «. Let the orders of A and G be relatively
primes and ¢ : Aut(A xo G) — Aut (A) x Aut(G) be the obvious map. Then, by
[6], Imy = Aut(A) x Auty(G), where ¢ € Aut,(G) if and only if & = ap or
equivalently

Auto(G) = {p € Aut (G); ¢(Kera) = Keraand ¢ = idg/kea )

where @ denotes the map induced by ¢ on the quotient group G/Ker a.

Now, let Qg be the classical quaternion group {£1, i, +j, £k} of order 8, where
1,4,7 and k are generators of the quaternion algebra over reals. Consider the action
a : Z/3 — Aut(Qsg) such that a generator of Z/3 is sent to the automorphism
7 € Aut (Qs) defined by: 7(i) = j, 7(j) = k and 7(k) = 4. Since Aut (Qs)=S4,
the symmetric group on four letters (see e.g., [1, Lemma 6.9]) any two faithful
representations of Z/3 in the group Qs are conjugated. Whence, without losing
generality, we can choose the action « given above. Then, we consider the semi-
direct product Qs X, Z/3 = T*, the binary tetrahedral group. More generally, for
n > 1 consider the action a,, : Z/3™ — Aut (Qs) as the composition of the quotient
map Z/3" — Z/3 with the action « : Z/3 — Aut (Qsg). Then, for the group

T = Qs Xq, 2/3",
by means of [13, p. 198], it holds

T . X3 =pi=1P?=Q* XPX1=Q,
" XQX = PQ, PQPT=Q 7!

in virtue of generators and relations. In particular, the cyclic group Z/3™ is the
abelianization of T* for any n > 1 and the center Z(T¥) = Z/2 ® Z/3" 1.

The symmetric group S3 has two distinct extensions by Qg, with respect to the
outer action « : S3 — Out (Qs) = Aut (Qs)/Inn (Qs) which is the composition of
the inclusion S5 C Aut (Qg) with the projection Aut (Qs) — Out(Qs). This follows
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from the facts that Z(Qg) = Z/2 and H?(S3,7/2) = Z/2. These extensions are the
semi-direct product Qg x S3 and

1-Qs— 0" %83 —1,

where O* is the binary octahedral group. Because ¢~ !(A3) = T* for the alternating
subgroup As C S3, so we achieve the extension

1-T"->0"—Z/2—1.

In general, since Z(T) = Z/2 ® Z/3"~' and H?*(S3, Z(T})) = H*(S3,Z/2 ®
Z/3"Y) = H?(S3,7Z,/2) = 7/2, we achieve the non-trivial extension

1T | — 082 85 —1
for n > 1, where T = Qs. Because ¢, 1(A3) = T a fortiori the new extension
1-T) -0, —7Z/2—1

is obtained.
In the light of [13, p. 198] the group O} is given by

X3" — pt — 1, P2 — QZ _ R2’ Pprl _ Qfl,
Or:{ XPX'=Q, XQX~' = PQ, RXR' = X",
RPR™'=QP, RQR™' = Q!

in virtue of generators and relations. It follows that the cyclic group Z/2 is isomor-
phic to the abelianization of O} and the center Z(O}) as well.

Now, consider the periodic groups Z/a X~ (Z/b x T};) and Z/a %, (Z/b x O})
corresponding to the families III and IV [1, Theorem 6.15] with (a,b) = (ab,6) =1
and n > 1, where v : Z/b x T¥ — Aut(Z/a) and 7 : Z/b x O} — Aut(Z/a) are
actions of Z/b x T¥ and Z/b x O, respectively, on the cyclic group Z/a. The group
Aut (Z/a) is abelian, a fortiori the actions v and 7 are uniquely determined by their
restrictions 1 : Z/b — Aut (Z/a), v2 : T — Aut (Z/a) and 7y : Z/b — Aut (Z/a),
Ty : OF — Aut(Z/a). But the abelianizations of Ty and O} are isomorphic to the
groups 7/3™ and 7Z/2, respectively. Whence, the actions 2 and 75 are uniquely
determined by 72(X) and 75(R), respectively, with 72(X)?" = idz/, and 7(R)? =
idZ a-*

’i“o study the groups Aut (Z/a X (Z/b x T))) and Aut (Z/a x~ (Z/b x O})), we
need, in the light of [6, Proposition 1.3], to describe the groups Der., (Z/bx T}, Z/a),
Aut., (Z/b x T}) and Der; (Z/b x OF,Z/a), Aut, (Z/b x O}), respectively.

