Regular Maximal Monotone Operators and the Sum Theorem

Andrei Verona

Department of Mathematics, California State University, Los Angeles, CA 90032, USA. e-mail: averona@calstatela.edu

Maria Elena Verona

Department of Mathematics, University of Southern California, Los Angeles, CA 90089-1113, USA. e-mail: verona@math.usc.edu

Received July 31, 1998 Revised manuscript received July 26, 1999

In this note, which is a continuation of [17], we study two classes of maximal monotone operators on general Banach spaces which we call C_0 (resp. C_1)-regular. All maximal monotone operators on a reflexive Banach space, all subdifferential operators, and all maximal monotone operators with domain the whole space are C_1 -regular and all linear maximal monotone operators are C_0 -regular. We prove that the sum of a C_0 (or C_1)-regular maximal monotone operator with a maximal monotone operator which is locally inf bounded and whose domain is closed and convex is again maximal monotone provided that they satisfy a certain "dom-dom" condition. From this result one can obtain most of the known sum theorem type results in general Banach spaces. We also prove a local boundedness type result for pairs of monotone operators.

1. Introduction

Let X be a Banach space and X^* be its dual, endowed with the dual norm. We shall denote by B (resp. B^*) the unit ball of X (resp. X^*). Let also $\langle \cdot, \cdot \rangle : X^* \times X \to R$ denote the usual evaluation map, i.e. $\langle x^*, x \rangle = x^*(x)$.

Recall that a multivalued map $T: X \rightrightarrows X^*$ is called a monotone operator if $\langle x^* - y^*, x - y \rangle \geq 0$ whenever $x, y \in X$, $x^* \in T(x)$, and $y^* \in T(y)$. The set of all $x \in X$ such that $T(x) \neq \emptyset$ is called the domain of T and is denoted D_T . If T is monotone and A is a subset of X, a pair $(y, y^*) \in A \times X^*$ is called monotonically related to T on A if $\langle x^* - y^*, x - y \rangle \geq 0$ whenever $x \in A$ and $x^* \in T(x)$. The monotone operator T is called maximal on A if $y^* \in T(y)$ whenever the pair (y, y^*) is monotonically related to T on A. (If A = X, we shall omit X from the above terminology.)

Let $T: X \rightrightarrows X^*$ be a monotone operator, C be a closed convex subset of $X, x \in C$, and $x^* \in X^*$. Consider the following extended numbers (extended means that $+\infty$ is a possibility)

$$L_C(x, x^*, T) = 0 \vee \sup \left\{ \frac{\langle z^* - x^*, x - z \rangle}{\|x - z\|}; \ z \in C, \ z \neq x, \ z^* \in T(z) \right\}$$

ISSN 0944-6532 / \$ 2.50 © Heldermann Verlag

$$M_C(x, x^*, T) = 0 \lor \inf_{u^* \in T(x)} \sup \left\{ \frac{\langle u^* - x^*, x - z \rangle}{\|x - z\|}; \ z \in C, \ z \neq x \right\}$$

(here $a \lor b = \max\{a, b\}$; we use the usual conventions that $\inf \emptyset = +\infty$ and $\sup \emptyset = -\infty$). When C = X we shall denote $L_C(x, x^*, T)$ by $L(x, x^*, T)$ and $M_C(x, x^*, T)$ by $M(x, x^*, T)$.

In the particular case when T is the subdifferential of a lower semicontinuous convex function and C=X, these numbers were introduced by Simons [11] who proved that they are equal to each other. In [17] we proved that these numbers are also equal when $\operatorname{co}(D_T)-C$ absorbs $\overline{\operatorname{lin}(D_T-C)}$ and either X is reflexive and T is maximal monotone or T is the subdifferential of a proper, convex, lower semicontinuous function on X. (Here "co" stands for "convex hull of" and "lin" stands for "linear span of".) As a matter of fact, we proved their equality in a more general setting. Before stating this result we need to introduce some notation. For $\lambda \geq 0$, let $g_{\lambda,x}: X \to R$ be defined by $g_{\lambda,x}(u) = \lambda \|u-x\|$. Let also I_C denote the indicator function of C (i.e. $I_C(z) = 0$ if $z \in C$ and $I_C(z) = +\infty$ otherwise). The following theorem was proved in [17] (see Theorem 1):

Theorem 1.1. Let $C \subseteq X$ be nonempty, closed, convex, $T : X \rightrightarrows X^*$ be monotone, and $x \in X$. Assume that $T + \partial g_{\lambda,x} + \partial I_C$ is maximal monotone for any $\lambda \geq 0$. Then $L(x, x^*, T + \partial I_C) = M(x, x^*, T + \partial I_C)$. If $x \in C$, then $L_C(x, x^*, T) = M_C(x, x^*, T)$.

For any monotone operator $T: X \rightrightarrows X^*$ define

$$\mathcal{C}_0(T) = \{C \subseteq X; C \text{ is closed, convex, and } D_T \cap \operatorname{int}(C) \neq \emptyset\}$$

$$C_1(T) = \{C \subseteq X; C \text{ is closed, convex, and } \bigcup_{\lambda > 0} \lambda(\operatorname{co}(D_T) - C) = \overline{\operatorname{lin}(D_T - C)}\}$$

Clearly $\mathcal{C}_0(T) \subseteq \mathcal{C}_1(T)$.

Definition 1.2.

- (1) A maximal monotone operator $T: X \Rightarrow X^*$ is called X-regular if $L(x, x^*, T) = M(x, x^*, T)$ for any $x \in X$ and $x^* \in X^*$.
- (2) Let $i \in \{0, 1\}$. A maximal monotone operator $T: X \rightrightarrows X^*$ is called \mathcal{C}_{i} -regular if $L(x, x^*, T + \partial I_C) = M(x, x^*, T + \partial I_C)$ for any $x \in X$, $x^* \in X^*$ and any $C \in \mathcal{C}_{i}(T)$.

Remark 1.3. (1) Of course the statement "T is C_1 -regular" implies that "T is C_0 -regular" which in turn implies that "T is X-regular".

(2) If T is C_1 -regular and $C \in C_1(T)$ then $D_T \cap C \neq \emptyset$. Indeed, if $D_T \cap C = \emptyset$, then $L_X(x, x^*, T + \partial I_C) = 0 \vee \sup \emptyset = 0 \vee \{-\infty\} = 0$ and thus $M_X(x, x^*, T + \partial I_C) = 0$, implying that $x \in D_T \cap C$ for any $(x, x^*) \in X \times X^*$, which is not true.

In [17], as a consequence of Theorem 1.1, we proved that maximal monotone operators on reflexive Banach spaces as well as subdifferential operators (on any Banach space) are C_1 -regular.

