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In this note, which is a continuation of [17], we study two classes of maximal monotone operators on
general Banach spaces which we call Cy (resp. C1)-regular. All maximal monotone operators on a reflexive
Banach space, all subdifferential operators, and all maximal monotone operators with domain the whole
space are Ci-regular and all linear maximal monotone operators are Co-regular. We prove that the sum of
a Cg (or Cy)-regular maximal monotone operator with a maximal monotone operator which is locally inf
bounded and whose domain is closed and convex is again maximal monotone provided that they satisfy
a certain “dom-dom” condition. From this result one can obtain most of the known sum theorem type
results in general Banach spaces. We also prove a local boundedness type result for pairs of monotone
operators.

1. Introduction

Let X be a Banach space and X* be its dual, endowed with the dual norm. We shall
denote by B (resp. B*) the unit ball of X (resp. X*). Let also {-,-) : X* x X — R denote
the usual evaluation map, i.e. (z*,z) = z*(z).

Recall that a multivalued map 7' : X =% X* is called a monotone operator if (x* — y*,z —
y) > 0 whenever z,y € X, z* € T(x), and y* € T(y). The set of all z € X such that
T(x) # 0 is called the domain of T and is denoted Dr. If T is monotone and A is a subset
of X, a pair (y,y*) € Ax X* is called monotonically related to T on A if (x*—y*, x—y) > 0
whenever x € A and z* € T'(x). The monotone operator T is called mazimal on A if
y* € T(y) whenever the pair (y,y*) is monotonically related to T"on A. (If A = X, we
shall omit X from the above terminology.)

Let T : X = X* be a monotone operator, C be a closed convex subset of X, x € C,
and z* € X*. Consider the following extended numbers (extended means that +o0o is a
possibility)

2¥—1*,x — 2)

Le(z,z*,T)=0V sup{< ; 2€C, z#x, 2° ET(z)}

lz = ]|
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Mc(z,2*,T) =0V inf sup{<u —x,x—z); 260,27533}

u*€T(x) ||.’E—Z||

(here a Vb = max{a, b}; we use the usual conventions that inf () = 400 and sup ) = —o0).
When C' = X we shall denote Lo (z,z*,T) by L(z,z*,T) and M¢(x,z*,T) by M(x,z*,T).

In the particular case when T is the subdifferential of a lower semicontinuous convex
function and C' = X, these numbers were introduced by Simons [11] who proved that
they are equal to each other. In [17] we proved that these numbers are also equal when
co(D7) — C absorbs lin(Dy — C') and either X is reflexive and 7" is maximal monotone or
T is the subdifferential of a proper, convex, lower semicontinuous function on X. (Here
“co” stands for “convex hull of” and “lin” stands for “linear span of”.) As a matter of
fact, we proved their equality in a more general setting. Before stating this result we need
to introduce some notation. For A > 0, let g , : X — R be defined by g .(u) = A|u—=z]|.
Let also I denote the indicator function of C (i.e. I¢(z) =0if z € C and I¢(z) = +o0
otherwise). The following theorem was proved in [17] (see Theorem 1):

Theorem 1.1. Let C' C X be nonempty, closed, convex, T : X =% X* be monotone,
and x € X. Assume that T 4 0gy, + 0lc is mazimal monotone for any A > 0. Then
L(z,z*, T + 0I¢) = M(z,z*,T + dl¢). If v € C, then Lo(x,2*,T) = Mc(x,z*,T).

For any monotone operator 7' : X = X™* define
Co(T) = {C C X;C is closed, convex, and Dy Nint(C) # (0}
Ci(T) = {C C X;C is closed, convex, and U AMco(Dr) — C) =lin(Dr — C)}

A>0
Clearly CO (T) g Cl (T)

Definition 1.2.

(1) A maximal monotone operator T : X =% X* is called X-regular if L(z,z*,T) =
M (z,2*,T) for any x € X and z* € X*.

(2) Let i€ {0,1}. A maximal monotone operator 7' : X = X* is called C;-regular if
L(z,z*, T+ 0Ic) = M(xz,z*,T + 0l¢) for any x € X, z* € X* and any C € C;(T).

Remark 1.3. (1) Of course the statement “T" is C; -regular” implies that “T" is Cy-regular”
which in turn implies that “T" is X -regular”.

(2) If T is Ci-regular and C' € C;(T) then Dy N C # (. Indeed, if Dy N C = (), then
Lx(z,z*, T+ 0Ic) = 0Vsupld = 0V {—oo} = 0 and thus Mx(z,z*,T + dlc) = 0,
implying that € Dy N C for any (z,z*) € X x X*, which is not true.