First, let a = p* with p # 2,3 prime and k > 0. Because the actions v, and 7
factor through the abelianizations of T}y and O}, which are isomorphic to the groups
Z/3"™ and Z/2, respectively, whence Ker~y, is trivial or Kerve = Qg X4, Z/3™
for some ny < n and Kerry is trivial or equals T)F (as a subgroup with index
two in O} and containing 77;). Consequently, by [6], we achieve that Der., (Z/b x
Tx,Z/p") = Der., (Z/b,Z/p") provided 7o is trivial and Der., (Z/b x T, Z/p*) =
Ders (Z/b x Z/3"~ ™0, Z/p™) provided Kerye = Qg Xq, Z/3™, where 7 : Z/b x
Z/3" "0 = Z/bx (T /Kerv2) — Aut (Z/a) is the action induced by 7. Furthermore,
Der, (Z/b x O}, Z/p™) = Der,, (Z/b,Z/p"™) provided 73 is trivial and Der, (Z/b x

n?’
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Or,Z/p*) = Der; (Z/b x 7Z./2,7/p") provided Ker 7, = T}, where 7 : Z/b x 7Z./2 =
Z/bxOF /Ty — Aut (Z/a) is the action induced by 7. Because (b,6) = 1, the groups
Z/bx Z/3"" ™ and Z/b x Z/2 are cyclic whence, as in [6, Corollary 1.5], elements
of Derz (Z/b x Z/3" ™ Z/p"™) and Derz (Z/b x Z/2,7/p™) might be described by
means of some elements in Z/p™.

Now, if a is a positive integer with (a,6) = 1 and a = p]fl ---pfs its prime
factorization with k; > 1 then p; # 2,3 for all ¢ = 1,...,s. Obviously, any iso-
morphism Z/a 5 Z/ptt x .-+ x Z/p?s yields isomorphisms « : Aut(Z/a) 5
Aut (Z/p]* x -+ x Z/p?=) and

Der., (Z/b x T}, Z)a) = Deray(Z/b x T Z/pi x - x Z/p**)
for an action v : Z/b x Ty — Aut (Z/a), and
Der, (Z/b x OF,Z/a) = Derg, (Z/b x OF, Z/p" x - x Z/p")

for an action 7 : Z/b x O — Aut (Z/a). Then, the well-known (see e.g. [6, Lemma
1.1]) isomorphism Aut (Z/p5* x - - - x Z/pks) = Aut (Z)p5) x - x Aut (Z/p¥+) and
(%) lead to isomorphisms

Der,, (Z/bx T}, Z/a) — Derg,y(Z/bx T}, Z/p) x - - x Derg  (Z/b x T, 7/ pl*)
and
Der, (Z/bx 0%, Z]a) — Derg,+(Z/bx O%, Z/p) x - - - x Dera, » (Z/bx OF, Z/p"),

where «; is the composition of o with an appropriate projection map Aut (Z/ p’fl) X
- x Aut (Z/pF) — Aut(Z/pl*) for i = 1,...,s. Thus, we may summarize the
discussion above as follows.

Proposition 1.1. Let Z/b and Z/p* be cyclic groups with p prime and k > 1,
(bp*,6) = (b, p*) =1 and let v : Z/bx Tx — Aut (Z/p*), 7 : Z/bx O — Aut (Z/p")
be actions. Write v1 : Z/b — Aut (Z/p¥), v2 : T — Aut (Z/p*) and 7 : Z/b —
Aut (Z/p*), 7 = Of — Aut(Z/p*) for the appropriate restrictions of v and T,
respectively. Then:

(1)

Der, (Z/b x T}y, Z/p") = Der, (Z/b,Z/p")
and

Der, (Z/b x OF, Z/p") = Der,, (Z/b, Z./p*)
if vo and T are trivial;

(2) Der,(Z/bx Ty, Z/p") = Ders (Z/bx Z/3" "0, Z/p*) provided Ker v2 = Qs X,
Z/3™, where 7y : ZJb x Z)3""™0 = 7/b x (T /Ker~yz) — Aut (Z/p") is the
action induced by v
and
Der, (Z/b x Of,Z/p*) = Der; (Z/b x Z/2,Z/p") provided Ker o = T}, where
T2Z/b X Z)2=7)bx (OF)Tr) — Aut (Z/p*) is the action induced by T.
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Ify:Z/bx T — Aut (Z/a) and 7 : Z/b x O — Aut(Z/a) are actions with
(a,b) = (ab,6) = 1 and a = p]fl ---pks is the prime factorization of a with
ki>1fori=1,...,s then

Der,, (Z/b x T, 7/a) — Dero,,(Z/b x T, Z/pt) x - --
xDerq,, (Z/b x T, Z/p%*)

and
Der, (Z/b x O, Z/a) — Derg,(Z/b x O, Z/p") x - --

xDerg.r (Z/bx T*, Z/p™),

where «; is the composition of an isomorphism « : Aut (Z/a) = Aut (Z)pk x
X Z/p) with an  appropriate projection map Aut (Z/p5t)x
<X Aut (Z/pPe) — Aut (Z/pfl) fori=1,... s.

