ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Murphy Operators and the Centre of the Iwahori-Hecke Algebras of Type A

Andrew Mathas

DOI: 10.1023/A:1018604404327

Abstract

In this paper we introduce a family of polynomials indexed by pairs of partitions and show that if these polynomials are self-orthogonal then the centre of the Iwahori-Hecke algebra of the symmetric group is precisely the set of symmetric polynomials in the Murphy operators.

Pages: 295–313

Keywords: Hecke algebra; murphy operator; symmetric group

Full Text: PDF

References

1. H. B\ddot ogeholz, “Die Darstellung des Zentrums der Hecke-Algebra vom Type An aus symmetrischen Polynomen in Murphy-Operatoren,” Diplomarbeit, Univ. Stuttgart, 1994.
2. R. Dipper and G. James, “Blocks and idempotents of Hecke algebras of general linear groups,” Proc. London Math. Soc. 54 (1987), 57-82.
3. G.D. James and A. Mathas, “A q-analogue of the Jantzen-Schaper theorem,” Proc. London Math. Soc. 74 (3) (1997), 241-274.
4. G.E. Murphy, “The idempotents of the symmetric group and Nakayama's conjecture,” J. Algebra 81 (1983), 258-265.
5. M. Sch\ddot onert et al., “Gap: groups, algorithms, and programming,” Lehrstuhl D f\ddot ur Mathematik, RWTH Aachen, 3.4.4 edition, 1997.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition