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Abstract. Motivated by the close relationship between the number of perfect matchings of the Aztec diamond
graph introduced in [5] and the free energy of the square-ice model, we consider a higher dimensional analog of
this phenomenon. Ford ≥ 2, we constructd-uniform hypergraphs which generalize the Aztec diamonds and we
consider a companiond-dimensional statistical model (called the 2d+2-vertex model) whose free energy is given
by the logarithm of the number of perfect matchings of our hypergraphs. We prove that the limit defining the free
energy per site of the 2d + 2-vertex model exists and we obtain bounds for it. As a consequence, we obtain an
especially good asymptotical approximation for the number of matchings of our hypergraphs.

1. Introduction

The Aztec diamond graphs, introduced in [5], can be defined as follows. Consider a
(2n + 1) × (2n + 1) chessboard with black corners. The graph whose vertices are the
white squares and whose edges connect precisely those pairs of white squares that are
diagonally adjacent is called theAztec diamondof ordern, and is denotedADn (figure 1
illustrates the casen = 5).

A perfect matchingof a graph is a collection of vertex-disjoint edges collectively incident
to all vertices. We will often refer to a perfect matching simply as amatching. The number
of matchings of a graphG is denoted byM(G).

The number of perfect matchings ofADn is given by the simple formulaM(ADn) =
2n(n+1)/2 (see [2] and [5]).

The work in this paper was motivated by the following. Modify the definition of the Aztec
diamond by replacing the(2n+1)× (2n+1) chessboard by a 2n× 2n toroidalchessboard.
The resulting graph, denotedTDn, is called thetoroidal Aztec diamondof ordern. What
can be said aboutM(TDn)?

As noted for example in [5], this question is closely related to thesquare-ice modelof
statistical mechanics, solved by Lieb [6–8] and Sutherland [11]. More precisely, the limit
limn→∞(1/n2) log M(TDn) turns out to be the free energy per site of this model, for a
particular choice of Boltzmann weights.

Guided by an alternative description of the matchings of the toroidal Aztec diamond,
in Section 2 we construct hypergraphs, denotedTDn1,...,nd , which may be regarded as
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Figure 1.

d-dimensional generalizations ofTDn. The limit

Ld = lim
n→∞(1/nd) log M(TDn(d) ) (1.1)

(wheren(d) stands ford subscripts equal ton and M(H) denotes the number of perfect
matchings of the hypergraphH ) turns out to be the free energy of a certaind-dimensional
generalization of the square-ice model, for a suitable choice of Boltzmann weights.

The model arising this way is a vertex model on theZd lattice, with two types of admissible
arrow configuration around a vertexv: balancedconfigurations, in which each pair of
collinear edges incident tov are oriented in the same direction; andspecialconfigurations,
in which either all edges point towardsv or all point away fromv. We weight the special
and balanced states bya andb, respectively (a, b ≥ 0). Since the partition function is
a homogeneous function of the weights, we may assume without loss of generality that
b = 1.

For the sake of notational simplicity, in the indexing set of an objectO we will often
denote byn(d) a sequence ofd integers equal ton. Moreover, we will letO(d)n stand for
On(d) (for example, we writeTD(d)n for the hypergraph on the right-hand side of (1.1)).

We employ the transfer matrix method (see, e.g., [10]) to prove that the limit defining
the free energy per site of ourd-dimensional model exists (see Theorem 3.5). The main
result of this paper is Theorem 3.10, which gives bounds for the free energy per site. As a
corollary, we obtain thatLd = ((d − 1)/2) log 2+ εd, where 0< εd < 2−d−(d−3)2d−2

.

2. Higher dimensional toroidal Aztec diamonds and the (2d + 2)-vertex model

For the purpose of constructing higher dimensional analogs of the Aztec diamond we will
find it convenient to view the matchings ofADn as follows. LetGn be the subgraph of
the gridZ2 induced by the vertices having nonnegative coordinates not exceedingn. The
union of any two incident edges ofGn that form a 90◦ angle is called a2-claw. A partition
of the edges ofGn into 2-claws is called a 2-claw covering. Clearly, there is a bijection
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Figure 2.

between 2-claw coverings ofGn and perfect matchings of the graph whose vertices are the
midpoints of edges ofGn, with an edge connecting the midpoints ofe and f precisely if
e∪ f is a 2-claw. However, this graph is isomorphic toADn (see figure 2).