Now, move to the groups Aut,(Z/b x T;) and Aut, (Z/b x O}), where v =
(71,72) 1 Z/b x Ty — Aut (Z/a) and 7 = (11, 72) : Z/b x O} — Aut (Z/a). Because
(ab,6) = 1, [6, Lemma 1.1] yields Aut (Z/b x T¥) = Aut(Z/b) x Aut (T}) and
Aut (Z/b x OF) = Aut(Z/b) x Aut (O}). Furthermore, the groups Aut (7}*) and
Aut (OF) have been fully described in [7] for all n > 1. In the light of [6, Corollary
1.4] we achieve isomorphisms

Aut, (Z/b x TF) = Aut,, (Z/b) x Aut., (T

and
Aut, (Z/b x OF) = Aut,, (Z/b) x Aut,, (OF).

But ¢ € Aut., (T}) (resp. ¢ € Aut,,(0})) if and only if v2(X) = (y2¢)(X) (resp.
To(R) = (12¢0)(R)). Now, if Kerve = Qg X4, Z/3™ then, from the list of elements
in Aut (T}}) presented in [7], it follows that

Aut, (T7) = {¢ € Aut (T7); o(X) = X' O+ for [ =0,. .. 3n—mo~1},

By means of [7], any ¢ € Aut (O}) restricts to an automorphism of T} with the
identity on the quotient O} /Tx = Z/2 a fortiori 72(R) = (72¢)(R) holds for all
¢ € Aut (O}). Now, in virtue of [7, Proposition 3.2], we are ready to close this
section with

Proposition 1.2. Let Z/a and Z/b with (a,b) = (ab,6) =1 and v : Z/b x T} —
Aut (Z/a), 7 : Z)b x Of — Aut(Z/a) be actions. Write v, : Z/b — Aut(Z/a),
Yo : TX — Aut (Z/a) for the restrictions of v and 71 : Z/b — Aut (Z/a), 72 : OF —
Aut (Z/a) for the restrictions of 7. Then:

(1) Aut., (T) = S4 x Z/3™ ™ provided Kerys = Qg Xq, Z/3™;

(2) Aut,, (OF) = Aut (O}).

Certainly, the groups Aut,, (Z/b) and Aut,, (Z/b) could be described by [6,
Proposition 1.5 and Corollary 1.6]. Observe that £(v1), £(71) < 2 implies £(v1), £(T1) =
1 because b is odd and consequently, Aut,, (Z/b) = Aut,, (Z/b) = Aut (Z/b), where
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£(y1) (resp. £(m1)) denotes the order of v;(1p) (resp. 71(1p)) in Aut (Z/b) for a gen-
erator 1, of the cyclic group Z/b.

2. Homotopy types of space forms.

Given a group G, write H¥(G) for its kth cohomology group with constant coef-
ficients in the integers Z for k > 0. Then, any automorphism ¢ € Aut (G) yields the
induced automorphism ¢* € Aut (H"(G)) and we write n : Aut (G) — Aut (H*(Q))
for the corresponding anti-homomorphism. By a period of a group G we mean an
integer d such that H*(G) = H*T4(G) for all k > 0, and a group G with this
property is called periodic. Among all periods of a group G there is the least one;
and all others are multiple of that one. That least one period we call the period of
the group and by [3, Section 11] the period of any periodic group is even.

Throughout the rest of the paper, X (k) denotes a k-dimensional CW-complex
with the homotopy type of a k-sphere and the group Aut(Z/a) is identified with
the unit group (Z/a)* of the moda ring Z/a. Given a free cellular action p of a
finite group G with order |G| on a CW-complex X (2k — 1) write X (2k — 1)/u
for the corresponding orbit space called a (2k — 1)-spherical space form or a Swan
(2k—1)-complez (see e.g., [2]). Then, the group G is periodic with period 2d dividing
2k and by [3, Chap. XVI, §9] there is an isomorphism H?*"(G) = Z/|G|. Two
spherical space forms X (2k — 1)/p and X’(2k — 1)/’ are called equivalent if they
are homeomorphic and let Kék ~1 denote the set of all such classes. We say that two
such classes [X(2k — 1)/u] and [X'(2k — 1)/u/] are homotopic if the space forms
X(2k — 1)/p and X'(2k — 1)/ are homotopy equivalent. Write K2~ '/~ for the
associated quotient set of Kék_l and card lCék_1 /~ for its cardinality, respectively.
By means of [11], it is shown in [12, Theorem 1.8] that elements of the set K& '/~
are in one-to-one correspondence with the orbits, which contain a generator of
H?¢(G) = Z/|G| under an action of £Aut (G) (see also [4] for another approach).
But generators of the group Z/|G| are given by the unit group (Z/|G|)* of the
ring Z/|G|. Thus, those homotopy types are in one-to-one correspondence with the
quotient (Z/|G|)*/{xe*; ¢ € Aut (G)}, where ¢* is the induced automorphism on
the cohomology H*(G) = Z/|G| by ¢ € Aut (G).