In [17], as a consequence of Theorem 1.1, we proved that mazimal monotone operators
on reflexive Banach spaces as well as subdifferential operators (on any Banach space) are
Cy-regular.

Here are other results that we proved in [17] and will be used in this paper:

(i) If C C X is closed and conver and x € C then Lo(z,2*,T) = L(z,2*,T + 0l¢) and
Mc(z,2*,T) = M(z,2*,T + 0l¢).
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(i) M(z,z*,T) < +oo if and only if x € Dr.
(iii) M(z,z*,T) =0 if and only if z* € T(x).
(iv) If T is X-regular then Dt is conver.
(
(

v) IfT is X-regular and x € Dy then T is locally bounded at x if and only if x € int(Dr).
vi) A Cy-regular mazimal monotone operator is mazimal monotone locally (i.e. it is
mazimal monotone on any open conver subset of X which intersects its domain).

One of the important open problems in convex analysis is to find conditions under which
the sum T+ S of two maximal monotone operators T and S is maximal monotone. When
X is reflexive, Rockafellar [10] proved that a sufficient condition for the “sum theorem” to
be true is that int(Dr) N Dg be nonempty. This condition was relaxed by several authors
(see [1], [3], [13]), the apparently least restrictive one being due to Simons (Theorem 26
in [13]) who proved that the sum theorem is true whenever S and 7 satisfy a certain
X constraint qualification (for example if co(D7) — co(Dg) absorbs lin(Dy — Dg). Later,
in [14], Simons proved that these less restrictive conditions (his and the other ones) are
equivalent to each other. The proofs of all these results rely heavily on the assumption
that X is a reflexive Banach space. When X is a Banach space, not necessarily reflexive,
the sum theorem is known to be true only in a few particular cases (see Chapter IX in
[15]). Here are some of them:

(a) Dr =X = Dg (due to M. Heisler; see Section 3 in [5] or Theorem 40.4 in [15]).

(b) both T" and S are linear and Dg = X (see Theorem 7.2 in [7] or Theorem 37.1 in
[15]).

(c) T is the subdifferential of a proper lower semicontinuous convex function on X and
S is linear with Dg = X (due to H. Bauschke; see Theorem 42.2 in [15]).

It is our aim in this paper to prove the sum theorem (in any Banach space X) in the case
when T is C;-regular (i € {0,1}), S is locally inf bounded (see the definition in the next
section), Dg € C;(T), and Dy and Dg satisfy an additional condition. Since we shall also
prove that a maximal monotone operator whose domain is X (or which is linear or which
is the subdifferential of a proper lower semicontinuous convex function) is Cy-regular, and
since a maximal monotone operator whose domain is X is locally inf bounded, our result
is a generalization of (a), (b), and (c).

Finally we would like to mention that one can also introduce dual numbers

(z* —z*,x — 2)

Ly (z, 2", T)=0V sup{ AN B A A A AN < T(z)}

[l = 2]

“ {(u*—x*,x—z)

My (z,2*,T)=0V inf
v [la* — z*]]

(z,2*)€G(T)

;2 eV, z*;éac*}

for any (z,2*) € X x X*, V C X*. We shall study properties of these numbers in another
paper.

2. A sum theorem

We begin with a construction and a lemma that will be useful in reducing statements
about monotone operators on X to statements about monotone operators on a closed
subspace.
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Given T: X =% X* and Y C X a closed subspace, define T|Y : Y =3 Y* by

(TY)(y) = {y" € Y"; there exists 2* € T(y) such that y* = z*[Y'}.

If C is a closed convex subset of Y, in addition to I : X — R U {+oo} we shall also
consider Icy : Y — RU {400}, the indicator function of C in Y, and its subdifferential
Olcy : Y =2 Y*. It is easy to verify that 0I¢cy = (0I¢)|Y.

Lemma 2.1. Let T : X == X* be monotone, Y C X be a closed subspace such that
Dr CY. Let also C be a closed convex subset of Y and x € Y. Then

(a) T is mazimal monotone <= T = T+0Iy and T|Y : Y = Y* is mazimal monotone.
(b) Lx($,$*,T+alc) :Ly($,$*|KT‘Y+aIC,y)

() Mx(z,z*,T+0lc) = My(z,z*|Y,T|Y + 0lcy).