Here are other results that we proved in [17] and will be used in this paper:

(i) If $C \subseteq X$ is closed and convex and $x \in C$ then $L_C(x, x^*, T) = L(x, x^*, T + \partial I_C)$ and $M_C(x, x^*, T) = M(x, x^*, T + \partial I_C)$.

- (ii) $M(x, x^*, T) < +\infty$ if and only if $x \in D_T$.
- (iii) $M(x, x^*, T) = 0$ if and only if $x^* \in \overline{T(x)}$.
- (iv) If T is X-regular then $\overline{D_T}$ is convex.
- (v) If T is X-regular and $x \in \overline{D_T}$ then T is locally bounded at x if and only if $x \in \text{int}(D_T)$.
- (vi) A C_0 -regular maximal monotone operator is maximal monotone locally (i.e. it is maximal monotone on any open convex subset of X which intersects its domain).

One of the important open problems in convex analysis is to find conditions under which the sum T+S of two maximal monotone operators T and S is maximal monotone. When X is reflexive, Rockafellar [10] proved that a sufficient condition for the "sum theorem" to be true is that $\operatorname{int}(D_T) \cap D_S$ be nonempty. This condition was relaxed by several authors (see [1], [3], [13]), the apparently least restrictive one being due to Simons (Theorem 26 in [13]) who proved that the sum theorem is true whenever S and T satisfy a certain χ constraint qualification (for example if $\operatorname{co}(D_T) - \operatorname{co}(D_S)$ absorbs $\overline{\operatorname{lin}(D_T - D_S)}$. Later, in [14], Simons proved that these less restrictive conditions (his and the other ones) are equivalent to each other. The proofs of all these results rely heavily on the assumption that X is a reflexive Banach space. When X is a Banach space, not necessarily reflexive, the sum theorem is known to be true only in a few particular cases (see Chapter IX in [15]). Here are some of them:

- (a) $D_T = X = D_S$ (due to M. Heisler; see Section 3 in [5] or Theorem 40.4 in [15]).
- (b) both T and S are linear and $D_S = X$ (see Theorem 7.2 in [7] or Theorem 37.1 in [15]).
- (c) T is the subdifferential of a proper lower semicontinuous convex function on X and S is linear with $D_S = X$ (due to H. Bauschke; see Theorem 42.2 in [15]).

It is our aim in this paper to prove the sum theorem (in any Banach space X) in the case when T is C_i -regular ($i \in \{0, 1\}$), S is locally inf bounded (see the definition in the next section), $D_S \in C_i(T)$, and D_T and D_S satisfy an additional condition. Since we shall also prove that a maximal monotone operator whose domain is X (or which is linear or which is the subdifferential of a proper lower semicontinuous convex function) is C_0 -regular, and since a maximal monotone operator whose domain is X is locally inf bounded, our result is a generalization of (a), (b), and (c).

Finally we would like to mention that one can also introduce dual numbers

$$L_V^*(x, x^*, T) = 0 \vee \sup \left\{ \frac{\langle z^* - x^*, x - z \rangle}{\|x^* - z^*\|}; \quad z^* \in V, \ z^* \neq x^*, \ z^* \in T(z) \right\}$$

$$M_V^*(x, x^*, T) = 0 \ \lor \inf_{(z, x^*) \in \mathcal{G}(T)} \sup \left\{ \frac{\langle u^* - x^*, x - z \rangle}{\|x^* - z^*\|}; \ z^* \in V, \ z^* \neq x^* \right\}$$

for any $(x, x^*) \in X \times X^*$, $V \subseteq X^*$. We shall study properties of these numbers in another paper.

2. A sum theorem

We begin with a construction and a lemma that will be useful in reducing statements about monotone operators on X to statements about monotone operators on a closed subspace.

118 A. Verona, M. E. Verona / Regular maximal monotone operators and the sum theorem

Given $T:X\rightrightarrows X^*$ and $Y\subseteq X$ a closed subspace, define $T|Y:Y\rightrightarrows Y^*$ by

$$(T|Y)(y) = \{y^* \in Y^*; \text{ there exists } x^* \in T(y) \text{ such that } y^* = x^*|Y\}.$$

If C is a closed convex subset of Y, in addition to $I_C: X \to R \cup \{+\infty\}$ we shall also consider $I_{C,Y}: Y \to R \cup \{+\infty\}$, the indicator function of C in Y, and its subdifferential $\partial I_{C,Y}: Y \rightrightarrows Y^*$. It is easy to verify that $\partial I_{C,Y} = (\partial I_C)|Y$.

Lemma 2.1. Let $T:X \rightrightarrows X^*$ be monotone, $Y\subseteq X$ be a closed subspace such that $D_T\subseteq Y$. Let also C be a closed convex subset of Y and $x\in Y$. Then

- (a) T is maximal monotone $\iff T = T + \partial I_Y$ and $T | Y : Y \implies Y^*$ is maximal monotone.
- (b) $L_X(x, x^*, T + \partial I_C) = L_Y(x, x^*|Y, T|Y + \partial I_{C,Y}).$
- (c) $M_X(x, x^*, T + \partial I_C) = M_Y(x, x^*|Y, T|Y + \partial I_{C,Y})$

Proof. (a) See Lemma 25 in [13]. To prove (b) notice that, since $C \subseteq Y$, $\partial I_C = \partial I_C + \partial I_Y$ and therefore

$$L_X(x, x^*, T + \partial I_C) = L_X(x, x^*, T + \partial I_C + \partial I_Y)$$

$$= L_Y(x, x^*, T + \partial I_C) = L_Y(x, x^*|Y, (T + \partial I_C)|Y)$$

$$= L_Y(x, x^*|Y, T|Y + (\partial I_C)|Y) = L_Y(x, x^*|Y, T|Y + \partial I_{C,Y})$$

the second equality following from Lemma 3 in [17] and the third one from the definitions. The proof of (c) is similar. \Box

We recall now a construction and a related result due to Simons [12]. Given a monotone operator $T:X\rightrightarrows X^*$ define $\psi_T:X\to R\cup\{+\infty\}$ by

$$\psi_T(u) = \sup \left\{ \frac{\langle z^*, u - z \rangle}{1 + ||z||}; z^* \in T(z) \right\}.$$

Being the supremum of affine functions, ψ_T is convex and lower semicontinuous. If $u \in D_T$ and $u^* \in T(u)$, then for any $z \in D_T$ and any $z^* \in T(z)$ we have

$$\frac{\langle z^*, u - z \rangle}{1 + \|z\|} = \frac{\langle z^* - u^*, u - z \rangle}{1 + \|z\|} + \frac{\langle u^*, u - z \rangle}{1 + \|z\|} \le 0 + \|u^*\| \cdot \frac{\|u - z\|}{1 + \|z\|} \le \|u^*\|(1 + \|u\|)$$

which shows that $\psi(u) < +\infty$. Thus

$$D_T \subseteq \operatorname{dom}(\psi_T). \tag{2.1}$$

In [4] Coodey and Simons used a generalization of ψ_T to strengthen earlier results of Rockafellar [8] and Borwein and Fitzpatrick [2]. Among other results they proved that T is locally bounded at each surrounded point of $\operatorname{co}(D_T)$ ($x \in X$ is a surrounded point of A if $X \setminus \{0\} = \bigcup_{\lambda>0} \lambda(A-x)$). A variant of this result for a pair of monotone operators is presented next.

