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ON EXACTNESS OF LONG SEQUENCES OF HOMOLOGY
SEMIMODULES

ALEX PATCHKORIA

(communicated by George Janelidze)

Abstract
We investigate exactness of long sequences of homology

semimodules associated to Schreier short exact sequences of
chain complexes of semimodules.

In [4], to define homology and cohomology monoids of presimplicial semimodules,
we introduced a chain complex of semimodules (in particular, abelian monoids), its
homology semimodules, and a ±-morphism between chain complexes of semimod-
ules. Next, in [5], we introduced a morphism between chain complexes of cancella-
tive semimodules, defined a chain homotopy of morphisms and studied its basic
properties. In this paper we investigate exactness of long sequences of homology
semimodules associated to Schreier short exact sequences of chain complexes of
semimodules.

The paper is divided into two sections. Section 1 contains the preliminaries. The
main results are presented in Section 2.

1. Preliminaries

Recall [1] that a semiring Λ = (Λ,+ , 0, · , 1) is an algebraic structure in which
(Λ, + , 0) is an abelian monoid, (Λ, · , 1) a monoid, and

λ · (λ′ + λ′′) = λ · λ′ + λ · λ′′,
(λ′ + λ′′) · λ = λ′ · λ + λ′′ · λ,

λ · 0 = 0 · λ = 0,

for all λ, λ′, λ′′ ∈ Λ. An abelian monoid A = (A, + , 0) together with a map Λ×A −→
A, written as (λ, a) 7→ λa, is called a (left) Λ-semimodule if

λ(a + a′) = λa + λa′,

(λ + λ′)a = λa + λ′a,

(λ · λ′)a = λ(λ′a),
1a = a, 0a = 0,
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for all λ, λ′ ∈ Λ and a, a′ ∈ A. It immediately follows that λ0 = 0 for any λ ∈ Λ.
A map f : A −→ B between Λ-semimodules A and B is called a Λ-homomorphism

if f(a + a′) = f(a) + f(a′) and f(λa) = λf(a), for all a, a′ ∈ A and λ ∈ Λ. It is
obvious that any Λ-homomorphism carries 0 into 0. A Λ-subsemimodule A of a
Λ-semimodule B is a subsemigroup of (B, +) such that λa ∈ A for all a ∈ A and
λ ∈ Λ. Clearly 0 ∈ A. The quotient Λ-semimodule B/A is defined as the quotient
Λ-semimodule of B by the smallest congruence on the Λ-semimodule B some class
of which contains A. Denote the congruence class of b ∈ B by [b]. Then [b1] = [b2]
if and only if a1 + b1 = a2 + b2 for some a1, a2 ∈ A.

Let N be the semiring of nonnegative integers. An N -semimodule A is simply an
abelian monoid, and an N -homomorphism f : A −→ B is just a homomorphism of
abelian monoids, and A is an N -subsemimodule of an N -semimodule B if and only
if A is a submonoid of the monoid (B, + , 0).

Next recall that the group completion of an abelian monoid M can be constructed
in the following way. Define an equivalence relation ∼ on M ×M as follows:

(u, v) ∼ (x, y) ⇔ u + y + z = v + x + z for some z ∈ M.

Let [u, v] denote the equivalence class of (u, v). The quotient set (M × M)/∼
with the addition [x1, y1] + [x2, y2] = [x1 + x2, y1 + y2] is an abelian group (0 =
[x, x], −[x, y] = [y, x]). This group, denoted by K(M), is the group completion of M ,
and kM : M −→ K(M) defined by kM (x) = [x, 0] is the canonical homomorphism.
If M is a semiring, then the multiplication [x1, y1] · [x2, y2] = [x1x2 + y1y2, x1y2 +
y1x2] converts K(M) into the ring completion of the semiring M , and kM into the
canonical semiring homomorphism. Now assume that A is a Λ-semimodule. Then
K(A, +, 0) with the multiplication [λ1, λ2][a1, a2] = [λ1a1 + λ2a2, λ1a2 + λ2a1],
λ1, λ2 ∈ Λ, a1, a2 ∈ A, becomes a K(Λ)-module. This K(Λ)-module, denoted by
K(A), is the K(Λ)-module completion of the Λ-semimodule A, and kA = k(A,+,0)

is the canonical Λ-homomorphism. Clearly, K(A) is in fact an additive functor: for
any homomorphism f : A −→ B of Λ-semimodules, K(f) : K(A) −→ K(B) defined
by K(f)([a1, a2]) = [f(a1), f(a2)] is a K(Λ)-homomorphism.

A Λ-semimodule A is said to be cancellative if whenever a+a′ = a+a′′, a, a′a′′ ∈
A, one has a′ = a′′. Obviously, A is cancellative if and only if the canonical Λ-
homomorphism kA : A −→ K(A) is injective. Also note that A is a cancellative Λ-
semimodule if and only if A is a cancellative C(Λ)-semimodule, where C(Λ) denotes
the largest additively cancellative homomorphic image of the semiring Λ. (C(Λ) =
Λ/∼, λ1 ∼ λ2, λ1, λ2 ∈ Λ ⇔ λ + λ1 = λ + λ2, λ ∈ Λ. cl∼(λ1) + cl∼(λ2) =
cl∼(λ1 + λ2), cl∼(λ1) · cl∼(λ2) = cl∼(λ1 · λ2).)