Therefore, the matchings ofADn can be identified with 2-claw coverings ofGn. This point
of view is useful because it provides the setting for the following very natural generalization.
Let G(d)

n be the subgraph of thed-dimensional grid graphZd induced by the vertices having
nonnegative coordinates not exceedingn. Define ad-clawto be the union of anyd pairwisely
orthogonal edges ofG(d)

n that are incident to a common vertex. The question then is to
determine the number ofd-claw coverings ofG(d)

n .
Just as ford = 2, we can rephrase this as a matching problem as follows. LetAD(d)n be

the uniformd-hypergraph whose vertices are the midpoints of edges ofG(d)
n , with d vertices

connected by an edge precisely if they are midpoints of edges ofG(d)
n that form ad-claw.

Then thed-claw coverings ofG(d)
n can be identified with perfect matchings ofAD(d)n (by

a perfect matching of a hypergraph we mean a collection of vertex-disjoint edges that are
collectively incident to all vertices).

The edges ofAD(d)n can be visualized as follows. Consider an interior vertexv of G(d)
n

(i.e., no coordinate ofv is 0 or n). The midpoints of the 2d edges incident tov form a
regular (d-dimensional) octahedronOd centered atv. Consider translations ofOd centered
at each vertex ofG(d)

n (disregard the vertices of these translates whose coordinates do not
all fall in the range [0, n]). Then the edges ofAD(d)n are precisely the(d − 1)-dimensional
faces of these octahedra.

In the study of statistical-mechanical models it is customary to consider toroidal boundary
conditions, i.e., to identify corresponding vertices on opposite faces of the “crystal”. LetT (d)

n
andTD(d)n be the graphs obtained by applying this procedure toG(d)

n andAD(d)n , respectively
(in particular,TD(2)n is the graphTDn defined at the beginning of Section 1). Then the edges
of TD(d)n are precisely the(d − 1)-faces ofnd octahedra that touch only at vertices, which
we will refer to ascells.

The use of the same name as in the case of the “cellular graphs” of [3] is not accidental
(a graph is said to becellular if its edges can be partitioned into 4-cycles so that at most
two of them meet at a vertex). Indeed, all the results in Section 2 of [3] have correspondents
for cellular d-hypergraphs, i.e., uniformd-hypergraphs whose edges can be partitioned
into cells so that each vertex is contained in at most two cells (see also Section 5 of [2]).

To illustrate this, consider for exampleTD(d)n . Its cells can be naturally grouped in “lines,”
so that each cell is contained in preciselyd lines (collect in a line the cells whose centers
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have all but one of their coordinates identical). For the case under consideration each line
L is in fact a “cycle,” i.e., every cell ofL is bordered by two other cells ofL.

Letµ be a perfect matching ofTD(d)n . Assign one of the numbers 1, 0 or−1 to each cell
of TD(d)n according as the cell contains 2, 1 or 0 edges ofµ (two is the maximum number
of disjoint (d − 1)-faces in an octahedron of dimensiond). Then by an argument similar
to the one used to prove Lemma 2.2 of [3] it can be shown that the obtained patternA is
“sign-alternating” (i.e., the nonzero elements alternate in sign along each cycle).

Conversely, consider an assignment of 1’s, 0’s and−1’s to the cells ofTD(d)n forming an
alternating sign pattern (for short, ASP)A. LetC be the collection of cycles ofA consisting
entirely of zeroes. Using the argument in the proof of Lemma 2.3 of [3], we obtain that, once
we fix orientations on the cycles inC, the matchings compatible with these orientations and
having corresponding patternA are uniquely determined on the 0-cells and can be freely
chosen (from 2d−1 possibilities) on the 1-cells.