Proposition 2.2. Let $T, S : X \rightrightarrows X^*$ be monotone operators such that $co(D_T) - co(D_S)$ is absorbing. Then there exist $r_0 > 0$ and c > 0 such that

$$||t^*||, ||s^*|| \le c(r_0 + ||z||)(r_0 + ||t^* + s^*||), \text{ whenever } z \in D_T \cap D_S, t^* \in T(z), \text{ and } s^* \in S(z).$$

Proof. Let ψ_T and ψ_S be defined as above. Since $\operatorname{dom}(\psi_T)$ and $\operatorname{dom}(\psi_S)$ are convex, it follows from (2.1) that $\operatorname{co}(D_T) \subseteq \operatorname{dom}(\psi_T)$ and $\operatorname{co}(D_S) \subseteq \operatorname{dom}(\psi_S)$. Thus $\operatorname{co}(D_T) - \operatorname{co}(D_S) \subseteq \operatorname{dom}(\psi_T) - \operatorname{dom}(\psi_S)$ and our assumption implies that $\operatorname{dom}(\psi_T) - \operatorname{dom}(\psi_S)$ is absorbing. From Corollary 4 in [13] it follows that there exist $\varepsilon > 0$ and $r \ge 1$ such that

$$\varepsilon B \subseteq \{x \in X; \psi_T(x) \le r, ||x|| \le r\} - \{x \in X; \psi_S(x) \le r, ||x|| \le r\}.$$

Let $x \in \varepsilon B$, $z \in D_T \cap D_S$, $t^* \in T(z)$, and $s^* \in S(z)$. Then x = a - b with $\psi_T(a) \leq r$, $||a|| \leq r$, $\psi_S(b) \leq r$, and $||b|| \leq r$. We have

$$\langle t^*, x \rangle = \langle t^*, a - z \rangle + \langle s^*, b - z \rangle + \langle t^* + s^*, z - b \rangle$$

$$\leq \psi_T(a)(1 + ||z||) + \psi_S(b)(1 + ||z||) + ||t^* + s^*||(||z|| + r)$$

$$\leq (r + ||z||)(2r + ||t^* + s^*||)$$

from which it follows that

$$||t^*|| \le \frac{(r + ||z||)(2r + ||t^* + s^*||)}{\varepsilon}.$$

A similar estimate can be obtained for $||s^*||$.

Corollary 2.3. Let $T, S : X \rightrightarrows X^*$ be maximal monotone operators such that $co(D_T) - co(D_S)$ is absorbing. Then T(z) + S(z) is a w^* -closed subset of X^* for any $z \in D_T \cap D_S$.

Proof. Since T and S are maximal monotone, T(z) and S(z) are convex and therefore T(z) + S(z) is also convex. In view of the Krein-Smulian theorem it is enough to prove that T(z) + S(z) is bw*-closed, that is every bounded w*-convergent net in T(z) + S(z) has its limit in T(z) + S(z).

Let $\{t_i^*\} \subseteq T(z)$ and $\{s_i^*\} \subseteq S(z)$, be nets such that the net $\{t_i^*+s_i^*\}$ is bounded and w*-convergent to z^* . By the previous proposition, the nets $\{t_i^*\}$ and $\{s_i^*\}$ are also bounded, so they are relatively w*-compact. By replacing them with subnets we may assume that w*-lim $t_i^*=t^*$ and w*-lim $s_i^*=s^*$. Since T and S are maximal monotone, T(z) and S(z) are w*-closed and therefore $t^*\in T(z)$ and $s^*\in S(z)$. Then $z^*=t^*+s^*\in T(z)+S(z)$. \square

Corollary 2.4. Let $T: X \rightrightarrows X^*$ be a maximal monotone operator, $C \in \mathcal{C}_1(T)$, and assume that $L_X(x, x^*, T + \partial I_C) = M_X(x, x^*, T + \partial I_C)$ for any $(x, x^*) \in X \times X^*$. Then $T + \partial I_C$ is maximal monotone. In particular, if $T: X \rightrightarrows X^*$ is \mathcal{C}_0 (resp. \mathcal{C}_1)-regular maximal monotone operator and $C \in \mathcal{C}_0(T)$ (resp. $C \in \mathcal{C}_1(T)$, then $T + \partial I_C$ is maximal monotone.

Proof. Assume first that $\overline{\lim(D_T - C)} = X$, i.e. $\operatorname{co}(D_T) - C$ is absorbing. Let $(x, x^*) \in X \times X^*$ be monotonically related to $T + \partial I_C$. Then $L_X(\underline{x}, x^*, T + \partial I_C) = 0$ and therefore $M_X(x, x^*, T + \partial I_C) = 0$ too. This means that $x^* \in (T + \partial I_C)(x)$. By Corollary 2.3, $(T + \partial I_C)(x)$ is w*-closed and therefore norm-closed too. Thus $x^* \in (T + \partial I_C)(x)$, implying that $T + \partial I_C$ is maximal monotone.

The general case can be reduced to the particular one considered above as follows. First we shall show that there is no loss of generality in assuming that $0 \in D_T \cap C$. To this end, let $c \in D_T \cap C$ (this is possible because of Remark 1.3(2) in the introduction). Define $\tilde{T}: X \rightrightarrows X^*$ by $\tilde{T}(x) = T(x+c)$ and let $\tilde{C} = C - c$. It is easy to see that \tilde{T} is maximal

monotone, $\tilde{C} \in \mathcal{C}_1(\tilde{T})$, $L_X(x, x^*, T + \partial I_C) = L_X(x - c, x^*, \tilde{T} + \partial I_{\tilde{C}})$, $M_X(x, x^*, T + \partial I_C) = M_X(x - c, x^*, \tilde{T} + \partial I_{\tilde{C}})$, and that $T + \partial I_C$ is maximal monotone if and only if $\tilde{T} + \partial I_{\tilde{C}}$ is maximal monotone. Since $0 \in D_{\tilde{T}} \cap \tilde{C}$, our assertion is proved.