A Λ-semimodule A is called a Λ-module if (A, +, 0) is an abelian group. One can
easily see that A is a Λ-module if and only if A is a K(Λ)-module. Consequently, if
A is a Λ-module, then K(A) = A and kA = 1A.

1.1. Definition ([7, 2, 8, 3]). A sequence E : A // λ // B
τ // // C of Λ-semi-

modules and Λ-homomorphisms is called a Schreier extension of A by C (some
authors would say “C by A”) if the following conditions hold:

1. λ is injective, τ is surjective, and λ(A) = Ker(τ).
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2. For any c ∈ C, τ−1(c) contains an element uc such that for any b ∈ τ−1(c)
there exists a unique element a ∈ A with b = λ(a) + uc.

The elements uc, c ∈ C, are called representatives of the extension

E : A // λ // B
τ // // C .

The following four properties of Schreier extensions of Λ-semimodules are easy
to verify.

1.2. Let E : G // // B // // C be a Schreier extension with G a Λ-module.
Then any b ∈ B is a representative of the extension E.

1.3. Let E : A // λ // B
τ // // C be a Schreier extension with A a cancellative

Λ-semimodule. If λ(a) + b1 = λ(a) + b2, a ∈ A, b1, b2 ∈ B, then b1 = b2.
1.4. If E : A // // B // // C is a Schreier extension of Λ-semimodules, then

B is cancellative if and only if A and C are both cancellative.

1.5. If E : A // λ // B
τ // // C is a Schreier extension of Λ-semimodules, then

K(E) : 0 → K(A)
K(λ) // K(B)

K(τ) // K(C) → 0 is a short exact sequence of K(Λ)-
modules.

1.6. A homomorphism ϕ : A −→ B of Λ-semimodules is said to be normal (or
kernel-regular in the sense of [9]) if whenever ϕ(a1) = ϕ(a2), a1, a2 ∈ A, one has
κ1 + a1 = κ2 + a2 for some κ1, κ2 ∈ Ker(ϕ). It is easy to see that ϕ is normal
if and only if ϕ : A −→ ϕ(A) is a cokernel of the inclusion Ker(ϕ) ↪→ A (i.e.,
ϕ : A −→ ϕ(A) is a normal Λ-epimorphism).

1.7. Any Λ-homomorphism ϕ : G −→ B with G a Λ-module is evidently
normal. Moreover, any Λ-homomorphism ϕ : A −→ B with ϕ(A) a Λ-module
is normal. Consequently, if a sequence of Λ-semimodules and Λ-homomorphisms

A
α // G

β // B with G a Λ-module is exact, then α and β are both normal.

1.8. Let G
α // Y

β // Z be a sequence of Λ-semimodules and Λ-homo-
morphisms with G a Λ-module and βα = 0. Assume that the following is satisfied:
whenever β(y1) = β(y2), y1, y2 ∈ Y , one has α(g)+y1 = y2, g ∈ G. Then, obviously,

β is a normal Λ-homomorphism and G
α // Y

β // Z is exact.
1.9. Lemma. Suppose given a commutative diagram of Λ-semimodules and Λ-

homomorphisms

X
α //

f

²²

Y
β //

ϕ

²²

Z

ψ

²²
X ′ α′ // Y ′ β′ // Z ′

such that f is surjective, ϕ is injective, and βα = 0. Assume that the bottom row is
exact and β′ is normal. Then the top row is exact and β is normal.

Proof. Suppose that β(y1) = β(y2), y1, y2 ∈ Y . Then β′ϕ(y1) = β′ϕ(y2). Hence
κ1 + ϕ(y1) = κ2 + ϕ(y2), κ1, κ2 ∈ Ker(β′). Since the bottom row is exact and f is
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onto, there exist x1, x2 ∈ X such that κ1 = α′f(x1) and κ2 = α′f(x2). Then we get
ϕα(x1)+ϕ(y1) = ϕα(x2)+ϕ(y2). Whence, as ϕ is one-to-one, α(x1)+y1 = α(x2)+
y2. Thus β is normal. Now assume that β(y) = 0, y ∈ Y . Then β′ϕ(y) = 0. Hence
α′f(x) = ϕ(y) for some x ∈ X. This gives ϕα(x) = ϕ(y). Whence α(x) = y.

1.10. Definition ([4]). We say that a sequence of Λ-semimodules and Λ-
homomorphisms

X : · · · //// Xn+1

∂+
n+1 //

∂−n+1

// Xn

∂+
n //

∂−n

// Xn−1
//// · · · , n ∈ Z,

written X = {Xn, ∂+
n , ∂−n } for short, is a chain complex if

∂+
n ∂+

n+1 + ∂−n ∂−n+1 = ∂+
n ∂−n+1 + ∂−n ∂+

n+1

for each integer n. For every chain complex X we define the Λ-semimodule

Zn(X) =
{
x ∈ Xn|∂+

n (x) = ∂−n (x)
}
,

the n-cycles, and the n-th homology Λ-semimodule

Hn(X) = Zn(X)/ρn(X),

where ρn(X) is a congruence on Zn(X) defined as follows:

xρn(X)y ⇔ x + ∂+
n+1(u) + ∂−n+1(v) = y + ∂+

n+1(v) + ∂−n+1(u)
for some u, v in Xn+1.