Now, let G; and G2 be finite groups with relatively prime orders |G1| and |Gs,
respectively. If G; and G5 are also periodic with periods 2d; and 2ds, respectively
then by [1] the least common multiple [2d1, 2ds] of 2d; and 2d5 is the least period of
the product G; x G5. Furthermore, given a finite group G with an action a : G —
(Z/a)* write |a(g)| for the order of a(g) with g € G. Let ¢(a) = [|a(g)]; for g € G]
be the least common multiple of those orders. Then, for a semi-direct product
Z/a x4 G, we have shown in [6], by means of the Lyndon-Hochschild-Serre spectral
sequence, the following result.

Proposition 2.1. Let Z/a be a cyclic group of order a, G a finite group, o : G —
Z/a an action and (|G|,a) = 1. If G is periodic with the period 2d then the semi-
direct product Z/a x, G is also a period finite group with the least period 2[¢(«), d).

Thus, we are in a position to investigate the periodic groups Z/a x., (Z/b x T})
and Z/a x, (Z/b x OF). First, we find the least periods of the groups T} and O}.
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Because T¥ = Qg X, Z/3"™ whence the Lyndon-Hochschild-Serre spectral sequence
applied to the short one

0-Qs — Ty —Z/3" =0
yields

0, if p,q > 0;
Z, ifp,q = 0;
EYUTx) = HP(Z/3",H1(Qs)) =} 0, if ¢ = 0 and p odd;
7/3"™, if ¢ = 0and p even with # 0;
H°(Z/3", H(Qs)) = (H(Qs))**", if ¢ > 0.
Using the cohomology

Z, k= 0;

0, if k=144l

H*(Qg) = Z/207/2, if k = 2 + 4l;
0, if k =3+ 41;

7/8, if k =4+ 4l

with [ > 0, we can easily get

Z, if k= 0;

0, if k =14 4l;
HMTY) = 2/3", if k = 2 + 4l;

0, if k = 3+ 4l;

Z)(8 x 3", if k=444l

with | > 0 and consequently, 4 is the least period of the group 7.y. Whence, by
Proposition 2.1, the number 2[¢(), 2] is the least period of the group Z/a %, (Z/b x
).

To find the least period of the group O}, we apply Lyndon-Hochschild-Serre
spectral sequence to the short one

0Ty — O —7Z/2—0.

Then, E2Y(0r) = HP(Z/2, HY(TY)). Next, observe that EY* = HP(Z/2,7,/(8 x
3")) = HP(Z/2,Z/8) ® HP(Z/2,Z/3"). Because HP(Z/2,Z/3™) = 0 for p > 0 and
by [11] the action of Z/2 on Z/8 is trivial HP(Z/2,Z/(8 x 3")) = Z/2 for p > 0.
Then, we can easily find that
Z,ifp=q=0;
0, if p odd, ¢ = 0;
Z/2, if p even, ¢ = 0;
0,ifp>0,qg=1+4,2+4l,3+ 4,
Z/(8x3"),ifp=0,q=4+4l;
Z/2,ifp>0,qg=4+4l

Ey(Or) = HY(2/2, HY(T})) =
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with [ > 0.

To find the cohomology H*(O}) consider the generalized quaternion group Q¢
as the subgroup of O} generated by P,Q, R (according to the presentation of O}
given in Section 1) and its subgroup Qs generated by P, Q. The exact sequence
0 — Qs — Q16 — Z/2 — 0 leads to Lyndon-Hochschild-Serre spectral sequence
with EYY(Q16) = HP(Z/2,H1(Qs)). Because the action of Z/2 on Z/2 ® Z/2 is

given by the matrix and by means of [11], the action of Z/2 on Z/8 is

10
1 1
trivial, applying H*(Qg), we derive:
Z,ifp=0;
Ey"(Qe) = HP(Z/2) = {0, if p odd;
7)2, if p even,