Consider now in the same picture the graphT (d)
n , with vertices at the centers of the cells

of TD(d)n and edges passing through these cells. Ifv is the center of a 1-cell (resp.,−1-cell)
then orient all edges ofT (d)

n incident tov so that they point away from (resp., towards)v; call
such arrow configurations around a vertexspecial. Finally, if v is the center of a 0-cellc,
orient the edges ofT (d)

n along each cycle containingc so that they point away from the 1-cell
and towards the−1-cell bordering the run of zeroes containingc (in casec is contained in a
cycle of zeroes, pick one of the two orientations of the corresponding cycle ofT (d)

n with all
edges pointing in the same direction along the cycle). This results in an arrow configuration
aroundv such that from the two edges incident tov parallel to any given coordinate axis one
points towardsv and the other away fromv; we call such vertex configurationsbalanced(the
four balanced and the two special vertex configurations corresponding tod= 2 are shown in
figure 3(a)). Call an orientation ofT (d)

n admissibleif the arrow configuration around each
vertex is either balanced or special. Then the preceding paragraph shows that there is a
natural correspondence between perfect matchings ofTD(d)n and admissible orientations of
T (d)

n , with precisely 2(d−1)N matchings corresponding to an admissible orientation having
N special vertex configurations pointing outward.

This suggests considering the following model, which we will call the(2d+ 2)-vertex
model. Consider the set of admissible orientations ofT (d)

n . Weight the balanced vertex

(a)

(b)

Figure 3.
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configurations by 1 and the special ones bya ≥ 0. The weight of an admissible orientation
is the product of weights of all vertex configurations. Thepartition function, denotedZ(d)n (a),
is the sum of the weights of all admissible orientations.

LetC be a cycle ofT (d)
n consisting ofnvertices withd−1 of their coordinates identical and

consider an admissible orientation ofT (d)
n . Then alongC, the two special configurations

occur alternately. Therefore, the two special configurations appear the same number of
times in every admissible orientation. This shows that the partition function is not affected
by changing the weight of one special configuration toa2 and the other to 1. The above
arguments show then that

M
(
TD(d)n

) = Z(d)n

(
2(d−1)/2

)
. (2.1)

For d= 2, the above described model is equivalent to the square-ice (also known as
six-vertex) model. Indeed, reverse arrows on all horizontal segments in each admissible
orientation ofT (2)

n . This amounts to changing the admissible configurations around a vertex
to the ones shown in figure 3(b). However, these are precisely the allowed local arrangements
in the square-ice model (see, e.g., [1, p. 128]).

An important characteristic of a statistical model is thefree energy per site, defined (up
to a multiplicative constant) to be the limit limN→∞(1/N) log Z, whereZ is the partition
function andN is the number of “particles” in the system. This limit is expected to exist,
from a physical point of view. We prove (Theorem 3.5) that this limit does indeed exist for
ourd-dimensional model. Our method can in fact be applied to prove the existence of this
limit for a large class of statistical models (see Remark 3.6).

3. Bounds for the free energy of the (2d + 2)-vertex model

Let Gn1,...,nd be the subgraph of thed-dimensional gridZd induced by the vertices with
coordinates(x1, . . . , xd) satisfying 0≤ xi ≤ ni , i = 1, . . . ,d. We will find it useful to
enlarge the set of objects under consideration to admissible orientations of the toroidal grid
Tn1,...,nd obtained by identifying vertices ofGn1,...,nd having equali th coordinates modulo
ni , i = 1, . . . ,d.

Our derivation of an upper bound forZ(d)n (a) relies on the following ideas. First, we use
the transfer matrix method to encode the admissible orientations of our toroidal gridTn1,...,nd

as closed walks in a certain weighted directed graphS. More precisely,Z(d)n (a) turns out
to be the trace of thend-th power of the adjacency matrixA of S, so it equals the sum
of thend-th powers of its eigenvalues. A simple but crucial observation is that the matrix
A is symmetric, and therefore its eigenvalues are real. The other key observation is that
our problem is invariant under permutations of thed coordinates, so in particular, for any
choice ofi ∈ {1, . . . ,d}, we could have constructedS such thatZ(d)n (a) is the trace of the
ni -th power of its adjacency matrix. These two simple facts allow us to prove Lemma 3.2,
and then deduce a family of upper bounds for the free energy per site (see inequality (3.5);
an application of bounds analogous to these for the case of the three dimensional dimer
problem is given in [4]).

However, in order for the bounds (3.5) to be effective, one needs to be able to determine
(or estimate) the largest eigenvalue of the matrixA (whose entries involve the parametera)
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for some particular (even) values of theni ’s, and this seems to be very difficult even for
small values. The way we resolve this is by proving Lemma 3.8, which relates the partition
function in dimensiond to the one in dimensiond − 1. The statement of Lemma 3.8 was
suggested by Lemma 3.2 and the fact that, when one of theni ’s is 2, all the information in
the admissibled-dimensional configurations is contained in the admissible orientations of
a grid in one dimension lower. Proposition 3.9 and Theorem 3.10 are then deduced easily.