The Λ-homomorphisms ∂+
n , ∂−n are called differentials of the chain complex X.

A sequence G = {Gn, d+
n , d−n } of Λ-modules and Λ-homomorphisms is a chain

complex if and only if

· · · // Gn

d+
n−d−n // Gn−1

// · · ·
is an ordinary chain complex of Λ-modules. Obviously, for any chain complex G =
{Gn, d+

n , d−n } of Λ-modules, H∗(G) coincides with the usual homology H∗({Gn, d+
n −

d−n }).
1.11. One can think of an ordinary chain complex

· · · // Cn+1
∂n+1 // Cn

∂n // Cn−1
// · · ·

of Λ-semimodules as a chain complex in the sense of Definition 1.10; namely, we
identify {Cn, ∂n} with the chain complex

· · · //// Cn+1

∂n+1 //
0

// Cn

∂n //
0

// Cn−1
// // · · · .

Defining Hk({Cn, ∂n}) to be Hk({Cn, ∂n, 0}), one has Hk({Cn, ∂n}) =
Ker(∂k)/∂k+1(Ck+1).
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1.12. Definition ([4]). Let X = {Xn, ∂+
n , ∂−n } and X ′ = {X ′

n, ∂
′
n

+
, ∂

′
n

−}
be chain complexes of Λ-semimodules. We say that a sequence f = {fn} of Λ-
homomorphisms fn : Xn −→ X ′

n is a ±-morphism from X to X ′ if

fn−1∂
+
n = ∂

′
n

+
fn and fn−1∂

−
n = ∂

′
n

−
fn for all n.

1.13. If f = {fn} : X −→ X ′ is a ±-morphism of chain complexes, then
fn(Zn(X)) ⊂ Zn(X ′), and the map

Hn(f) : Hn(X) −→ Hn(X ′), Hn(f)(cl(x)) = cl(fn(x)),

is a homomorphism of Λ-semimodules. Thus Hn is a covariant additive functor
from the category of chain complexes and their ±-morphisms to the category of
Λ-semimodules.

An important example of a ±-morphism appears in a natural way: a map of
presimplicial Λ-semimodules f : S −→ S′ induces a ±-morphism f = f : S −→ S′,
where S and S′ are the standard nonnegative chain complexes associated to S and
S′, respectively (see [4]).

1.14. Definition (cf. [5]). Let X = {Xn, ∂+
n , ∂−n } and X ′ = {X ′

n, ∂
′
n

+
, ∂

′
n

−}
be chain complexes of Λ-semimodules. We say that a sequence f = {fn} of Λ-
homomorphisms fn : Xn −→ X ′

n is a morphism from X to X ′ if

∂
′
n

+
fn + fn−1∂

−
n = ∂

′
n

−
fn + fn−1∂

+
n for all n.

Note that any ±-morphism between chain complexes of Λ-semimodules is a mor-
phism.

1.15. Definition. A sequence E : A // κ // B
σ // // C of chain complexes and

their morphisms is called a Schreier short exact sequence of chain complexes if each

En : An
// κn // Bn

σn // // Cn is a Schreier extension of Λ-semimodules.

1.16. In general, a morphism f = {fn} : X −→ X ′ of chain complexes, unlike
±-morphisms, does not induce a Λ-homomorphism from Hn(X) to Hn(X ′). How-
ever, if X ′ is a chain complex of cancellative Λ-semimodules, or X is an ordinary
chain complex of Λ-semimodules, i.e., ∂−n = 0 for all n (see 1.11), then one can
easily check that fn(Zn(X)) ⊂ Zn(X ′) and the map Hn(f) : Hn(X) −→ Hn(X ′),
Hn(f)(cl(x)) = cl(fn(x)), is well-defined and is a Λ-homomorphism for all n. Be-
sides, we have

Proposition. Let E : A // κ // B
σ // // C be a Schreier short exact sequence of

chain complexes and their morphisms. If A is a chain complex of cancellative Λ-
semimodules, then κn(Zn(A)) ⊂ Zn(B) and the map Hn(κ) : Hn(A) −→ Hn(B),
Hn(κ)(cl(a)) = cl(κn(a)), is well-defined and is therefore a Λ-homomorphism for
all n.

Proof. Let d+
n , d−n and ∂+

n , ∂−n denote the n-th differentials of A and B, respectively.
Suppose a ∈ Zn(A), i.e., d+

n (a) = d−n (a). Since κ is a morphism, κn−1d
+
n (a) +
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∂−n κn(a) = κn−1d
−
n (a) + ∂+

n κn(a). Whence,by 1.3, ∂−n κn(a) = ∂+
n κn(a). That is,

κn(a) ∈ Zn(B). Now assume that a1, a2 ∈ Zn(A) and a1ρn(A)a2. Hence

a1 + d+
n+1(p) + d−n+1(q) = a2 + d+

n+1(q) + d−n+1(p), p, q ∈ An+1.

On the other hand,

κnd+
n+1(p) + ∂−n+1κn+1(p) = κnd−n+1(p) + ∂+

n+1κn+1(p),

κnd+
n+1(q) + ∂−n+1κn+1(q) = κnd−n+1(q) + ∂+

n+1κn+1(q).