Proof. (a) See Lemma 25 in [13]. To prove (b) notice that, since C C Y, 0l¢ = 0Ic+0Iy
and therefore

Lx(z,2*,T +0I¢) = Lx(z,2*,T + 0I¢c + 0ly)
= Ly(z,2*,T + 0l¢c) = Ly (z,2*|Y, (T + 01¢)|Y)
= Ly(I,SE*|Y,T‘Y + (8[0)\}/) = Ly(iE,.TﬂY,T‘Y + aIC,y)

the second equality following from Lemma 3 in [17] and the third one from the definitions.
The proof of (c) is similar. O

We recall now a construction and a related result due to Simons [12]. Given a monotone
operator T': X =2 X* define ¢y : X — RU {400} by

(z*,u— 2)

Yr(u) = sup {7|, P T(z)} .

1+ ||#]

Being the supremum of affine functions, 17 is convex and lower semicontinuous. If u € Dy
and u* € T'(u), then for any z € Dy and any z* € T(z) we have

<Z*,U—Z> <Z*—U*,U—Z> <U*:U_Z> ||U—Z||
= + <O+ lu]] - < [l (L + lul])
1+ |2 1+ [|z]] 1+ [|2]] 1+ [|z]]
which shows that ¢(u) < +oo. Thus

In [4] Coodey and Simons used a generalization of 97 to strengthen earlier results of
Rockafellar [8] and Borwein and Fitzpatrick [2]. Among other results they proved that T
is locally bounded at each surrounded point of co(Dr) (z € X is a surrounded point of A
if X'\ {0} = U o0 A(A—2)). A variant of this result for a pair of monotone operators is
presented next.

Proposition 2.2. Let T,S : X =% X* be monotone operators such that co(Dr) — co(Dg)
15 absorbing. Then there exist ro > 0 and ¢ > 0 such that

e, |Is*|] < e(ro+||2]])(ro+ ||t* 4+ s*||), whenever z € DrNDg,t* € T(z), and s* € S(z).
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Proof. Let 97 and s be defined as above. Since dom(t¢r) and dom(vs) are convex,
it follows from (2.1) that co(Dr) C dom(v¢r) and co(Dg) C dom(is). Thus co(Dr) —
co(Dg) C dom(¢pr) — dom(es) and our assumption implies that dom(ir) — dom(vg) is
absorbing. From Corollary 4 in [13] it follows that there exist € > 0 and r > 1 such that

eBC{zx e X;¢r(x) <r|z|| <r} —{z e X;¢s(z) <r|z| <r}

Let x € B, z € DrN Dg, t* € T(z), and s* € S(z). Then z = a — b with ¢p(a) < r,
lla|| <7, 1¥s(b) <r, and ||b]| < r. We have

(toy=(t"a—2)+(s,b—2) + ({t"+s",2 —b)
br(a)(1+ lzll) + s (0) (1 + [|2[]) + (17 + s™[|([|2[] + r)
(r

<
< (r+ 121D @ + 1t + 57()

from which it follows that

11l < (r + [l2lD@r + ([ + s7[))
- 9

A similar estimate can be obtained for ||s*||. O

Corollary 2.3. Let T,S : X =% X* be mazimal monotone operators such that co(Dr) —
co(Dg) is absorbing. Then T(z) + S(z) is a w*-closed subset of X* for any z € Dy N Ds.

Proof. Since T and S are maximal monotone, T'(z) and S(z) are convex and therefore
T(z) + S(z) is also convex. In view of the Krein-Smulian theorem it is enough to prove
that T'(z) + S(z) is bw*-closed, that is every bounded w*-convergent net in 7'(z) + S(z)

has its limit in 7'(z) + S(z).

Let {t:} CT(z) and {si} C S(z), be nets such that the net {¢; + s} is bounded and w*-
convergent to z*. By the previous proposition, the nets {¢;} and {s}} are also bounded,
so they are relatively w*-compact. By replacing them with subnets we may assume that
w*-lim¢} = ¢* and w*-lims} = s*. Since T and S are maximal monotone, T'(z) and S(z)
are w*-closed and therefore t* € T'(z) and s* € S(z). Then z* =t*+s* € T(2)+S(z). O

Corollary 2.4. Let T : X = X* be a mazximal monotone operator, C € C1(T), and
assume that Lx(z,2*,T 4+ 0lc) = Mx(x,2*,T + 0l¢) for any (z,z*) € X x X*. Then
T + 0I¢ is mazimal monotone. In particular, if T : X = X* is Cy (resp. C1)-regqular
mazimal monotone operator and C € Cy(T) (resp. C € Ci(T), then T + 0l¢ is mazimal
monotone.

Proof. Assume first that lin(Dr — C) = X, i.e. co(Dr) — C is absorbing. Let (z,2*) €
X x X* be monotonically related to T'+ 0I¢. Then Lx(z,z*, T + 0lc) = 0 and therefore
Mx(z,2*,T + 0Ic) = 0 too. This means that z* € (T + 0I¢)(x). By Corollary 2.3,
(T+0I¢)(x) is w*-closed and therefore norm-closed too. Thus z* € (T'+01¢)(z), implying
that 7"+ 01- is maximal monotone.

The general case can be reduced to the particular one considered above as follows. First
we shall show that there is no loss of generality in assuming that 0 € DN C. To this end,
let ¢ € Dy N C (this is possible because of Remark 1.3(2) in the introduction). Define
T:X =3 X*by T(z) =T(z+c¢) and let C = C — c. It is easy to see that T is maximal
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monotone, C ENC1(T), Lx(z,2*,T+0I¢) = Lx(zx—c,x*, T+8I@), Mx (z,2*,T+0Ic) =
Mx(z —c,z*, T+ 0I5), and that T + 0I¢ is maximal monotone if and only if 7'+ 0I5 is
maximal monotone. Since 0 € D7 N C, our assertion is proved.

Let Y = lin(Dy — C). Since 0 € Dy N C, it follows that Dy C Y and C C Y. Then
co(D¢ryy)y) — C is absorbing (as a subset of Y) and, from Lemma 2.1, T'|Y" is maximal
monotone and Ly (z,z*, T|Y +0Icy) = Mx(z,2*,T|Y +0l¢cy) for any (z,2*) € Y x Y™
From the particular case proved at the beginning of the proof it follows that T|Y + 0l¢y
is maximal monotone. Finally, since (T' + 0I¢)|Y = T|Y + 0l¢y, from Lemma 2.1 we
obtain that T" 4+ 0. is maximal monotone. O

Let C be a convex subset of X and let x € C. Recall that the tangent cone to C' at =z,
denoted C,, and the normal cone to C' at z, denoted N¢(z), are defined as follows

C,=JtC -2
>0
Neo(z) ={z* € X*; (2%, z —x) <0, for any z € C}.
It is easily verified that
Ne(z) = {z" € X*; (z",v) <0, for any v € C,}
and (by using a separation argument) that
C, ={v e X; (z*,v) <0, for any z* € N¢(z)}.

As a matter of fact, No(z) = 0I¢(z) whenever C is closed.

Lemma 2.5. Let T : X = X* be a mazximal monotone operator, let C be a convex subset
of X such that Dy C C, and let € Dr. Then T(x) + N¢(z) = T(z).

Proof. Let z € Dy, z* € T(z), z* € T(x), and v* € Ng(z). Then, from the monotonicity
of T and the definition of N¢g(z), we get

"+ —2rx—2)=(" -2z —2)+ (v, x—2) >0

and, since T is maximal monotone, it follows that z* + v* € T'(z). Thus T'(x) + N¢(z) C
T(x). Since 0 € N¢(z), the other inclusion is obvious. O

Before stating our main result, we need one more definition.

Definition 2.6. A multivalued map 7' : X = X* is called locally inf bounded if for every
z € Dy there exist ¢ > 0 and M > 0 such that for any v € Dr with ||ju — z|| < € there
exists u* € T'(u) with [|u*]| < M.

Example 2.7. (1) Any monotone operator 7' whose domain is open is locally inf bounded
(because it is locally bounded, see for example Theorem 2.28 in [6]).

(2) If f: X - RU{+o0} is a proper convex function which is locally Lipschitzian on its
domain then Dyy = dom(f) and 0f is locally inf bounded (see for example [16], where
locally inf bounded monotone operators where called locally efficient).
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Theorem 2.8. Let T and S be mazimal monotone operators on X and let i € {0,1}.
Assume that T is C;-regular, S is locally inf bounded, and Ds € C;(T). Ifi =1 assume also
that co(Dyp) N Dg = Dy N Dg (for example, S satisfies all these conditions if Dg = X ).
Then T 4 S is mazimal monotone.

Proof. Exactly as in the proof of Corollary 2.4, we can assume, without any loss of
generality, that lin(Dr — Dg) = X. Thus the fact that Dg € C;(T) implies that

co(Dr) — Dg is absorbing. (2.2)

Being maximal monotone, both S and T" are w*-closed and convex valued. Thus, for any
z € DrN Dg, T(z) + S(z) is convex and, by (2.2) and Corollary 2.3, w*-closed. Assume
that 7'+ S is not maximal monotone. Then there exists a pair (z, y*) € X x X* such that

(t"+ s —y*,z—x) >0, whenever z € DrN Dg,t* € T(z), and s* € S(z) (2.3)

but y* ¢ (T + 5)(z).
Claim I. x € Dy N Dg (to be proved later).!