Let Sbe the graph consisting of then1n2 · · ·nd−1 disjoint edges

[(x1, . . . , xd−1, 0), (x1, . . . , xd−1, 1)],

0≤ xi < ni , i = 1, . . . ,d − 1.
Define a weighted directed graphD as follows. Take the vertices ofD to be the 2n1···nd−1

orientations ofS. Let α andβ be two such orientations. Translateα such that its edges
are the segments [(x1, . . . , xd−1,−1), (x1, . . . , xd−1, 0)], 0 ≤ xi < ni , i = 1, . . . ,d − 1.
Let G be the subgraph ofTn1,...,nd contained in the hyperplanexd = 0 (G is isomorphic to
Tn1,...,nd−1). Define the weight of the edge fromα toβ to be the total weight of the orientations
of G which give rise only to admissible (d-dimensional) arrow configurations around the
vertices ofG (if no such orientation exists the weight is taken to be zero).

We claim that the total weight of the admissible orientations ofTn1,...,nd (i.e., the partition
function Zn1,...,nd ) is equal to the total weight of the closed walks of lengthnd in D (if
e1e2 · · ·en is a closed walk, thenei ei+1 · · ·ene1 · · ·ei−1 is in general a different closed
walk).

Indeed, by considering the hyperplanesHi : xd = i , i = 0, . . . ,nd − 1, any admissible
orientation ofTn1,...,nd can be regarded as a closed walk of lengthnd in the above constructed
graphD. It is clear that the weight of any such given walkC is equal to the total weight of
admissible orientations ofTn1,...,nd with configurations between the hyperplanesHi specified
by the vertices ofC.

Pick a linear order on the vertices ofD and letA be the transfer matrix, i.e., the matrix
whose(i, j ) entry is equal to the weight of the edge fromi to j . Let λn1,...,nd−1;l be the
eigenvalues ofA (l = 1, . . . ,2n1···nd−1). Then by the Transfer Matrix Theorem [10, Corollary
4.7.3], we obtain

Zn1,...,nd =
∑

l

(
λn1,...,nd−1;l

)nd
. (3.1)

Lemma 3.1 The matrix A is symmetric.

Proof: Let i and j be two vertices ofD and letG be, as before, the subgraph ofTn1,...,nd

induced by the vertices withdth coordinate zero. DefineMi j (resp.,M j i ) to be the set of
admissible orientations ofG compatible with the transition from vertexi to vertex j (resp.,
vertex j to vertexi ).

Givenα ∈Mi j , letα′ be the orientation ofG obtained by reversing all arrows inα. We
claim thatα′ ∈M j i .

Indeed, letv be a vertex ofG. Suppose the oriented segments ini and j are positioned as
in the definition of the weight fromi to j . Thenv is incident to 2d− 2 edges ofG (which
we leave unoriented for the moment) and to one oriented edge in bothi and j . Write (i, j )
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to express the fact thati is followed by j . The only instances when the neighborhood ofv

is not the same for(i, j ) as for( j, i ) occur when the corresponding edges ofi and j have
opposite orientations: in such cases the edges point towardsv for (i, j ) if and only if they
point away fromv for ( j, i ).

However, in this case the orientation ofG in the neighborhood ofv is forced to be the
appropriate special vertex configuration, and all we have to do to pass from the orientation
determined by(i, j ) to the one determined by( j, i ) is reverse all arrows inG. Since the
operation of reversing all arrows inG preserves balanced arrow configurations around its
vertices, we obtain our claim.

By interchanging the roles ofi and j , we obtain that there is a similar map fromM j i

toMi j , and it follows from our construction that the two maps are inverse to one another.
Therefore, the mapα 7→ α′, which is clearly weight-preserving, is a bijection. This implies
that Ai j = Aji . 2

Since the entries ofA are nonnegative, the Perron-Frobenius theorem (see, e.g., [9])
implies thatA has an eigenvalueλn1,...,nd−1 ≥ 0 greater or equal than the absolute value of
all remaining eigenvalues.