These last three equalities imply

κn(d+
n+1(p) + d−n+1(q)) + ∂+

n+1κn+1(p) + ∂−n+1κn+1(q) + κn(a1) =

= κn(d+
n+1(p) + d−n+1(q)) + ∂+

n+1κn+1(q) + ∂−n+1κn+1(p) + κn(a2).

Whence, by 1.3, ∂+
n+1κn+1(p)+∂−n+1κn+1(q)+κn(a1) = ∂+

n+1κn+1(q)+∂−n+1κn+1(p)+
κn(a2). That is, κn(a1)ρn(B)κn(a2). Thus Hn(κ) is well-defined.

Definition 1.10 naturally leads us to new homology and cohomology monoids of
monoids (in particular, groups) with coefficients in semimodules. The calculation
of them for cyclic groups is an example of the effective use of morphisms which are
not ±-morphisms [6].

1.17. If X = {Xn, ∂+
n , ∂−n } is a chain complex of Λ-semimodules, then K(X) =

{K(Xn),K(∂+
n )−K(∂−n )} is an ordinary chain complex of K(Λ)-modules (i.e., Λ-

modules). When each Xn is cancellative, then the converse is also true. Then, for any
chain complex X = {Xn, ∂+

n , ∂−n } of Λ-semimodules, one has the Λ-homomorphisms
Hn(kX) : Hn(X) −→ Hn(K(X)), Hn(kX)(cl(x)) = cl(kXn(x)) = cl[x, 0], induced
by the canonical morphism kX = {kXn} : X −→ K(X) which is in fact a ±-
morphism from X to {K(Xn),K(∂+

n ),K(∂−n )}. When X is a chain complex of
cancellative Λ-semimodules, then Hn(kX) is injective and therefore Hn(X) is a
cancellative Λ-semimodule. Further, if f = {fn} : X −→ X ′ is a morphism of chain
complexes, then K(f) = {K(fn) : K(Xn) −→ K(X ′

n)} is an usual chain map from
K(X) to K(X ′). When X ′ is a chain complex of cancellative Λ-semimoduls, then
the converse is also valid.

1.18. If E : A // κ // B
σ // // C is a Schreier short exact sequence of chain

complexes, then, by 1.5, K(E) : K(A) //K(κ) // K(B)
K(σ)// // K(C) is a short exact

sequence of ordinary chain complexes.

2. Main results

2.1. Proposition. Suppose given a Schreier short exact sequence

A // κ // B
σ // // C

of chain complexes and their morphisms such that each An is cancellative and each
differential ∂−n of B preserves representatives. Assume that one of the following
conditions holds:

(i) σ is a ±-morphism.
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(ii) C is a chain complex of cancellative Λ-semimodules.
Then there are Λ-homomorphisms ∂n(E) : Hn(C) −→ Hn−1(A), called connecting
homomorphisms, such that each diagram

Hn(C)
∂n(E) //

Hn(kC)

²²

Hn−1(A)

Hn−1(kA)

²²
Hn(K(C))

∂n(K(E)) // Hn−1(K(A)),

where ∂n(K(E)) is the usual connecting homomorphism induced by K(E) (see 1.18),
is commutative. Furthermore, Hn(κ) and Hn(σ) are defined for all n, and the long
sequence of homology semimodules

· · ·→Hn(A)
Hn(κ) // Hn(B)

Hn(σ) // Hn(C)
∂n(E) // Hn−1(A)

Hn−1(κ)// Hn−1(B)→· · ·
is an ordinary chain complex of Λ-semimodules.

Proof. Let d+
n , d−n and δ+

n , δ−n denote the n-th differentials of A and C, respectively.

Take any c ∈ Zn(C). There is a representative uc of En : An
// κn // Bn

σn // // Cn

with σn(uc) = c. When (i) holds, one can write σn−1∂
+
n (uc) = δ+

n σn(uc) = δ+
n (c) =

δ−n (c) = δ−n σn(c) = σn−1∂
−
n (uc). If (ii) holds, then the equality σn−1∂

+
n (uc) +

δ−n σn(uc) = σn−1∂
−
n (uc) + δ+

n σn(uc) implies σn−1∂
+
n (uc) = σn−1∂

−
n (uc). Conse-

quently, ∂+
n (uc) = κn−1(a) + ∂−n (uc), a ∈ An−1, in both cases (see 1.1). Whence

[∂+
n (uc), ∂−n (uc)] = K(κn−1)([a, 0]). On the other hand, [∂+

n (uc), ∂−n (uc)]
= (K(∂+

n ) − K(∂−n ))([uc, 0]) and K(σn)([uc, 0]) = [c, 0] ∈ Ker(K(δ+
n ) − K(δ−n )).

Therefore, by construction of ∂n(K(E)), one concludes that [a, 0] ∈ Ker(K(d+
n−1)−

K(d−n−1)) and ∂n(K(E))(cl([c, 0])) = cl([a, 0]). As An−2 is cancellative, the former
gives a ∈ Zn−1(A). And we set

∂n(E)(cl(c)) = cl(a) ∈ Hn−1(A).

Clearly, since ∂n(K(E))Hn(kC)(cl(c)) = Hn−1(kA)(cl(a)) and Hn−1(kA) is injective
(see 1.17), we may write

∂n(E)(cl(c)) = Hn−1(kA)−1
(
∂n(K(E))Hn(kC)(cl(c))

)
.

Hence, ∂n(E) is well-defined and is a Λ-homomorphism, and Hn−1(kA)∂n(E) =
∂n(K(E))Hn(kC).