7/2, if p=0;
EP (Que) = 0. EL*(Quo) = HP(Z/2,2/202/2) = | /% 1P

0, if p >0,
Eg’g(Qm) = 0 and E§’4(Q16) = HP(Z/2,7/8) = Z/2. Writing E(Q1¢) for the k-
term of that spectral sequence, we can deduce that E2(Q16) = E3(Q16) = F4(Q16) =
E5(Q16) and d5(E3*(Q16)) = E2°(Q16), di(EY?(Q16)) = 0 for k > 2. Then, us-
ing the multiplicative structure of that spectral sequence and the periodicity of the
groups Qg and Z/2, we get further isomorphisms Eg(Q16) = H(F5(Q16),ds) =
E:(Qu6) 2 2 Ex(Q16) = G (H*(Q16)), where by [3, Chapter XII] it holds:

Z, if k = 0;
0, ifk =1 +4;

HY Qo) =z a®2z/2, ifk=2+4l;
0, if k=3 +4I;

7./16, if k = 4 + 41

with [ > 0. The commutative diagram

0 Qs Q16 Z/2 0
0 T oy Z)2 0

leads to a map

E(05) — Ex(Qie)

for k > 2. Because of the isomorphism EL'?(0%) — EP9(Qyg) for p > 0, we can
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get Fg(Or) and then Fo,(O}) as well. Therefore, we can read that

Z, if k= 0;

0, if k =144,
H*Ox) =X17/2, if k =2 +4;

0, if k = 3+ 41;

A®Z/3", ifk =4+4]

with [ > 0, where A is an abelian group of order 16. Because of the monomorphism
H*(O}) 2 — H*(Q16) on the 2-primary component of H*(O}) for | > 0, we
deduce an isomorphism A = Z/16. Thus,

Z,ifk=0;

0, if k=14 4l;
H*Or) =<17/2, itk =2+ 41,

0, if k = 3+ 4;

Z/(16 x 3"), if k = 4 + 4l

with [ > 0 and consequently, 4 is the least period of the group O}. Whence, by
means of Proposition 2.1, the number 2[¢(7),2] is the least period of the group
Z]ax, (Z]bx OF).

By [6, Lemma 1.1] any automorphism ¢ € Aut(Z/a x, G) for (a,|G|) = 1
determines a pair (p1,¢2) € (Z/a)* x Aut (G) with the commutative diagram

0——=2Z/a——Z/axe G——=G—=0
l@l itﬂ \Lsﬂz
0——=2Z/a—=7Z/a Xy G——=G—=0.

Then, Lyndon-Hochshild-Serre spectral sequence and its naturality lead to the com-
mutative diagram of cyclic groups with exact and splitting rows

0 > H2k[d,€(a)] (G) > H2k,[d,€((x)] (Z/a X G) > H2k[d,€(a)] (Z/a) >0
iwé iw* lw’{
0 —— H2UI(G) —— H2LUI (7 /0 %, G) — HFEUI (7, /a) — 0

for k > 0, where 2d is the least period of G. Whence, ¢* is uniquely determined by
the corresponding pair (¢}, ¢7) and consequently, there is the factorization

n

Aut (Z/a x4 G) Aut (H?)A(7, /0 %, G))

(Z/a)* x Aut, (G)
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for all £ > 0, where Aut, (G) is the subgroup of Aut(G) defined in Section 1. But
H?FU):d(7, /0%, G) = Z/a|G], so in the light of the above, to describe the number

card K;’;Ef;i)g 1=1 /~ of homotopy types of spherical space forms for Z/a x, G we are
led to compute the order of the quotient (Z/a|G|)*/{x¢™; ¢ € (Z/a)* x Aut, (G)}
where ¢* is the induced automorphism on the cohomology H?*“®)-4(7/a x G) for
p € (Z/a)* x Aut, (G).

Now, for a periodic group G; with the least period 2d; and an action w : G5 —
Aut (G1), we achieve anti-homomorphism Gy — Aut (H?**%(G1)) = Aut (Z/|G4]).
Write (Z/|G1])*/ £ Go for the quotient group (Z/|G1|)*/{£w(g2)*; g2 € G2} and
Oc, (|G|, 2kdy) for its order, where w(g2)* denotes the induced map on the coho-
mology H?*%(Gy). Furthermore, we set O(m,n) for the order of the quotient group
(Z/m)*[{£l"; L€ (Z/m)*}.