Thus T'(z) + S(z) # 0 and, as noticed above, T'(x) + S(x) is w*-closed and convex. Since
y* ¢ T(x) + S(z), by the separation theorem there exist v € X, with ||u|| = 1, and a real
number ( such that

(t* + s*,u) < B < (y*,u), for any t* € T'(x),s* € S(z). (2.4)
Since T is X-regular, Dy is a closed convex set, (Theorem 7 in [17]), so D = Dy N Dy is
also closed and convex. It is not difficult to see that
D = Dy Nint(Dg) ifi=0. (2.5¢)
The last hypothesis of the theorem implies that
D =co(Dy)N Dy ifi=1. (2.51)
Let D, be the tangent cone to D at x.

Claim II. u € D, (to be proved later).

We shall now choose some constants. First, since S is locally inf bounded, there exist
r > 0 and a > 0 such that

S(z) NrB* # () whenever z € Dg and ||z — z|| < a. (2.6)

Choose also 0 < § < % such that 76 < e, where ¢ is defined next, independently of §. Let

e= 1w — 5,

p= sup {(z*,u),
z*e€T(x)

In order to make the proof easier to follow, we shall claim several results and verify them later.
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W ={z" € X*(z*,u) < B+e—pu}.

(It follows from (2.4) that ;1 < +00.) Then W is a w*-open subset of X* and (2.4) implies
that S(z) C W. Finally, since S is maximal, we may also assume that « is small enough
that

Claim III. S(z) NrB* C W whenever z € Dg and ||z — z|| < « (to be proved later).

We shall next use the fact that 7" is C;-regular to derive a contradiction from (2.4). To
this end consider the closed convex set

)
C={z€X;|z—z|| < a, z=x+tv for some ¢t > 0 and some v € X with ||v —u|| < Z}

Claim IV. ||Hzi—w||(z — ) —ul| < § for any z € C (to be proved later).
Since x + u € int(C) and u € D, from the definition of D, it follows that

DNint(C) # 0. 2.7)

Let K =DsNC. If i =0, then (2.7) and (2.5¢) imply that
Dy Nint(K) = Dy Nint(Dg) Nint(C) # 0

and therefore K € Co(T). If i = 1, then (2.7), and (2.5;) imply that co(Dy)NDgNint(C) #
(. From (2.2) one can deduce now that co(Dr)— K is absorbing and therefore K € C;(T).

Since T is Ci-regular, L(z,y*, T+0Ix) = M(z,y*, T+0Ik) < +oo (the inequality because
xz € DrN K). From the definition of M (z,y*,T + 0Ik) there exists t§ € T(x) such that

(y* —t5,z — x)
lz — 2|

< L(z,y*, T + 0lk) + ¢, for any z € K.

Since u € D,, there exist w € X and v > 0 such that (y* — ¢}, u) < (y* — t§,w) + ¢ and
x + yw € K. Then, from the above inequality, we obtain

{y* — 1, (z +yw) — z)

(" —ty,u) < (y*" —t5,w) +e=
0 : lz — (z + yw)||

< L(z,y*, T + 0Ig) + 2.

From the definition of L(x,y*, T + 0Ik), there exist z € K N Dy and t* € T(z) such that

(t* —y*,z — 2)
(y* —t5,u) < + 2e.
’ |z — 2]
This inequality can be rewritten as
(y* —t5,u) < (y*" —t",v) + 2, (2.8)

where v = (1/||z — z||)(z — z); since z € C, by Claim IV,

lv —ul| < 6. (2.9)
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Choose now s* € S(z) NrB* (this is possible by (2.6)). From (2.2) we obtain
(t"+ s —y",v) >0

or
(y* —t",v) < (s",v).

Using (2.8) and this last inequality we get

(y*uy < (tg,u) + (y* — t*,0) + 2e < {t5,u) + (s*,v) + 2¢
= (t5, u) + (s",u) + (s*,v —u) + 2¢
(by Claim III)
< (g u)+B+e—p+ls"|lv—ul +2¢
(by (2.9) and then by the choice of §)
<(tg,u) —p+B+3c+76 <0+ B+ 4e = (y",u)

which is impossible. Thus 7"+ S must be maximal monotone.

Proof of Claim I. Let 2y € Dy Nint(Dg) if ¢ = 0 (resp. y € Dr N Dg if i = 1) and
let [x,x0] be the segment joining x and xy. Since Dg is closed and convex there exists
x1 € [x,x9] N Dg such that [z,z9] N Dg = [z1,x]. Since S is locally inf bounded and
[z1,x0] is compact, there exists m > 0 and an open neighborhood A of [z, x| such
that for any z € AN Dg there exists s* € S(z) with ||s*|| < m. For any p > 0 let
K,={(1-t)z+1tu;0 <t <1, |u— o <p}. Weclaim that if p is small enough, then
K,NDg C A. If this was not true, then there would exist a sequence u, — x¢ in X
and a sequence t, — t in [0, 1] such that z, = (1 — ¢,)x + tu, € Dg and z, ¢ A. Then
z=(1—t)x+txg =limz, ¢ A (since A is open), but z € [z, o] N Dg (since Dy is closed).
Since [z, x0] N Dg = [x1,29] C A it follows that z € A, which is a contradiction. Thus
there exists p > 0 such that K,NDg C A. Let K = K,.

Let z € DrNK N Dg, t* € T(z), and u* € 0Ignps(2) = 0(Ik + Ipy)(2). Since int(K) N
Ds # (0, from the sum formula for subdifferentials, there exist j* € 0Ik(z) and * €
0Ipg(z) such that u* = j*+¢*. From the previous discussion, we can also choose s* € S(z)
with ||s*|| < m. Then (j*,z — z) < 0 and, by Lemma 2.5, s* + i* € S(z). From (2.3) we
obtain

(t"+u -y o—2) "+ +i*—yo—2) (Jhr—2 (sT—2)
|z — z|| |z — 2| lz ==z llz—=|

< 0+||s*]| < m.

Thus L(z, y*, T+ 0Iknp,) < +00. Since xy € int(K), then either zy € DyNint(DgNK) if
i = 0 or, using (2.2), co(Dy) — DgN K absorbs X if ¢ = 1. In both cases DsN K € C;(T).
Since T is C;-regular, it follows that M (z,y*, T + 0Ixnpg) = L(z,y*, T + 0l knps) < +00,
hence x € D N DgN K (by (ii) in the Introduction). This proves Claim I.

Proof of Claim II. Assume that u ¢ D,. Then, by the separation theorem, there exists
u* € X* such that

(u*, z) < (u*,u) for all z € D,. (2.10)
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Since 0 € D,, (u*,u) > 0; since tz € D, for any ¢t > 0 and any z € D,, it follows from
(2.10) that (u*, z) < 0 for any 2z € D,, which means that u* € dIp(x) = (I, + Ips) (7).
Since Dr— Dy is absorbing, the sum formula for subdifferentials implies that u* = v*+w*,
v* € 0I5 (v), w* € Olpg(w). Choose t* € T(x) and s* € S(z). Then, by Lemma
2.5, t* + \W* € T(x) and s* + Aw* € S(z) for any A > 0. It follows from (2.4) that
(u*,u) = (v*,u) + (w*,u) < 0 which contradicts our earlier finding that (u*,u) > 0. This
contradiction proves Claim II.

Proof of Claim ITI. If the claim was not true, (2.9) would imply that there exist a se-
quence {z,} converging to x and a sequence {w}} with w} € S(z,) N rB* but

(wr,u)y > f+e—p. (2.11)

If w* is a limit point of {w}} (there are such points because {w}} C rB*), then (w* —
s*,x —s) > 0 for any s € Dg and any s* € S(s) (because (w} — s*,xz, — s) > 0).
The maximal monotonicity of S implies that w* € S(z). From (2.11) we obtain that
(w*,u) > 4+ ¢ — p which contradicts the fact that S(z) C W.

Proof of Claim IV. Given z =z +tv € C, clearly M(z —z) = ﬁv. We have

d
L= flull < flvll + flu =l < ol + 3

and thus

1
|lv]| >1—=>= (sinced < 5)

=~ o
DN |

Similarly
J
loll < llo = ull + flull < o +1.

Combining the last inequalities we obtain

o
1= 1oll] < 5 and [l >

DN | =

It follows that

[ L e T ey S
”U“ ||U|| - ”U” = ||’U|| > %

and thus ||Hzi—$”(z — 1) —ul| <6 for any z € C. This proves Claim IV and completes the
proof of the theorem. 0

Corollary 2.9. Let S : X = X* be a mazimal monotone operator and f be a proper,

conver, lower semicontinuous function on X. Assume that one of the following conditions

15 satisfied

(a) DS =X.