Lemma 3.2 Let n, k ≥ 2 be even. Then for all nonnegative i≤ d − 2 we have

1

ki nd−i−1
logλk(i )n(d−i−1) ≤ 1

n
log 2+ 1

ki+1nd−i−2
logλk(i+1)n(d−i−2)

(recall that m( j ) denotes a sequence of j subscripts equal to m).

Proof: By Lemma 3.1, the eigenvalues ofA are real. Sincek is even, we have by (3.1)(
λk(i )n(d−i−1)

)k ≤∑
j

(
λk(i )n(d−i−1); j

)k = Zk(i )n(d−i−1),k. (3.2)

However, since our model is invariant under permutation of coordinates, we have that
Zk(i )n(d−i−1),k equalsZk(i+1)n(d−i−1) . Using (3.1) and the fact thatn is even we obtain

Zk(i+1)n(d−i−1) =
∑

j

(
λk(i+1)n(d−i−2); j

)n ≤ 2ki+1nd−i−2(
λk(i+1)n(d−i−2)

)n
. (3.3)

From (3.2) and (3.3) it follows that(
λk(i )n(d−i−1)

)k ≤ 2ki+1nd−i−2(
λk(i+1)n(d−i−2)

)n
.

Taking the logarithm of both sides and dividing byki+1nd−i−1 we obtain the statement
of the lemma. 2

Corollary 3.3 For n, k even we have

1

nd−1
logλ(d−1)

n ≤ d − 1

n
log 2+ 1

kd−1
logλ(d−1)

k . (3.4)
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Proof: Apply Lemma 3.2 fori = 0, 1, . . . ,d − 2. We obtain a chain of inequalities that
implies the statement of the corollary. 2

Lemma 3.4 The sequence{(1/(2n)d−1) logλ(d−1)
2n }n is convergent.

Proof: Let l̄ and l be the superior and inferior limit of the sequence in the statement of
the lemma, respectively. By taking the superior limit asn→∞ of both sides of (3.4) we
obtain

l̄ ≤ 1

(2k)d−1
logλ(d−1)

2k , (3.5)

for all k ≥ 1. However, taking the inferior limit of both terms of the above inequality as
k→∞ we obtainl̄ ≤ l , which completes the proof. 2

Denote byld(a) the limit of the sequence in the statement of Lemma 3.4, wherea is the
weight of the two special vertex configurations. Recall thatZ(d)n (a) is the partition function
when the special configurations are weighted bya.

Theorem 3.5

lim
n→∞

1

nd
log Z(d)n (a) = ld(a). (3.6)

Proof: We show first that forn ≥ 1 andi = 1, . . . ,d we have

Zn(i )(n+1)(d−i ) (a) ≤ Zn(i−1)(n+1)(d−i+1) (a). (3.7)

Indeed, we can regard the two partition functions as being the generating functions for
closed walks of lengthn and respectivelyn+ 1 in a suitable directed graphD. However,
each closed walkC of lengthn can be augmented to a closed walkC′ of lengthn+ 1 by
inserting a loop at a vertex, sinceD has loops at all vertices. Therefore, as the weight of
C′ is clearly at least as large as the weight ofC, we obtain (3.7).

Repeated application of (3.7) implies thatZ(d)n (a) ≤ Z(d)n+1(a), for all n ≥ 1. In view
of this, to prove (3.6) it suffices to show that the even-index terms of the sequence on the
left-hand side converge told(a).

Let thereforen be even. Using (3.1) and the fact that the eigenvalues are real we obtain(
λ(d−1)

n

)n ≤ Z(d)n (a) =
∑

j

(
λn(d−1); j

)n ≤ 2nd−1(
λ(d−1)

n

)n
.

Taking the logarithm and dividing bynd we are led to

1

nd−1
logλ(d−1)

n ≤ 1

nd
log Z(d)n (a) ≤ 1

n
log 2+ 1

nd−1
logλ(d−1)

n .

Using Lemma 3.4 and lettingn→∞ we obtain (3.6). 2
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Remark 3.6 The argument in the above proof can be used to prove the existence of the
corresponding limit for any (d-dimensional) statistical model provided

(i) the set of admissible configurations is invariant under permutations of the coordinates,
(ii) the admissible configurations can be interpreted as closed walks in a weighted directed

graphD, and
(iii ) the incidence matrix ofD is symmetric and all diagonal entries are positive.