Let $Y = \overline{\lim(D_T - C)}$. Since $0 \in D_T \cap C$, it follows that $D_T \subseteq Y$ and $C \subseteq Y$. Then $\operatorname{co}(D_{(T|Y)}) - C$ is absorbing (as a subset of Y) and, from Lemma 2.1, T|Y is maximal monotone and $L_X(x, x^*, T|Y + \partial I_{C,Y}) = M_X(x, x^*, T|Y + \partial I_{C,Y})$ for any $(x, x^*) \in Y \times Y^*$. From the particular case proved at the beginning of the proof it follows that $T|Y + \partial I_{C,Y}$ is maximal monotone. Finally, since $(T + \partial I_C)|Y = T|Y + \partial I_{C,Y}$, from Lemma 2.1 we obtain that $T + \partial I_C$ is maximal monotone.

Let C be a convex subset of X and let $x \in C$. Recall that the tangent cone to C at x, denoted C_x , and the normal cone to C at x, denoted $N_C(x)$, are defined as follows

$$C_x = \overline{\bigcup_{t>0} t(C-x)}$$

$$N_C(x) = \{x^* \in X^*; \langle x^*, z - x \rangle \le 0, \text{ for any } z \in C\}.$$

It is easily verified that

$$N_C(x) = \{x^* \in X^*; \langle x^*, v \rangle \le 0, \text{ for any } v \in C_x\}$$

and (by using a separation argument) that

$$C_x = \{v \in X; \langle x^*, v \rangle \le 0, \text{ for any } x^* \in N_C(x)\}.$$

As a matter of fact, $N_C(x) = \partial I_C(x)$ whenever C is closed.

Lemma 2.5. Let $T: X \rightrightarrows X^*$ be a maximal monotone operator, let C be a convex subset of X such that $D_T \subseteq C$, and let $x \in D_T$. Then $T(x) + N_C(x) = T(x)$.

Proof. Let $z \in D_T$, $z^* \in T(z)$, $x^* \in T(x)$, and $v^* \in N_C(x)$. Then, from the monotonicity of T and the definition of $N_C(x)$, we get

$$\langle x^* + v^* - z^*, x - z \rangle = \langle x^* - z^*, x - z \rangle + \langle v^*, x - z \rangle \ge 0$$

and, since T is maximal monotone, it follows that $x^* + v^* \in T(x)$. Thus $T(x) + N_C(x) \subseteq T(x)$. Since $0 \in N_C(x)$, the other inclusion is obvious.

Before stating our main result, we need one more definition.

Definition 2.6. A multivalued map $T: X \rightrightarrows X^*$ is called *locally inf bounded* if for every $z \in D_T$ there exist $\varepsilon > 0$ and M > 0 such that for any $u \in D_T$ with $||u - z|| \le \varepsilon$ there exists $u^* \in T(u)$ with $||u^*|| \le M$.

Example 2.7. (1) Any monotone operator T whose domain is open is locally inf bounded (because it is locally bounded, see for example Theorem 2.28 in [6]).

(2) If $f: X \to R \cup \{+\infty\}$ is a proper convex function which is locally Lipschitzian on its domain then $D_{\partial f} = \text{dom}(f)$ and ∂f is locally inf bounded (see for example [16], where locally inf bounded monotone operators where called locally efficient).

Theorem 2.8. Let T and S be maximal monotone operators on X and let $i \in \{0, 1\}$. Assume that T is C_i -regular, S is locally inf bounded, and $D_S \in C_i(T)$. If i = 1 assume also that $\overline{\operatorname{co}(D_T) \cap D_S} = \overline{D_T} \cap D_S$ (for example, S satisfies all these conditions if $D_S = X$). Then T + S is maximal monotone.

Proof. Exactly as in the proof of Corollary 2.4, we can assume, without any loss of generality, that $\overline{\ln(D_T - D_S)} = X$. Thus the fact that $D_S \in \mathcal{C}_i(T)$ implies that

$$co(D_T) - D_S$$
 is absorbing. (2.2)

Being maximal monotone, both S and T are w*-closed and convex valued. Thus, for any $z \in D_T \cap D_S$, T(z) + S(z) is convex and, by (2.2) and Corollary 2.3, w*-closed. Assume that T + S is not maximal monotone. Then there exists a pair $(x, y^*) \in X \times X^*$ such that

$$\langle t^* + s^* - y^*, z - x \rangle \ge 0$$
, whenever $z \in D_T \cap D_S, t^* \in T(z)$, and $s^* \in S(z)$ (2.3)

but $y^* \notin (T+S)(x)$.

<u>Claim I.</u> $x \in D_T \cap D_S$ (to be proved later).¹

Thus $T(x) + S(x) \neq \emptyset$ and, as noticed above, T(x) + S(x) is w^* -closed and convex. Since $y^* \notin T(x) + S(x)$, by the separation theorem there exist $u \in X$, with ||u|| = 1, and a real number β such that

$$\langle t^* + s^*, u \rangle < \beta < \langle y^*, u \rangle, \text{ for any } t^* \in T(x), s^* \in S(x).$$
 (2.4)

Since T is X-regular, $\overline{D_T}$ is a closed convex set, (Theorem 7 in [17]), so $D = \overline{D_T} \cap D_S$ is also closed and convex. It is not difficult to see that

$$D = \overline{D_T \cap \text{int}(D_S)} \quad \text{if } i = 0. \tag{2.5_0}$$

The last hypothesis of the theorem implies that

$$D = \overline{\operatorname{co}(D_T) \cap D_S} \quad \text{if } i = 1. \tag{2.5_1}$$

Let D_x be the tangent cone to D at x.

<u>Claim II.</u> $u \in D_x$ (to be proved later).

We shall now choose some constants. First, since S is locally inf bounded, there exist r > 0 and $\alpha > 0$ such that

$$S(z) \cap rB^* \neq \emptyset$$
 whenever $z \in D_S$ and $||z - x|| \le \alpha$. (2.6)

Choose also $0 < \delta \le \frac{1}{2}$ such that $r\delta \le \varepsilon$, where ε is defined next, independently of δ . Let

$$\varepsilon = \frac{1}{4}(\langle y^*, u \rangle - \beta),$$

$$\mu = \sup_{x^* \in T(x)} \langle x^*, u \rangle,$$

¹In order to make the proof easier to follow, we shall claim several results and verify them later.

$$W = \{x^* \in X^*; \langle x^*, u \rangle < \beta + \varepsilon - \mu\}.$$

(It follows from (2.4) that $\mu < +\infty$.) Then W is a w*-open subset of X^* and (2.4) implies that $S(x) \subseteq W$. Finally, since S is maximal, we may also assume that α is small enough that

<u>Claim III.</u> $S(z) \cap rB^* \subseteq W$ whenever $z \in D_S$ and $||z - x|| \le \alpha$ (to be proved later).