(b) S isCy (resp. Cy )-regular, dom(f) € Co(S) (resp. dom(f)€Ci(S) and co(Dg)Ndom(f)
= Dgndom(f)), and f is locally Lipschitz on dom(f).

Then Of + S is mazimal monotone.
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Proof. As mentioned in the introduction, 0f is a C;-regular maximal monotone operator.
The maximal monotonicity of df +S when (a) is satisfied follows from Theorem 2.8. If (b)
is satisfied, then Of is locally inf bounded and the assertion follows again from Theorem
2.8. [

Corollary 2.10. Let S : X = X* be a mazimal monotone operator.

(i) S is Co-regular if and only if S + 0gy 4 + 0lc is mazimal monotone for any A > 0,
any x € X, and any C € Cy(S).
(ii) If S is Co-regular and C € Cy(S) then S + 0l¢ is Cy-regular.

Proof. (i) The “if” part is an immediate consequence of Theorem 1.1 in the introduction,
while the “only if” part follows from Corollary 2.9 because f = 0(gr, + Ic) satisfies
condition (b) and 0(gx, + Ic) = 0gr s + Olc.

(ii) It is enough to show that S + 0gy , + 0I¢ + 0l is maximal monotone for any A > 0,
any x € X, and any K € Cy(S + 91¢). Since Dg o1, = DsNC and K € Cy(S + 91¢), it
follows that DgNCNint(K) # () and therefore S+ gy . +0Ic+ Ik = S+ 0y +0Icnk.
If we can show that, Dg Nint(C N K) # @, then C N K € Cy(S) and (ii) follows from (i).

Choose u € Dg Nint(C) (possible since C' € Cy(S)) and v € Dg g1, Nint(K) = Dg N
C Nint(K). If u = v, we are done. Otherwise, [u,v) C int(C), [u,v] C Dg (because
S is X-regular and therefore Dg is convex), and v € int(K). Thus there exists w on
the open segment (u,v) such that w € Dg N int(C) Nint(K). It is now obvious that
DsNint(C N K) # () and, as mentioned above, this proves (ii). 0O

Corollary 2.11.

(i) If S : X =% X* is mazimal monotone, locally inf bounded, and Dg is closed and
convex then S s Ci-reqular. In particular, a maximal monotone operator S with
Dg = X is Ci-reqular.

(il)) IfT,S: X = X* are marimal monotone, locally inf bounded, Dy, Dg are closed and
convez, and |, A(Dr — Dg) = lin(Dy — Dg), then T + S is mazimal monotone.

Proof. (i) Let C € C;(S) and A > 0. T = 0gy, + 0Ic = 0(grs + Ic) is Cy-regular and
Dy = C. Since co(Dr) = C = co(C) and co(Dg) = Dg, we have

U (co(Dr) = co(Ds)) = | J(C - Ds) =1in(C — Ds) =lin(Dr — Ds)

A>0 A>0

hence Dg € Ci(T'). Also, since Dr = C and Dy are closed,

DTmDSZCmDS:CﬁDS:D—TﬁDS

By Theorem 2.8, T+ .S = S + 0g) ; + 0l¢ is maximal monotone. Thus, by Theorem 1.1
in the introduction, S is C;-regular.

(ii) By (i), T is C;-regular. Since the conditions of Theorem 2.8 are satisfied, T'+ S is
maximal monotone. O
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3. Linear maximal monotone operators

A single valued monotone operator 7T is called linear if Dy is a linear subspace of X and
T : Dr — X* is linear. We begin by recalling a result proved in [7] and [15] (we shall
reformulate it so that we can use our notation). Assume that 7" : Dy — X* is linear and
monotone. Then

T is maximal monotone
<= Dy isdensein X and Dy = {z € X; Lx(z,0,T) < +o00}. (3.1)

Lemma 3.1. Let T : Dy — X* be linear and mazimal monotone. Let C be a closed
conver subset of X such that int(C) N Dy # 0, let z € X and x* € X*. If Lx(z,z*,T +
0lc) < 400 then x € Dr.

Proof. Assume first that 0 € int(C')NDy. In view of (3.1) and the maximal monotonicity
of T', it is enough to show that Lx(z,0,7) < 400. To this end let g : X — R denote the
gauge function associated to C, i.e. g(z) = inf{t > 0; z € ¢tC}. Since int(C) # 0, g is a
continuous semi-norm on X and therefore it is Lipschitzian. Let « denote the Lipschitz
constant of g. Set M = (Lx(z,2*,T + 0l¢c) + ||z*||)(||z|| + 1) and let z € Dr.