In particular, using a suitable modification of(iii ), we can apply this argument to the
dimer problem on thed-dimensional toroidal gridT (d)

2n .

Lemma 3.7 Zn(a) = (1+ a)n + (1− a)n.

Proof: The graphTn is a cycle; all its orientations are admissible and contain the same
number of each type of special configurations. The total weight of the orientations contain-
ing exactly 2i special configurations is 2( n

2i )a
2i . We obtain

Zn(a) = 2
∑

i

(
n

2i

)
a2i = (1+ a)n + (1− a)n.

2

The subgraph ofTn1,...,nd induced by the vertices that have all but one of their coordinates
identical is called acircuit. In case an orientation is given, a circuit ismonotoneif all edges
point in the same direction along the circuit.

Given an admissible orientation ofTn1,...,nd , assign value zero to its balanced vertices and
values 1 and−1 to the special vertices with arrows pointing outward and inward, respec-
tively. The resulting array, which is said to have shape(n1, . . . ,nd), is clearly an alter-
nating sign pattern (i.e., the nonzero entries alternate in sign along each circuit). Let
ASP(n1, . . . ,nd) be the set of alternating sign patterns of shape(n1, . . . ,nd). We claim
that given such a patternA, there are precisely 2z(A) admissible orientations giving rise toA,
wherez(A) is the number of cycles ofA consisting entirely of zeroes (a cycle ofA is the
set of entries along a circuit).

Indeed, A determines the orientation along all circuits corresponding to cycles ofA
containing nonzero elements. However, circuits corresponding to the remaining cycles of
A must be monotone and can therefore be oriented in two different ways.

The following result is crucial in obtaining an upper bound forld(a).

Lemma 3.8

Z2,n(d−1) (a) ≤ 2nd−1+(d−1)nd−2
Z(d−1)

n (a2/2).

Proof: An alternating sign pattern of shape(2, n(d−1)) can be regarded as a pair(A, B),
A, B ∈ ASP(n(d−1)), whereA andB are so that their corresponding entries form 2-cycles
along which the nonzero elements alternate in sign. Since this impliesA= − B, we may
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in fact identify ASP(2, n(d−1)) with ASP(n(d−1)). Using the correspondence between ad-
missible orientations andASPs mentioned above we obtain that

Z2,n(d−1) (a) =
∑

A∈ASP(n(d−1))

2z(A)aN+(A)+N−(A) · 2z(A)aN−(A)+N+(A) · 2N0(A), (3.8)

whereN+(A), N−(A) andN0(A) denote the number of 1’s,−1’s and 0’s inA, respectively.
Since z(A) cannot exceed(d − 1)nd−2, the total number of cycles ofA, and since

N0(A) = nd−1− N+(A)− N−(A), we deduce from (3.8) that

Z2,n(d−1) (a) ≤ 2nd−1+(d−1)nd−2
∑

A∈ASP(n(d−1))

2z(A)(a2/2)N+(A)+N−(A).

Using again the correspondence between admissible orientations and ASPs we identify
the sum on the right-hand side as beingZ(d−1)

n (a2/2), thus completing the proof. 2

Proposition 3.9 ld(a) ≤ (1/2) log 2+ (1/2)ld−1(a2/2).

Proof: Let n be even. By Lemma 3.2 we have that

1

nd−1
logλ(d−1)

n ≤ 1

n
log 2+ 1

2nd−2
logλ2,n(d−2) .

Take the superior limit of both sides asn approaches infinity by even values. By Theorem
3.5, this gives rise on the left-hand side told(a) and we obtain

ld(a) ≤ lim sup
n→∞,n even

1

2nd−2
logλ2,n(d−2)

≤ lim sup
n→∞,n even

1

2nd−1
log

∑
j

(
λ2,n(d−2); j

)n
= lim sup

n→∞,n even

1

2nd−1
log Z2,n(d−1) (a). (3.9)

By Lemma 3.8 we have

log Z2,n(d−1) (a) ≤ (nd−1+ (d − 1)nd−2) log 2+ log Z(d−1)
n (a2/2).