We shall next use the fact that T is C_i -regular to derive a contradiction from (2.4). To this end consider the closed convex set

$$C = \{z \in X; \ \|z - x\| \leq \alpha, \ z = x + tv \text{ for some } t > 0 \text{ and some } v \in X \text{ with } \|v - u\| < \frac{\delta}{4}\}.$$

<u>Claim IV.</u> $\|\frac{1}{\|z-x\|}(z-x)-u\| \leq \delta$ for any $z \in C$ (to be proved later).

Since $x + \frac{\alpha}{2}u \in int(C)$ and $u \in D_x$, from the definition of D_x it follows that

$$D \cap \text{int}(C) \neq \emptyset. \tag{2.7}$$

Let $K = D_S \cap C$. If i = 0, then (2.7) and (2.5₀) imply that

$$D_T \cap \operatorname{int}(K) = D_T \cap \operatorname{int}(D_S) \cap \operatorname{int}(C) \neq \emptyset$$

and therefore $K \in \mathcal{C}_0(T)$. If i = 1, then (2.7), and (2.5₁) imply that $\operatorname{co}(D_T) \cap D_S \cap \operatorname{int}(C) \neq \emptyset$. From (2.2) one can deduce now that $\operatorname{co}(D_T) - K$ is absorbing and therefore $K \in \mathcal{C}_1(T)$.

Since T is C_i -regular, $L(x, y^*, T + \partial I_K) = M(x, y^*, T + \partial I_K) < +\infty$ (the inequality because $x \in D_T \cap K$). From the definition of $M(x, y^*, T + \partial I_K)$ there exists $t_0^* \in T(x)$ such that

$$\frac{\langle y^* - t_0^*, z - x \rangle}{\|x - z\|} < L(x, y^*, T + \partial I_K) + \varepsilon, \text{ for any } z \in K.$$

Since $u \in D_x$, there exist $w \in X$ and $\gamma > 0$ such that $\langle y^* - t_0^*, u \rangle \leq \langle y^* - t_0^*, w \rangle + \varepsilon$ and $x + \gamma w \in K$. Then, from the above inequality, we obtain

$$\langle y^* - t_0^*, u \rangle \le \langle y^* - t_0^*, w \rangle + \varepsilon = \frac{\langle y^* - t_0^*, (x + \gamma w) - x \rangle}{\|x - (x + \gamma w)\|} < L(x, y^*, T + \partial I_K) + 2\varepsilon.$$

From the definition of $L(x, y^*, T + \partial I_K)$, there exist $z \in K \cap D_T$ and $t^* \in T(z)$ such that

$$\langle y^* - t_0^*, u \rangle < \frac{\langle t^* - y^*, x - z \rangle}{\|x - z\|} + 2\varepsilon.$$

This inequality can be rewritten as

$$\langle y^* - t_0^*, u \rangle < \langle y^* - t^*, v \rangle + 2\varepsilon,$$
 (2.8)

where v = (1/||z - x||)(z - x); since $z \in C$, by Claim IV,

$$||v - u|| < \delta. \tag{2.9}$$

Choose now $s^* \in S(z) \cap rB^*$ (this is possible by (2.6)). From (2.2) we obtain

$$\langle t^* + s^* - y^*, v \rangle \ge 0$$

or

$$\langle y^* - t^*, v \rangle \le \langle s^*, v \rangle.$$

Using (2.8) and this last inequality we get

$$\begin{split} \langle y^*, u \rangle &< \langle t_0^*, u \rangle + \langle y^* - t^*, v \rangle + 2\varepsilon \leq \langle t_0^*, u \rangle + \langle s^*, v \rangle + 2\varepsilon \\ &= \langle t_0^*, u \rangle + \langle s^*, u \rangle + \langle s^*, v - u \rangle + 2\varepsilon \\ &\quad \text{(by Claim III)} \\ &\leq \langle t_0^*, u \rangle + \beta + \varepsilon - \mu + \|s^*\| \|v - u\| + 2\varepsilon \\ &\quad \text{(by (2.9) and then by the choice of } \delta)} \\ &\leq \langle t_0^*, u \rangle - \mu + \beta + 3\varepsilon + r\delta \leq 0 + \beta + 4\varepsilon = \langle y^*, u \rangle \end{split}$$

which is impossible. Thus T + S must be maximal monotone.

Proof of Claim I. Let $x_0 \in D_T \cap \operatorname{int}(D_S)$ if i = 0 (resp. $x_0 \in D_T \cap D_S$ if i = 1) and let $[x, x_0]$ be the segment joining x and x_0 . Since D_S is closed and convex there exists $x_1 \in [x, x_0] \cap D_S$ such that $[x, x_0] \cap D_S = [x_1, x_0]$. Since S is locally inf bounded and $[x_1, x_0]$ is compact, there exists m > 0 and an open neighborhood A of $[x_1, x_0]$ such that for any $z \in A \cap D_S$ there exists $s^* \in S(z)$ with $||s^*|| \leq m$. For any $\rho > 0$ let $K_\rho = \{(1-t)x + tu; 0 \leq t \leq 1, ||u-x_0|| \leq \rho\}$. We claim that if ρ is small enough, then $K_\rho \cap D_S \subseteq A$. If this was not true, then there would exist a sequence $u_n \to x_0$ in X and a sequence $t_n \to t$ in [0,1] such that $t_n = (1-t_n)x + tu_n \in D_S$ and $t_n \notin A$. Then $t_n = (1-t_n)x + tx_0 = \lim_{n \to \infty} t \in A$ (since $t_n = (1-t_n)x + tu_n \in A$) is closed). Since $t_n = (1-t_n)x + tx_0 = \lim_{n \to \infty} t \in A$ (since $t_n = (1-t_n)x + tu_n \in A$) is closed. Since $t_n = (1-t_n)x + tu_n \in A$ (since $t_n = (1-t_n)x + tu_n \in A$) is closed. Since $t_n = (1-t_n)x + tu_n \in A$ (since $t_n = (1-t_n)x + tu_n \in A$) is closed. Thus there exists $t_n = (1-t_n)x + tu_n \in A$ and a contradiction. Thus there exists $t_n = (1-t_n)x + tu_n \in A$ are contradiction. Thus

Let $z \in D_T \cap K \cap D_S$, $t^* \in T(z)$, and $u^* \in \partial I_{K \cap D_S}(z) = \partial (I_K + I_{D_S})(z)$. Since $\operatorname{int}(K) \cap D_S \neq \emptyset$, from the sum formula for subdifferentials, there exist $j^* \in \partial I_K(z)$ and $i^* \in \partial I_{D_S}(z)$ such that $u^* = j^* + i^*$. From the previous discussion, we can also choose $s^* \in S(z)$ with $||s^*|| \leq m$. Then $\langle j^*, x - z \rangle \leq 0$ and, by Lemma 2.5, $s^* + i^* \in S(z)$. From (2.3) we obtain

$$\frac{\langle t^* + u^* - y^*, x - z \rangle}{\|x - z\|} = \frac{\langle t^* + s^* + i^* - y^*, x - z \rangle}{\|x - z\|} + \frac{\langle j^*, x - z \rangle}{\|x - z\|} - \frac{\langle s^*, x - z \rangle}{\|x - z\|} \le 0 + \|s^*\| \le m.$$