Given ¢ € Aut (T) for the group T = Qs X4 Z/3™ there is the correspond-
ing pair (p1,p2) € Aut (Qs) x (Z/3™)* and by means of [7] maps @2 exhaust all
automorphisms of the group Z/3™. The periodicity of T¥, Lyndon-Hochshild-Serre
spectral sequence and its naturality lead to the commutative diagram

0—— H4k(z/3n) - H4k(T*) - H4k(Q8) — =0

n

|+ |+ &

00— H4k(z/3n) - o H4n(T:{) - o H4k(Q8) — =0

of cyclic groups with exact rows for k > 0. But, by means of [11], ¢} is the identity
map and a fortiori ¢* is uniquely determined by 3.

By [7], any ¢ € Aut (O}) yields also a pair (¢1,92) € Aut (T)}) x (Z/2)*. Again,
the periodicity of Oy, Lyndon-Hochshild-Serre spectral sequence and its naturality
lead to the commutative diagram of cyclic groups

0 — H*(Z/2) — H*(0}) — H*™(T}) —=0

ls@% J{s&* iwi
0 —— H*"(Z/2) — H*(0};) — H*(T};) —0
with exact and splitting rows for k£ > 0. Because the restriction of ¢} to s, denoted

by ¢| induces the identity on H*"(Qs) = Z/8, by means of the description of
H*(0r) and H* (T*), we derive from the above the commutative diagram

0—>7/2——>7/16 7/3 0

|

0——=27Z/2—7/16 ——=Z/8 — 0.

Therefore, the restriction ¢} : Z/16 — Z/16 is the identity map or the multipica-
tion by 9. Certainly, both cases might hold. Namely, consider the automorphism
v :O0F — O given by o(P) = P, ¢(Q) = Q, ¢(R) = —R and ¢(X) = X, where
P,Q,R, X are generators of O}. But the subgroup of O} generated by P,Q,R
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is the generalized quaternion group Q16 with the relation (RP)* = R2. Then,
¢©(RP) = (RP)® and by [11] we achieve that p* : H**(O%) — H**(O}) restricts on
H*'(Q16) = Z/16 to the multiplication by 9.

Now, the group Z/ax~(Z/bx T}) with an action v = (y1,72) : Z/bxT} — (Z/a)*
yields the factorization

n

Aut (Z/a 0, (Z/b x T}))

Aut (H**FO2(Z/a 0., (Z/b x T}))

(Z/a)* % Auty, (Z/8) % Auty (T7)
for all k£ > 0. By [6, Proposition 2.2] we obtain the short exact sequence

0— (Z/2)" — (Z/(8 x 3"ab)/ £+ ((Z/a)* x Aut,, (Z/b) x Aut,(T})) —
(Z/a)"] £ (Z]a)") x ((Z/b)"] £+ Auty, (Z/b)) x ((Z/(8 x 3"))"/ + Aut,, (T77)) — 0

for some 0 < t < 2. But, by means of Proposition 1.2, Aut., (7)) = S4 x Z/3" "0
with Kerye = Qg x Z/3"~"0. Because the action of Sy on H**(Qg) is trivial, the
canonical imbedding (Z/3" ™0 )* < (Z/3™)* leads to the other short exact sequence

0—Z/2)" — (Z/(8 x 3"))*/ £ Aut., (T}) —

((Z/8)" {#1}) x ((2/3")"/(Z/3"")") — 0

for some 0 < ¢/ < 1.
Now, we move to the group Z/a %, (Z/b x OF) with an action 7 : Z/b x Of —
(Z/a)*. By Proposition 1.2, Aut,,(O}) = Aut (O}), so we achieve the factorization

Aut (Z/a %, (Z)b x 0})) —————— Aut (H**EO2(Z/a %, (Z/b x OF))

(Z/a)* x Aut,, (Z/b) x Aut (O})
for all £ > 0. Because
(Z/(16 x 3"))*/ £ Aut (O}) =
((Z/16)* /{=1, £9}) x (Z/3")* {£IM2 1 e (z/3m)*)),

we derive that O, (0x)(16 x 3", 2k[€(7),2]) = 2 x 37~ Then, the discussion above
yields the main result.

Theorem 2.2. Let v = (y1,72) : Z/b X T — (Z/a)* and T = (11, 72) : Z/bx OF —
(Z/a)* be actions with (a,b) = (ab,6) =1 and n > 3, where v1 : Z/b — (Z/a)*,
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Yo : Ty — (Z/a)* and 71 : ZJb — (Z/a)*, 7o : Of — (Z/a)* are appropriate
restrictions of v and T, respectively. Then:

k[£(~),2]— ' lon
(1) card K002 L0 Jo = 23O (a, K[(Y), 2)) O, ) (0, KIE(Y), 2))

O™, kl((7),2)~" for some 0 <t <2 and 0 <t/ < 1;

(2) card K302 o) /o = 2571 % 377100, KIU(7), 2]) O, 2y (b, K[H(T), 2))

for some 0 <t < 1.