Case I: z € C. We have

(T(z),x — z) _ (T(z) —x*,x—2) (z*,z—2)
|z — 2]l |z — 2]l [l — z]|
(T(z) —x*,z — 2) .
S T e

< Lx(z,2*,T+0lc) + ||z*|| < M (since 0 € 0Ic(z)).

Case II: z ¢ C. Let t = g(z) and u = }z. Since C is closed, t > 1 and u € C. We have
(T(z—2) _ (T(tu)o—te) _ KT(),o—u)+ {T(w), (1 - u)
= 2| [l — tull [l — tull
(use the facts that (T'(u),u) >0 and ¢t > 1)
T (u),x —uw)  UT(u),z—u) |tz —tul

< =
e —tul] tle —ull flz—tull
_ (T(u),z—w) [l — tull
le —ull  [le— tull
(use a computation similar to that in Case I)
[tz — tul]
< (Lx(z,z*, T+ 0Ic) + ||z*||) ———r
[l — tull
[tz — || + ||z — tu]
< (Lx(z,z*, T+ 0lc) + ||z*||)
[l — tull
(t = Dl]l
= (Lx(z,2", T+ 0I¢) + ||z7]|) <7 +1
[l — tull
< (Lxloat 7+ 010) + o) (L2 KDL )
< (Lx(z,z", T+ 0Ic) + ||z*||) (e|z|| + 1) < M.
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Thus Lx(z,0,T) < 400 and, as mentioned above, this proves the lemma in the case when
0e DT N 1nt(C’)

To prove the general case, let ¢ € int(C) N Dr. A fairly trivial verification shows that
Lx(x —c¢,2" —T(c), T+ 0l¢c—.) = Lx(z,2",T 4 0l¢) < +00.

Since 0 € int(C — ¢), it follows that z — ¢ € Dy. Since ¢ € Dy and since Dy is a linear
subspace of X, it follows that x € Dr. O

Proposition 3.2. Let T : Dy — X* be linear and maximal monotone. Then T is Cy-
reqular.

Proof. Let C be a closed convex subset of X such that int(C) N Dy # () and let z € C.
Since always 0 < Lx(z,2*,T+0I¢) < Mx(z,x*, T+ 0I¢) (Lemma 1 in [17]), it is enough
to assume that Lx(z,z*,T 4+ 0I¢) is finite and that Mx (z,z*,T + dI¢) > 0 and show
that M)((.Q?, 33*, T+ 8[@) S Lx(ai, 33*, T+ 8[@)

First notice that, by Lemma 3.1, x € Dy. Let € > 0 and M < Mx(z,z*,T + 0I¢). In
view of (3.1), Dr is dense in X. Therefore we can find z € C'N Dr such that

(T(z) — z*,2 — 2)
|z — ||

M <

(notice that, since T is single valued, the “inf” from the definition of Mx (z,z*,T + 0l¢)
disappears).

Let 0 < A <1andlet zy = (1 - Az + Az € CNDr. Clearly z — z, = A(z — z). Choose
A so small that
MT(x—2),z— z)

<e.
|z — 2|

We have

M < (T(ﬂﬂ)”; fzﬁf —2) _ (T(ﬂf)”; f*;x“— 2)

(T'(x) —T(2zx),x — zx) n (T(2\) —z*, 2 — z))
[l = 2l [l = zall

(T(x—2)),z—2)
[z — 2|

MT(x—2),x — 2)
l — 2|

<

S +LX(.’,E,CU*,T+6IC)

<

=+ Lx(x,.’li*,T-i— alc) S €+ LX(JL',IE*,T+ 8]0) .

Since this is true for any ¢ > 0 and any M < Mx(z,z*,T + 0l¢), it follows that
Mx(z,z*, T+ 0lc) < Lx(z,z*,T + 0l¢) and the theorem is completely proved. O

Combining Proposition 3.2 with Theorem 2.8 we obtain the next corollary which was
proved by different methods in both [7] and [15].

Corollary 3.3. If T and S are linear mazimal monotone operators on X and Dg = X
then T + S is (linear) mazimal monotone.
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Since a Cy-regular maximal monotone operator satisfies the conditions of Theorem 10 in
[17], we obtain another proof of the following result due to Phelps and Simons [7] and
Simons [15].

Corollary 3.4. A linear mazimal monotone operator is mazximal monotone locally (i.e.
it is mazimal monotone on any open conver subset of X which intersects its domain).
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