Thus $L(x, y^*, T + \partial I_{K \cap D_S}) < +\infty$. Since $x_0 \in \operatorname{int}(K)$, then either $x_0 \in D_T \cap \operatorname{int}(D_S \cap K)$ if i = 0 or, using (2.2), $\operatorname{co}(D_T) - D_S \cap K$ absorbs X if i = 1. In both cases $D_S \cap K \in \mathcal{C}_i(T)$. Since T is \mathcal{C}_i -regular, it follows that $M(x, y^*, T + \partial I_{K \cap D_S}) = L(x, y^*, T + \partial I_{K \cap D_S}) < +\infty$, hence $x \in D_T \cap D_S \cap K$ (by (ii) in the Introduction). This proves Claim I.

<u>Proof of Claim II.</u> Assume that $u \notin D_x$. Then, by the separation theorem, there exists $u^* \in X^*$ such that

$$\langle u^*, z \rangle < \langle u^*, u \rangle \text{ for all } z \in D_x.$$
 (2.10)

Since $0 \in D_x$, $\langle u^*, u \rangle > 0$; since $tz \in D_x$ for any t > 0 and any $z \in D_x$, it follows from (2.10) that $\langle u^*, z \rangle \leq 0$ for any $z \in D_x$, which means that $u^* \in \partial I_D(x) = \partial (I_{\overline{D}_T} + I_{D_S})(x)$. Since $D_T - D_S$ is absorbing, the sum formula for subdifferentials implies that $u^* = v^* + w^*$, $v^* \in \partial I_{\overline{D}_T}(x)$, $w^* \in \partial I_{D_S}(x)$. Choose $t^* \in T(x)$ and $s^* \in S(x)$. Then, by Lemma 2.5, $t^* + \lambda v^* \in T(x)$ and $s^* + \lambda w^* \in S(x)$ for any $\lambda \geq 0$. It follows from (2.4) that $\langle u^*, u \rangle = \langle v^*, u \rangle + \langle w^*, u \rangle \leq 0$ which contradicts our earlier finding that $\langle u^*, u \rangle > 0$. This contradiction proves Claim II.

<u>Proof of Claim III.</u> If the claim was not true, (2.9) would imply that there exist a sequence $\{x_n\}$ converging to x and a sequence $\{w_n^*\}$ with $w_n^* \in S(x_n) \cap rB^*$ but

$$\langle w_n^*, u \rangle \ge \beta + \varepsilon - \mu. \tag{2.11}$$

If w^* is a limit point of $\{w_n^*\}$ (there are such points because $\{w_n^*\} \subset rB^*$), then $\langle w^* - s^*, x - s \rangle \geq 0$ for any $s \in D_S$ and any $s^* \in S(s)$ (because $\langle w_n^* - s^*, x_n - s \rangle \geq 0$). The maximal monotonicity of S implies that $w^* \in S(z)$. From (2.11) we obtain that $\langle w^*, u \rangle \geq \beta + \varepsilon - \mu$ which contradicts the fact that $S(x) \subset W$.

<u>Proof of Claim IV.</u> Given $z = x + tv \in C$, clearly $\frac{1}{\|z - x\|}(z - x) = \frac{1}{\|v\|}v$. We have

$$1 = ||u|| \le ||v|| + ||u - v|| \le ||v|| + \frac{\delta}{4}$$

and thus

$$||v|| \ge 1 - \frac{\delta}{4} \ge \frac{1}{2}$$
 (since $\delta \le \frac{1}{2}$).

Similarly

$$||v|| \le ||v - u|| + ||u|| \le \frac{\delta}{4} + 1.$$

Combining the last inequalities we obtain

$$\left|1 - \|v\|\right| \le \frac{\delta}{4}$$
 and $\|v\| \ge \frac{1}{2}$.

It follows that

$$\left\|\frac{1}{\|v\|}v - u\right\| = \frac{\left\|v - \|v\|u\right\|}{\|v\|} \le \frac{\left\|v - u\right\| + \left\|u - \|v\|u\right\|}{\|v\|} \le \frac{\frac{\delta}{4} + \left|1 - \|v\|\right|}{\|v\|} \le \frac{\frac{\delta}{4} + \frac{\delta}{4}}{\frac{1}{2}} = \delta$$

and thus $\|\frac{1}{\|z-x\|}(z-x)-u\| \le \delta$ for any $z \in C$. This proves Claim IV and completes the proof of the theorem.

Corollary 2.9. Let $S:X \rightrightarrows X^*$ be a maximal monotone operator and f be a proper, convex, lower semicontinuous function on X. Assume that one of the following conditions is satisfied

- (a) $D_S = X$.
- (b) S is C_0 (resp. C_1)-regular, $dom(f) \in C_0(S)$ (resp. $dom(f) \in C_1(S)$ and $\overline{co(D_S) \cap dom(f)}$ = $\overline{D_S} \cap dom(f)$), and f is locally Lipschitz on dom(f).

Then $\partial f + S$ is maximal monotone.

Proof. As mentioned in the introduction, ∂f is a \mathcal{C}_1 -regular maximal monotone operator. The maximal monotonicity of $\partial f + S$ when (a) is satisfied follows from Theorem 2.8. If (b) is satisfied, then ∂f is locally inf bounded and the assertion follows again from Theorem 2.8.

Corollary 2.10. Let $S: X \rightrightarrows X^*$ be a maximal monotone operator.

- (i) S is C_0 -regular if and only if $S + \partial g_{\lambda,x} + \partial I_C$ is maximal monotone for any $\lambda \geq 0$, any $x \in X$, and any $C \in C_0(S)$.
- (ii) If S is C_0 -regular and $C \in C_0(S)$ then $S + \partial I_C$ is C_0 -regular.

Proof. (i) The "if" part is an immediate consequence of Theorem 1.1 in the introduction, while the "only if" part follows from Corollary 2.9 because $f = \partial(g_{\lambda,x} + I_C)$ satisfies condition (b) and $\partial(g_{\lambda,x} + I_C) = \partial g_{\lambda,x} + \partial I_C$.