We point out that the numbers ¢,¢" above are given by [6, Proposition 2.2] and
the orders O, /v (b, E[£(7),2]), Ot (z/v)(b, k[£(7),2]) are determined by [6,
Corollary 2.3].

Now, let v = (71,72) : Z/b x Ty — (Z/a)* and 7 = (11, 72) : Z/b X Of — (Z/a)*
be actions with £(v),4(7) < 2. Then, of course 2£(v),2[¢(7),2] < 4, a fortiori vo
is trivial and the groups Z/a %, (Z/b x Ty), and Z/a x, (Z/b x O}) act on a
CW-complex X (4k — 1) for any k > 1. Furthermore, as it was observed in [6],
Aut., (Z/b) = Aut,, (Z/b) = (Z/b)* . Hence, Z/a x, (Z/b x T}) = Z/ab x T}y and
Z)a %, (Z)b x OF) = Z/ab x . Of with the action 7/ : O 2 (Z/a)* — (Z/ab)*,
respectively. Then, in the light of [6, Proposition 2.2], we are in a position to deduce

Corollary 2.3. Let v:Z/bx T — (Z/a)* and 7 : Z/b x O} — (Z/a)* be actions
with (a,b) = (ab,6) =1 and £(~),4(7) < 2. Then:

(1) cardlC%];;iv(Z/be;) =2x 3"card/C%7;b1/:
and
(2) card K%];;iT(Z/bxo;) =2 x 3" Lcard K%?;bl/:.

We point out that card IC%’;;; /~ as the number of homotopy types of (4n—1)-lens
spaces has been fully described in [4].

3. Groups of self homotopy equivalences.

Let p be a free and cellular action of a finite group G on a CW-complex X (2k—1).
Write 77 : Aut (G) — (Z/|G|)*/{£1} for the composition of the anti-homomorphism
n : Aut(G) — H?**(G) = (Z/|G|)* considered in the previous section with the
quotient map (Z/|G|)* — (Z/|G|)*/{£1}. Then, by means of [4, Proposition 3.1]
(see also [10, Theorem 1.4]), the group (X (2k — 1)/1) of homotopy classes of self
homotopy equivalences for the space form X (2k—1)/u is independent of the action u
of the group G as isomorphic to the kernel of the map 7 : Aut (G) — (Z/|G|)*/{£1}
for all n > 1 provided |G| > 2. Whence, we simply write £(X (2k — 1)/G) for this
group.

Let o : G — (Z/a)* be an action, (a,|G|) = 1 and 2d a period of G. Then, in
virtue of [10, Theorem 1.4], one gets

Z]2, if a|G| < 2

E(X(2kd —1)/(Z/a xa G)) = { £(X(2kd —1)/@)), ifa|G|>2anda < 2.

By [6], the following generalization of [10, Theorem 1.8] holds.
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Proposition 3.1. Let the group Z/a x, G with (a,|G|) = 1 acts freely and celullary
on a CW-complex X (2k[¢(a),d] — 1) for n = 1, where 2d is a period of G. Then,
there are isomorphisms:

Z/2, if a|G| 6 2;
E(X(2k[l(c),d] = 1)/G)), ifalG|>2 anda 6 2;

however for a|G| > 2 with a > 2 it holds
E(X(2k[((e),d] = 1)/(Z)a x4 G)) =

Deta (G, Z/a) 0 (€ (X(2k[(a), d] — 1)/(Z/a)) X Ea (X(2n[6(a),d] — 1)/G)), if|G] > 2:
Z/a 0 & (X(2k[6(a),d] — 1)/(Z]a)), if|G| 6 2,

where E, (X (2n[l(a),d] — 1)/G)) is the subgroup of £ (X (2n[l(a),d] —1)/G)) de-
termined by the subgroup Aut, (G) C Aut (G).

£ (X (2k[6(q), d]~1)/(Z/a0uG)) =

The paper [5, Section 3] deals with the group & (X (2k[¢(a),d] —1)/(Z/a)), how-
ever the group &, (X (2k[¢(a),d]—1)/G) consists of all automorphisms ¢ € Aut,, (G)
with ¢* = +id(z/|g|)~ provided |G| > 2.