It follows from 1.13 and 1.16 that Hn(σ) and Hn(κ) are defined. Obviously
Hn(σ)Hn(κ) = 0. Using the usual long exact homology sequence for K(E), one has

Hn−1(kA)∂n(E)Hn(σ) = ∂n(K(E))Hn(kC)Hn(σ) =
= ∂n(K(E))Hn(K(σ))Hn(kB) = 0 ·Hn(kB) = 0.

Hence ∂n(E)Hn(σ) = 0 since Hn−1(kA) is one-to-one. By definition of ∂n(E),
∂n(E)(cl(c)) = cl(a), a ∈ Zn−1(A), and a satisfies the equality ∂+

n (uc) = κn−1(a) +
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∂−n (uc) for some representative uc of En with σn(uc) = c. Consequently,
Hn−1(κ)∂n(E)(cl(c)) = Hn−1(κ)(cl(a)) = cl(κn−1(a)) = 0. Thus Hn−1(κ)∂n(E) =
0.

We see that for any Schreier short exact sequence of chain complexes

E : A // κ // B
σ // // C satisfying the hypotheses of Proposition 2.1, one has the

commutative diagram

· · · → Hn(A)
Hn({) //

Hn(kA)

²²

Hn(B)
Hn(σ) //

Hn(kB)

²²

Hn(C)
∂n(E) //

Hn(kC)

²²

Hn−1(A) → · · ·

Hn−1(kA)

²²
· · ·→Hn(K(A))

Hn(K({))// Hn(K(B))
Hn(K(σ))// Hn(K(C))

∂n(K(E))// Hn−1(K(A))→· · ·

induced by the canonical map kE = (kA, kB , kC) : E −→ K(E). In fact ∂n(E) is
natural in the following sense.

2.2. Proposition. Suppose that

E : A // κ //

f

²²

B
σ // //

g

²²

C

h

²²
E′ : A′ // κ

′
// B′ σ′ // // C ′

is a commutative diagram of chain complexes and their morphisms such that E and
E′ are Schreier short exact sequences satisfying the hypotheses of Proposition 2.1.
Suppose further that Hn(g) and Hn(h) are defined for all n (see 1.13 and 1.16).
Then the diagram

· · · → Hn(A)
Hn({) //

Hn(f)

²²

Hn(B)
Hn(σ) //

Hn(g)

²²

Hn(C)
∂n(E) //

Hn(h)

²²

Hn−1(A) → · · ·

Hn−1(f)

²²
· · · → Hn(A′)

Hn({′)// Hn(B′)
Hn(σ′) // Hn(C′)

∂n(E′) // Hn−1(A
′) → · · ·

is commutative.

Proof. By Proposition 2.1 and the naturality of ∂n(K(E)),

Hn−1(kA′)∂n(E′)Hn(h) = ∂n(K(E′))Hn(kC′)Hn(h)
=∂n(K(E′))Hn(K(h))Hn(kC)=Hn−1(K(f))∂n(K(E))Hn(kC)
= Hn−1(K(f))Hn−1(kA)∂n(E) = Hn−1(kA′)Hn−1(f)∂n(E).

Therefore, by the injectivity of Hn−1(kA′) (see 1.17), ∂n(E′)Hn(h) = Hn−1(f)∂n(E).
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Before we state our main results, we note the following. Let A
α // B

β // C
be an exact sequence of Λ-semimodules and Λ-homomorphisms. If β = 0 then α is
onto. But, unlike the situation for modules, one may have α = 0 and yet not have
β one-to-one. However, we have:

2.3. Suppose given an exact sequence of Λ-semimodules and Λ-homomorphisms

A
α // B

β // C with β a normal Λ-homomorphism (see 1.6). If α = 0, then β
is one-to-one.

This together with 1.7 motivates the following two theorems.
2.4. Theorem. Let

A : · · ·
²²

{

²²

//// An+1

d+
n+1 //

d−n+1

//
²²

{n+1

²²

An

d+
n //

d−n

//
²²

{n

²²

An−1
////

²²

{n−1

²²

· · ·

E : B : · · ·

σ

²²²²

//// Bn+1

∂+
n+1 //

∂−n+1

//

σn+1

²²²²

Bn

∂+
n //

∂−n

//

σn

²²²²

Bn−1
////

σn−1

²²²²

· · ·

G : · · · // Gn+1

δn+1 // Gn

δn // Gn−1
// · · ·

be a Schreier short exact sequence of chain complexes and their morphisms (see
1.11) such that each An is a cancellative Λ-semimodule, every differential ∂−n pre-
serves representatives, and each Gn is a Λ-module. Then the long homology sequence

· · ·→Hn+1(G)
∂n+1(E)// Hn(A)

Hn(κ) // Hn(B)
Hn(σ) // (2.4.1)

Hn(σ) // Hn(G)
∂n(E) // Hn−1(A) // · · ·

is exact at Hn(A) and at Hn(B), Hn(σ)(Hn(B)) ⊂ Ker(∂n(E)), and Hn(κ) is
normal. Furthermore, (2.4.1) is exact at Hn(G) if and only if Hn(σ)(Hn(B)) =
Hn(K(σ))(Hn(K(B))).