(ii) It is enough to show that $S + \partial g_{\lambda,x} + \partial I_C + \partial I_K$ is maximal monotone for any $\lambda \geq 0$, any $x \in X$, and any $K \in \mathcal{C}_0(S + \partial I_C)$. Since $D_{S+\partial I_C} = D_S \cap C$ and $K \in \mathcal{C}_0(S + \partial I_C)$, it follows that $D_S \cap C \cap \operatorname{int}(K) \neq \emptyset$ and therefore $S + \partial g_{\lambda,x} + \partial I_C + \partial I_K = S + \partial g_{\lambda,x} + \partial I_{C\cap K}$. If we can show that, $D_S \cap \operatorname{int}(C \cap K) \neq \emptyset$, then $C \cap K \in \mathcal{C}_0(S)$ and (ii) follows from (i).

Choose $u \in D_S \cap \operatorname{int}(C)$ (possible since $C \in \mathcal{C}_0(S)$) and $v \in D_{S+\partial I_C} \cap \operatorname{int}(K) = D_S \cap C \cap \operatorname{int}(K)$. If u = v, we are done. Otherwise, $[u, v) \subseteq \operatorname{int}(C)$, $[u, v] \subseteq \overline{D_S}$ (because S is X-regular and therefore $\overline{D_S}$ is convex), and $v \in \operatorname{int}(K)$. Thus there exists w on the open segment (u, v) such that $w \in \overline{D_S} \cap \operatorname{int}(C) \cap \operatorname{int}(K)$. It is now obvious that $D_S \cap \operatorname{int}(C \cap K) \neq \emptyset$ and, as mentioned above, this proves (ii).

Corollary 2.11.

- (i) If $S: X \rightrightarrows X^*$ is maximal monotone, locally inf bounded, and D_S is closed and convex then S is C_1 -regular. In particular, a maximal monotone operator S with $D_S = X$ is C_1 -regular.
- (ii) If $T, S: X \rightrightarrows X^*$ are maximal monotone, locally inf bounded, D_T, D_S are closed and convex, and $\bigcup_{\lambda>0} \lambda(D_T D_S) = \overline{\lim(D_T D_S)}$, then T + S is maximal monotone.

Proof. (i) Let $C \in \mathcal{C}_1(S)$ and $\lambda \geq 0$. $T = \partial g_{\lambda,x} + \partial I_C = \partial (g_{\lambda,x} + I_C)$ is \mathcal{C}_1 -regular and $D_T = C$. Since $co(D_T) = C = co(C)$ and $co(D_S) = D_S$, we have

$$\bigcup_{\lambda>0} (\operatorname{co}(D_T) - \operatorname{co}(D_S)) = \bigcup_{\lambda>0} (C - D_S) = \overline{\operatorname{lin}(C - D_S)} = \overline{\operatorname{lin}(D_T - D_S)}$$

hence $D_S \in \mathcal{C}_1(T)$. Also, since $D_T = C$ and D_S are closed,

$$\overline{D_T \cap D_S} = \overline{C \cap D_S} = C \cap D_S = \overline{D_T} \cap D_S.$$

By Theorem 2.8, $T + S = S + \partial g_{\lambda,x} + \partial I_C$ is maximal monotone. Thus, by Theorem 1.1 in the introduction, S is C_1 -regular.

(ii) By (i), T is C_1 -regular. Since the conditions of Theorem 2.8 are satisfied, T + S is maximal monotone.

3. Linear maximal monotone operators

A single valued monotone operator T is called *linear* if D_T is a linear subspace of X and $T:D_T\to X^*$ is linear. We begin by recalling a result proved in [7] and [15] (we shall reformulate it so that we can use our notation). Assume that $T:D_T\to X^*$ is linear and monotone. Then

T is maximal monotone

$$\iff$$
 D_T is dense in X and $D_T = \{x \in X; L_X(x, 0, T) < +\infty\}.$ (3.1)

Lemma 3.1. Let $T: D_T \to X^*$ be linear and maximal monotone. Let C be a closed convex subset of X such that $\operatorname{int}(C) \cap D_T \neq \emptyset$, let $x \in X$ and $x^* \in X^*$. If $L_X(x, x^*, T + \partial I_C) < +\infty$ then $x \in D_T$.

Proof. Assume first that $0 \in \operatorname{int}(C) \cap D_T$. In view of (3.1) and the maximal monotonicity of T, it is enough to show that $L_X(x,0,T) < +\infty$. To this end let $g: X \to R$ denote the gauge function associated to C, i.e. $g(z) = \inf\{t \geq 0; z \in tC\}$. Since $\operatorname{int}(C) \neq \emptyset$, g is a continuous semi-norm on X and therefore it is Lipschitzian. Let α denote the Lipschitz constant of g. Set $M = (L_X(x, x^*, T + \partial I_C) + ||x^*||)(\alpha ||x|| + 1)$ and let $z \in D_T$.

Case I: $z \in C$. We have

$$\frac{\langle T(z), x - z \rangle}{\|x - z\|} = \frac{\langle T(z) - x^*, x - z \rangle}{\|x - z\|} + \frac{\langle x^*, x - z \rangle}{\|x - z\|}$$

$$\leq \frac{\langle T(z) - x^*, x - z \rangle}{\|x - z\|} + \|x^*\|$$

$$\leq L_X(x, x^*, T + \partial I_C) + \|x^*\| \leq M \text{ (since } 0 \in \partial I_C(z)).$$

Case II: $z \notin C$. Let t = g(z) and $u = \frac{1}{t}z$. Since C is closed, t > 1 and $u \in C$. We have

$$\frac{\langle T(z), x - z \rangle}{\|x - z\|} = \frac{\langle T(tu), x - tu \rangle}{\|x - tu\|} = \frac{t \langle T(u), x - u \rangle + t \langle T(u), (1 - t)u \rangle}{\|x - tu\|}
\text{ (use the facts that } \langle T(u), u \rangle \ge 0 \text{ and } t > 1)$$

$$\le \frac{t \langle T(u), x - u \rangle}{\|x - tu\|} = \frac{t \langle T(u), x - u \rangle}{t \|x - u\|} \cdot \frac{\|tx - tu\|}{\|x - tu\|}$$

$$= \frac{\langle T(u), x - u \rangle}{\|x - u\|} \cdot \frac{\|tx - tu\|}{\|x - tu\|}$$
(use a computation similar to that in Case I)
$$\le (L_X(x, x^*, T + \partial I_C) + \|x^*\|) \frac{\|tx - tu\|}{\|x - tu\|}$$

$$\le (L_X(x, x^*, T + \partial I_C) + \|x^*\|) \frac{\|tx - x\| + \|x - tu\|}{\|x - tu\|}$$

$$= (L_X(x, x^*, T + \partial I_C) + \|x^*\|) \left(\frac{(t - 1)\|x\|}{\|x - tu\|} + 1\right)$$

$$\le (L_X(x, x^*, T + \partial I_C) + \|x^*\|) \left(\frac{(g(z) - g(x))\|x\|}{\|x - z\|} + 1\right)$$

$$\le (L_X(x, x^*, T + \partial I_C) + \|x^*\|) \left(\frac{(g(z) - g(x))\|x\|}{\|x - z\|} + 1\right)$$

$$\le (L_X(x, x^*, T + \partial I_C) + \|x^*\|) (\alpha \|x\| + 1) \le M.$$

Thus $L_X(x, 0, T) < +\infty$ and, as mentioned above, this proves the lemma in the case when $0 \in D_T \cap \text{int}(C)$.