If now v = (71,%2) : Z/b X T — (Z/a)* and 7 = (11, 72) : Z/b x Of — (Z/a)*
are actions considered in the previous section then it holds |Z/bx T)¥| = 8 x 3™b > 2
and |Z/b x OF| =16 x 3"b > 2 for the order of those groups. Furthermore,

£, (X(2K[6(7),2] — 1)/(Z/b) x T}) =
Ery (X(2K[E(r), 2] = 1)/(Z/1)) x &, (X (2k[E(),2] — 1)/T)

and
Er (X(2k[6(1),2) = 1)/(Z/b) x OF) =

Ery (X(2K[E(7), 2] = 1)/(Z/b)) x &, (X (2k[U(7), 2] = 1)/O}).

But, the group &,, (X (2k[{(v),2]—1)/(Z/b)) and &;, (X (2k[¢(T),2] —1)/(Z/b)) has
been fully described in [6, Theorem 3.2].

To study the group &,, (X(2k[l(v),2] — 1)/T}), we recall that by [11] any au-
tomorphism ¢ € Aut(Qs) = S4 induces the identity map on the cohomology
group H*(M:2/(Qg) and by Proposition 1.2, Aut., (T¥) = Sy x Z/3"~"° provided
Kervs = Qg X4, Z/3™. Then, we easily derive an isomorphism

o 3n—no
Eyy (X(2k[6(7),2] = 1)/T}) =2 Sy X Z/((?)nno’k[g(zy)’Q]))'

Now, to move to the group &, (X (2k[¢(7),2] — 1)/O%), we first recall that by
Proposition 1.2, Aut.,(0r) = Aut(O}). Because of the isomorphism
H?FIEM2(0%) = 7,/(16 x 3"ab) from Section 1, we must study all automorphisms
p € Aut (O:;) with ¢* = $idZ/(16><3"ab)-

Let Aut® (07) = {¢ € Aut(0F); ¢* = idz/(16x3map) }- Consider the automor-
phisms ¢,1 € Aut(O}) defined on generators (according to the presentation of
Oy given in Section 1) by: p(P) = P, »(Q) = Q, »(X) = X, p(R) = R™! and
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Y(P) =P, $(Q) = Q, ¥(X) = X*, ¢(R) = R and write (p,v) for the subgroup
of Aut (O}) generated by ¢ and 1. It is easy to check that there is an isomorphism
<gp,1/)> ~ 7/2® Z/3" ' and <<p,w> NInn (O}) = E, the trivial subgroup of OF.
Then, by the results of [7] and order arguments, there is the splitting short exact
sequence

1 —Inn(0}) — Aut(0}) — Z/20 Z/3" ! — 1.

Consequently, a simple calculation, by means of the list of elements in Aut (O})
presented in [7] and considerations in the first paragraph on page 14 provides an
isomorphism
3n71
Aut®(OF) 2 Inn (0X) X Z) | ———n>—— ).
1403 21003 2/ Gy )
Because the restriction of any automorphism of Aut (O) to the subgroup Qg in-
duces the identity in cohomology at dimension multiple of 4, there is no element of
Aut (OF) which induces the minus identity in cohomology at dimension 2k[¢(7), 2].
Since Z(0}) = Z/2 and so Inn (O}) = Or/(Z/2) = O,, (the group considered in
[7]) and consequently, we derive an isomorphism
Sn—l
Ery (X(2K[0(T),2] —1)/O) 2O, X2/ | ———< |-
L (X@HE).2 = /03 2 00 92/ (i
Finally, by Proposition 3.1 and the consideration above, we can close the paper

with

Theorem 3.2. Let v = (y1,72) : Z/b x T} — (Z/a)* (resp. 7 = (11,72) : Z/b x
Or — (Z/a)*) be an action with (a,b) = (ab,6) = 1 for n > 3. If the group
Z)a xy (Z)b x Ty) (resp. Zj/a x, (Z/b x O})) acts freely and cellularly on a CW -
complex X (2k[€(v),2] — 1) (resp. X(2k[€(T),2] — 1)) then
E(X (2K[E(r),2] — 1)/ (Z/a o (Z/b % T2))) = Der, (/b x T3, Z/a)x
(E(X(2E[l(n), 2] = 1)/(Z[a)) x &, (X (2K[6(5), 2] = 1)/(Z/b)) x Sax

/(G i)

(resp. E(X(2K[((1),2] — 1)/(Z]a % (Z]b x O%))) = Der, (Z/b x 0%, Z/a)x
(E(X(2k[E(T1),2] = 1)/(Z/a)) x &, (X(2K[€(B),2] —1)/(Z/D)) x Onx

Sn—l
)
Thus, in the light of Proposition 1.1, the groups £(X (2k[((v),2] — 1)/(Z/a %
(Z/bxTy))) and E(X (2k[6(T),2]—1)/(Z/ax(Z/bx O}))) have been fully described.
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