Proof. By Proposition 2.1, Sequence (2.4.1) is an ordinary chain complex. Then,
the commutative diagram

Hn+1(G)
∂n+1(E) // Hn(A)

Hn(κ) //

Hn(kA)

²²

Hn(B)

Hn(kB)

²²
Hn+1(G)

∂n+1(K(E)) // Hn(K(A))
Hn(K(κ)) // Hn(K(B))
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satisfies the hypotheses of Lemma 1.9 (see 1.17). Hence (2.4.1) is exact at Hn(A)
and Hn(κ) is normal. We next show that Ker(Hn(σ)) ⊂ Hn(κ)(Hn(A)). Let b ∈
Zn(B), i.e., ∂+

n (b) = ∂−n (b). Assume that Hn(σ)(cl(b)) = 0, i.e., cl(σn(b)) = 0. Then
σn(b) = δn+1(g) for some g ∈ Gn+1. Choose a representative u = u−g of

En+1 : An+1
//κn+1 // Bn+1

σn+1 // // Gn+1

with σn+1(u) = −g. Since σ is a morphism, σn∂+
n+1(u) = σn∂−n+1(u)+δn+1σn+1(u).

Whence σn∂+
n+1(u) = σn∂−n+1(u)− σn(b), i.e., σn(∂+

n+1(u) + b) = σn∂−n+1(u). Then,
as ∂−n+1 preserves representatives, if follows that

b + ∂+
n+1(u) = κn(a) + ∂−n+1(u), a ∈ An. (∗)

This with the fact that κ is a morphism of chain complex gives

κn−1d
+
n (a) + ∂−n (b) + (∂−n ∂+

n+1 + ∂+
n ∂−n+1)(u) =

= κn−1d
−
n (a) + ∂+

n (b) + (∂+
n ∂+

n+1 + ∂−n ∂−n+1)(u).

But, by 1.4, Bn−1 is cancellative. Therefore κn−1d
+
n (a) = κn−1d

−
n (a) (see 1.10).

Hence d+
n (a) = d−n (a), i.e., a ∈ Zn(A). Then, by (∗), one can write Hn(κ)(cl(a)) =

cl(κn(a)) = cl(b). Thus (2.4.1) is exact at Hn(B). Finally, the commutative diagram

Hn(B)
Hn(σ) //

Hn(kB)

²²

Hn(G)
∂n(E) // Hn−1(A)

Hn−1(kA)

²²
Hn(K(B))

Hn(K(B)) // Hn(G)
∂n(K(E)) // Hn−1(K(A))

shows that if Hn(σ)(Hn(B)) = Hn(K(σ))(Hn(K(B))), then (2.4.1) is exact at
Hn(G). The converse is also true since Hn−1(kA) is injective (see 1.17).

2.5. Theorem. Suppose given a Schreier short exact sequence

G : · · · //
²²

{

²²

Gn+1

dn+1 //
²²

{n+1

²²

Gn

dn //
²²

{n

²²

Gn−1
//

²²

{n−1

²²

· · ·

E : B : · · ·

σ

²²²²

//// Bn+1

∂+
n+1 //

∂−n+1

//

σn+1

²²²²

Bn

∂+
n //

∂−n

//

σn

²²²²

Bn−1
////

σn−1

²²²²

· · ·

C : · · · //// Cn+1

δ+
n+1 //

δ−n+1

// Cn

δ+
n //

δ−n

// Cn−1
//// · · ·
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of chain complexes and their morphisms (see 1.11) such that each Gn is a Λ-module
(therefore each differential ∂−n obviously preserves representatives (see 1.2)). Assume
that one of the following conditions holds:

(i) σ is a ±-morphism.
(ii) C is a chain complex of cancellative Λ-semimodules.

Then the long homology sequence

· · ·→Hn(G)
Hn(κ) // Hn(B)

Hn(σ) // Hn(C)
∂n(E) // (2.5.1)

∂n(E) // Hn−1(G)
Hn−1(κ) // Hn−1(B) // · · ·

(here ∂n(E) evidently coincides with ∂n(K(E))Hn(kC)) is exact at Hn(B) and at
Hn(C), ∂n(E)(Hn(C)) ⊂ Ker(Hn−1(κ)), and Hn(σ) is a normal Λ-homomorphism.
Furthermore, if ∂n(K(E))Hn(kC)(Hn(C)) = ∂n(K(E))(Hn(K(C))) then (2.5.1) is
exact at Hn−1(G). When (ii) holds, the converse is also valid.

Proof. By Proposition 2.1, Sequence (2.5.1) is an ordinary chain complex. Assume
that (ii) holds. Then, by 1.4, the commutative diagram

Hn(G)
Hn(κ) // Hn(B)

Hn(σ) //

Hn(kB)

²²

Hn(C)

Hn(kC)

²²
Hn(G)

Hn(K(κ)) // Hn(K(B))
Hn(K(σ)) // Hn(K(C))

satisfies the hypotheses of Lemma 1.9 (see 1.17). Therefore (2.5.1) is exact at
Hn(B) and Hn(σ) is normal. When (i) holds, we prove the same as follows. Let
b1, b2 ∈ Zn(B), i.e., ∂+

n (b1) = ∂−n (b1) and ∂+
n (b2) = ∂−n (b2), and let Hn(σ)(cl(b1)) =

Hn(σ)(cl(b2)), i.e., cl(σn(b1)) = cl(σn(b2)). Then σn(b1) + δ+
n+1(p) + δ−n+1(q) =

σn(b2)+δ+
n+1(q)+δ−n+1(p) for some p, q ∈ Cn+1. Take x, y ∈ Bn+1 with σn+1(x) = p

and σn+1(y) = q, and write σn(b1) + δ+
n+1σn+1(x) + δ−n+1σn+1(y) = σn(b2) +

δ+
n+1σn+1(y) + δ−n+1σn+1(x). This, as σ is a ±-morphism, implies

σn

(
b1 + ∂+

n+1(x) + ∂−n+1(y)
)

= σn

(
b2 + ∂+

n+1(y) + ∂−n+1(x)
)
.