To prove the general case, let $c \in \text{int}(C) \cap D_T$. A fairly trivial verification shows that

$$L_X(x - c, x^* - T(c), T + \partial I_{C-c}) = L_X(x, x^*, T + \partial I_C) < +\infty.$$

Since $0 \in \text{int}(C-c)$, it follows that $x-c \in D_T$. Since $c \in D_T$ and since D_T is a linear subspace of X, it follows that $x \in D_T$.

Proposition 3.2. Let $T: D_T \to X^*$ be linear and maximal monotone. Then T is C_0 -regular.

Proof. Let C be a closed convex subset of X such that $\operatorname{int}(C) \cap D_T \neq \emptyset$ and let $x \in C$. Since always $0 \leq L_X(x, x^*, T + \partial I_C) \leq M_X(x, x^*, T + \partial I_C)$ (Lemma 1 in [17]), it is enough to assume that $L_X(x, x^*, T + \partial I_C)$ is finite and that $M_X(x, x^*, T + \partial I_C) > 0$ and show that $M_X(x, x^*, T + \partial I_C) \leq L_X(x, x^*, T + \partial I_C)$.

First notice that, by Lemma 3.1, $x \in D_T$. Let $\varepsilon > 0$ and $M < M_X(x, x^*, T + \partial I_C)$. In view of (3.1), D_T is dense in X. Therefore we can find $z \in C \cap D_T$ such that

$$M \le \frac{\langle T(x) - x^*, x - z \rangle}{\|x - z\|}$$

(notice that, since T is single valued, the "inf" from the definition of $M_X(x, x^*, T + \partial I_C)$ disappears).

Let $0 < \lambda < 1$ and let $z_{\lambda} = (1 - \lambda)x + \lambda z \in C \cap D_T$. Clearly $x - z_{\lambda} = \lambda(x - z)$. Choose λ so small that

$$\frac{\lambda \langle T(x-z), x-z \rangle}{\|x-z\|} \le \varepsilon.$$

We have

$$M \leq \frac{\langle T(x) - x^*, x - z \rangle}{\|x - z\|} = \frac{\langle T(x) - x^*, x - z_{\lambda} \rangle}{\|x - z_{\lambda}\|}$$

$$\leq \frac{\langle T(x) - T(z_{\lambda}), x - z_{\lambda} \rangle}{\|x - z_{\lambda}\|} + \frac{\langle T(z_{\lambda}) - x^*, x - z_{\lambda} \rangle}{\|x - z_{\lambda}\|}$$

$$\leq \frac{\langle T(x - z_{\lambda}), x - z \rangle}{\|x - z\|} + L_X(x, x^*, T + \partial I_C)$$

$$\leq \frac{\lambda \langle T(x - z), x - z \rangle}{\|x - z\|} + L_X(x, x^*, T + \partial I_C) \leq \varepsilon + L_X(x, x^*, T + \partial I_C).$$

Since this is true for any $\varepsilon > 0$ and any $M < M_X(x, x^*, T + \partial I_C)$, it follows that $M_X(x, x^*, T + \partial I_C) \leq L_X(x, x^*, T + \partial I_C)$ and the theorem is completely proved.

Combining Proposition 3.2 with Theorem 2.8 we obtain the next corollary which was proved by different methods in both [7] and [15].

Corollary 3.3. If T and S are linear maximal monotone operators on X and $D_S = X$ then T + S is (linear) maximal monotone.

Since a C_0 -regular maximal monotone operator satisfies the conditions of Theorem 10 in [17], we obtain another proof of the following result due to Phelps and Simons [7] and Simons [15].

Corollary 3.4. A linear maximal monotone operator is maximal monotone locally (i.e. it is maximal monotone on any open convex subset of X which intersects its domain).

References

- [1] H. Attouch, H. Théra, M. Théra: Somme ponctuelle d'opérateurs maximaux monotones, Serdica 22 (1996) 165–190.
- [2] J. M. Borwein, S. P. Fitzpatrick: Local boundedness of monotone operators under minimal hypotheses, Bull. Australian Math. Soc. 39 (1989) 439–441.
- [3] L.-J. Chu: On the sum of monotone operators, Michigan Math. J. 43 (1996) 273–289.
- [4] M. Coodey, S. Simons: The convex function determined by a multifunction, Bull. Austral. Math. Soc. 54 (1996) 87–97.
- [5] S. P. Fitzpatrick, R. R. Phelps: Some properties of maximal monotone operators on nonreflexive Banach spaces, Set-Valued Analysis 3 (1995) 51–69.
- [6] R. R. Phelps: Convex Functions, Monotone Operators and Differentiability (2nd Edition), Lecture Notes in Mathematics 1364, Springer-Verlag, Berlin, 1993.
- [7] R. R. Phelps, S. Simons: Unbounded linear monotone operators on nonreflexive Banach spaces, J. Convex Analysis 5 (1998) 303–328.
- [8] R. T. Rockafellar: Local boundedness of nonlinear monotone operators, Mich. Math. J. 16 (1969) 397–407.
- [9] R. T. Rockafellar: On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970) 209–216.
- [10] R. T. Rockafellar: On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc. 149 (1970) 75–88.
- [11] S. Simons: The least slope of a convex function and the maximal monotonicity of its sub-differential, J. Optim. Theory 71 (1991) 127–136.
- [12] S. Simons: The range of a monotone operator, J. Math. Anal. Appl. 199 (1996) 176–201.
- [13] S. Simons: Sum theorems for monotone operators and convex functions, Trans. Amer. Math. Soc. 350 (1998) 2953–2972.
- [14] S. Simons: Pairs of monotone operators, Trans. Amer. Math. Soc. 350 (1998) 2973–2980.
- [15] S. Simons: Minimax and Monotonicity, Lecture Notes in Mathematics 1693, Springer-Verlag, 1998.
- [16] A. Verona, M. E. Verona: Locally efficient monotone operators, Proc. Amer. Math. Soc. 109 (1990) 195–204.
- [17] A. Verona, M. E. Verona: Regular maximal monotone operators, Set-Valued Analysis 6 (1998) 302–312.