Dividing through by 2nd−1, taking the superior limit asn→∞ (n even) and using
Theorem 3.5 we obtain

lim sup
n→∞,n even

1

2nd−1
log Z2,n(d−1) (a) ≤ (1/2) log 2+ (1/2)ld−1(a

2/2). (3.10)

Relations (3.9) and (3.10) imply the inequality in the statement of the proposition.2
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Theorem 3.10 For a > 0 we have

loga ≤ ld(a) ≤ loga+ 1

2d−1
log

(
1+ 1

2

(
2

a

)2d−1)
. (3.11)

Proof: For the first inequality, notice that for evenn there is an admissible orientation of
T (d)

n containing only special vertex configurations: just orient all edges so that they point
from vertices of one of the bipartition classes to vertices of the other. Since the weight of
this orientation isand

, we obtainZ(d)n (a) ≥ and
, which implies the first inequality in (3.11).

To obtain the second inequality, notice that by applying Proposition 3.9d − 1 times we
obtain

ld(a) ≤
(

1− 1

2d−1

)
log 2+ 1

2d−1
l1

(
a2d−1

22d−1−1

)
.

However, Lemma 3.7 impliesl1(b) = log(1+b) for all b > 0 and hence we obtain from
the above inequality that

ld(a) ≤
(

1− 1

2d−1

)
log 2+ 1

2d−1
log

(
1+ 2

(
a

2

)2d−1)

=
(

1− 1

2d−1

)
log 2+ 1

2d−1
log 2

(
a

2

)2d−1 (
1+ 1

2

(
2

a

)2d−1)

= loga+ 1

2d−1
log

(
1+ 1

2

(
2

a

)2d−1)
.

2

Corollary 3.11 For a ≥ 2we havelimd→∞ ld(a) = loga. In other words, the orientation
consisting entirely of special vertex configurations dominates as d→∞.

We now return to the problem which motivated the consideration of ourd-dimensional
model, the study of the number of matchings of the hypergraphsTD(d)n defined in Section 2.

By (2.1) and Theorem 3.5, the sequence{(1/nd) log M(TD(d)n )}n is convergent. LetLd

be its limit.

Theorem 3.12∣∣∣∣Ld − d − 1

2
log 2

∣∣∣∣ ≤ 1

2d+(d−3)2d−2 . (3.12)

Proof: By (2.1) we obtain thatLd = ld(2(d−1)/2). Apply Theorem 3.10 and use the
inequality log(1+ x) < x, for x > 0. 2

Remark 3.13 The error term in (3.12) decreases very fast asd grows. Ford = 6 it is
already less than 10−15.
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Remark 3.14 Let Z′n(d) (a) be the generating function forASP(n(d)), with pattern A
weighted byaN+(A)+N−(A). In the correspondence between admissible orientations ofT (d)

n
andASP(n(d)), the number of admissible orientations having the same ASP is at most 2 to
the number of circuits ofT (d)

n , i.e., 2dnd−1
. When taking the logarithm and dividing bynd,

the contribution of this multiplicative factor approaches zero asn→∞. Therefore,

lim
n→∞(1/nd) log Z′n(d) (a) = ld(a). (3.13)

It is therefore natural to ask whether the set of alternating sign patterns of shape
(n1, . . . ,nd) satisfies conditions (i)–(iii) from Remark 3.6. For, if this was the case, one
could use the arguments above to obtain the statement of Corollary 3.11 for alla ≥ 1.

However, one can show that this is not the case. Indeed, suppose the alternating sign
patterns under consideration did satisfy conditions (i)–(iii) from Remark 3.6. Then all
arguments used in this section would go through, and the analogs of Lemma 3.2 and
Theorem 3.5 would imply (by takinga = 1)

lim
n→∞

1

2d−2n2
log

∣∣ASP
(
2(d−2), n(2)

)∣∣ ≤ lim
n→∞

1

2d−1n
log

∣∣ASP
(
2(d−1), n

)∣∣.
SinceASP(2(k), n(l )) can be identified withASP(n(l )) for all k, l ≥ 1, the above inequality

implies

lim
n→∞

1

n2
log

∣∣ASP
(
n(2)

)∣∣ ≤ 1

2
lim

n→∞
1

n
log |ASP(n)|.

By (3.13), the limits in the above inequality are equal tol2(1) and l1(1), respectively.
Then by Lemma 3.7, the right-hand side equals(1/2) log 2= 0.34.... On the other hand,
by [6] the left-hand side equals(3/2) log(4/3) = 0.43..., a contradiction.
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