Therefore, by 1.2,

b1 + ∂+
n+1(x) + ∂−n+1(y) = κn(g) + b2 + ∂+

n+1(y) + ∂−n+1(x), g ∈ Gn. (∗∗)
Whence

∂+
n (b1) + ∂+

n ∂+
n+1(x) + ∂+

n ∂−n+1(y) =

= ∂+
n κn(g) + ∂+

n b2 + ∂+
n ∂+

n+1(y) + ∂+
n ∂−n+1(x)
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and

∂−n (b1) + ∂−n ∂+
n+1(x) + ∂−n ∂−n+1(y) =

= ∂−n κn(g) + ∂−n (b2) + ∂−n ∂+
n+1(y) + ∂−n ∂−n+1(x).

The last two equalities give

∂+
n κn(g) + ∂+

n (b2) + ∂+
n ∂+

n+1(y) + ∂+
n ∂−n+1(x)+

+ ∂−n (b1) + ∂−n ∂+
n (x) + ∂−n ∂−n+1(y) =

=∂−n κn(g) + ∂−n (b2) + ∂−n ∂+
n+1(y) + ∂−n ∂−n+1(x)+

+ ∂+
n (b1) + ∂+

n ∂+
n (x) + ∂+

n ∂−n+1(y).

But ∂+
n (b1) = ∂−n (b1), ∂+

n (b2) = ∂−n (b2), ∂+
n κn(g) = κn−1dn(g) + ∂−n κn(g) and

∂+
n ∂+

n+1 + ∂−n ∂−n+1 = ∂+
n ∂−n+1 + ∂−n ∂+

n+1. Consequently, we have

κn−1dn(g) + w = w, w ∈ Bn−1.

Whence, by 1.2, dn(g) = 0. That is, g ∈ Ker(dn). Then, by (∗∗), one can write

cl(b1) = Hn(κ)(cl(g)) + cl(b2).

Thus, by 1.8, we conclude that (2.5.1) is exact at Hn(B) and Hn(σ) is normal.
We next show that Ker(∂n(E)) ⊂ Hn(σ)(Hn(B)). Let c ∈ Zn(C). Take any b ∈

Bn with σn(b) = c. By definition of ∂n(E), ∂n(E)(cl(c)) = cl(g), g ∈ Zn−1(G), and g
satisfies the equality ∂+

n (b) = κn−1(g)+∂−n (b) (see 1.2). Assume that ∂n(E)(cl(c)) =
0, i.e., cl(g) = 0. Then g = dn(h), h ∈ Gn. As κ is a morphism, we can write
∂+

n (b−κn(h)) = ∂+
n (b)− ∂+

n κn(h) = κn−1(g) + ∂−n (b)− (κn−1dn(h) + ∂−n κn(h)) =
∂−n (b)−∂−n κn(h) = ∂−n (b−κn(h)). Hence b−κn(h) ∈ Zn(B). Clearly, Hn(σ)(cl(b−
κn(h))) = cl(c). Thus (2.5.1) is exact at Hn(C).

Finally, the commutative diagram

Hn(C)
∂n(E) //

Hn(kC)

²²

Hn−1(G)
Hn−1(κ) // Hn−1(B)

Hn−1(kB)

²²
Hn(K(C))

∂n(K(E)) // Hn−1(G)
Hn−1(K(κ)) // Hn−1(K(B))

shows that if ∂n(K(E))Hn(kC)(Hn(C)) = ∂n(K(E))(Hn(K(C))), then (2.5.1) is
exact at Hn−1(G). When (ii) holds, the converse is also true since Hn−1(kB) is
injective (see 1.4 and 1.17).

2.6. Remark. For a Schreier short exact sequence E : G // κ // B
σ // // C of

chain complexes, where G is an ordinary chain complex of Λ-modules,
one always has the connecting homomorphism ∂n(K(E))Hn(kC). But in general
Hn−1(κ)∂n(K(E))Hn(kC) 6= 0. Moreover, if neither (i) nor (ii) holds, Theorem 2.5
need not hold even in the case when Hn−1(κ)∂n(K(E))Hn(kC) = 0 and Hn(σ) is
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defined for all n (see 1.16). Indeed, consider the following diagram

G :
²²

κ
²²

· · · // 0 //
²²

²²

0 //
²²

²²

0 //
²²

²²

0 //
²²

²²

0 //
²²

²²

· · ·

B :
²²

σ

²²

· · · // 0 //
²²

²²

M
1 //

²²
1

²²

M
0 //

²²
1

²²

M //
²²

1

²²

0 //
²²

²²

· · ·

C : · · · //// 0 //// M
1+1 //
1

// M
1 //
1

// M //// 0 //// · · ·

in which M is an abelian monoid and 1 = 1M . Clearly, σ = (. . . , 0, 1, 1, 1, 0, . . . ) is a
morphism of chain complexes (see 1.14 and 1.11). One can easily see that the long
homology sequence associated to this diagram coincides with the sequence

· · · // 0 // E(M) // 0 // 0 // 0 //

// 0 // M
k // M ′ // 0 // · · ·

where E(M) is the monoid of all idempotents of M , M ′ denotes the largest cancella-
tive homomorphic image of M , and k is the canonical homomorphism. (M ′ = M/∼,
m1 ∼ m2, m1,m2 ∈ M ⇔ m1+m = m2+m, m ∈ M . cl∼(m1)+cl∼(m2) = cl∼(m1+
m2), k(m) = cl∼(m).) Let δ+

1 = 1 + 1. Hence H1(C) = E(M), H−1(B) = M ,
H−1(C) = M ′ and H−1(σ) = k. If E(M) 6= 0, then this sequence is not exact at
H1(C) as well as at H−1(B).

2.7. Example. Let f = {fn} : X = {Xn, ∂+
n , ∂−n } −→ X ′ = {X ′

n, ∂ ′+n , ∂
′
n

−} be
a morphism of chain complexes. The mapping cone of f is the chain complex

Cf =
{
(Cf )n, d+

n , d−n
}
, (Cf )n = Xn−1 ⊕X ′

n,

d+
n (x, x′)=

(
∂−n−1(x), ∂

′
n

+
(x′)+fn−1(x)

)
, d−n (x, x′)=

(
∂+

n−1(x), ∂
′
n

−
(x′)

)
.

There is a Schreier short exact sequence of chain complexes and their ±-morphisms

X ′ : · · ·

i
f

²²²²

//// X ′
n+1

∂
′+
n+1 //

∂
′−
n+1

//

(i
f

)n+1

²²²²

X ′
n

∂
′
n

+

//

∂
′
n

−
//

(i
f

)n

²²²²

X ′
n−1

////

(i
f

)n−1

²²²²

· · ·

Ef : Cf : · · ·

p
f

²²²²

//// Xn⊕X ′
n+1

d+
n+1 //

d−n+1

//

(p
f

)n+1

²²²²

Xn−1⊕X ′
n

d+
n //

d−n

//

(p
f

)n

²²²²

Xn−2⊕X ′
n−1

////

(p
f

)n−1

²²²²

· · ·

X[−1] : · · · //// Xn

∂−n //
∂+

n

// Xn−1

∂−n−1 //
∂+

n−1

// Xn−2
//// · · ·

where (i
f
)n sends x′ to (0, x′), and (p

f
)n sends (x, x′) to x. An element (x, x′) of
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Xn−1 ⊕ X ′
n is a representative of (Ef )n if and only if x′ ∈ U(X ′

n), where U(X ′
n)

denotes the maximal Λ-submodule of X ′
n. Therefore each d−n obviously preserves

representatives. Assume that X ′ is a chain complex of cancellative Λ-semimodules.
Then, by Proposition 2.1, we have the long homology sequence

H(Ef ) : · · · → Hn(X ′)
Hn(i

f
)
// Hn(Cf )

Hn(p
f
)
// Hn(X[−1])

∂n(Ef )//

∂n(Ef )// Hn−1(X ′)
Hn−1(if

)
// Hn−1(Cf ) // · · ·

associated to Ef . One can easily see that in fact Hn(X[−1]) = Hn−1(X), and
∂n(Ef ) = Hn−1(f). Furthermore, Theorems 2.4 and 2.5 together with 1.7 imply
the following

Corollary. Let f = {fn} : X = {Xn, ∂+
n , ∂−n } −→ X ′ = {X ′

n, ∂
′ +
n , ∂

′ −
n } be a

morphism of chain complexes and suppose that one of the following holds:
(i) For each n, X ′

n is a cancellative Λ-semimodule, Xn a Λ-module, and
Hn(p

f
)(Hn(Cf )) = Hn(p

K(f))(Hn(C
K(f))).

(ii) For each n, X ′
n is a Λ-module and Hn(f)(Hn(X)) = Hn(K(f))(Hn(K(X))).

Then H(Ef ) is exact everywhere, and Hn(i
f
), Hn(p

f
) and ∂n(Ef )(= Hn−1(f)) are

normal Λ-homomorphisms for all n (see 2.3).

Proof. Suppose (i) holds. Since K commutes with mapping cones, it follows easily
that Hn(p

f
)(Hn(Cf )) = Hn(K(p

f
))(Hn(K(Cf ))) for all n. Therefore, thinking of

p
f

= {(p
f
)n} as a morphism from Cf to {Xn−1, ∂

−
n−1− ∂+

n−1}, we conclude, by 2.4,
that H(Ef ) is exact everywhere and Hn(i

f
) is normal. By 1.7, Hn(p

f
) and ∂n(Ef )

are also normal. When (ii) holds, the assertion is clear since Hn−1(f) = ∂n(Ef ) =
∂n(K(Ef ))Hn(kX[−1]) and Hn−1(K(f)) = ∂n(EK(f)) = ∂n(K(Ef )) (see 2.5 and
1.7).

In subsequent papers we shall give applications of 2.4, 2.5 and 2.7.
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