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Abstract. Motivated by the close relationship between the number of perfect matchings of the Aztec diamond
graph introduced in [5] and the free energy of the square-ice model, we consider a higher dimensional analog of
this phenomenon. Fat > 2, we constructl-uniform hypergraphs which generalize the Aztec diamonds and we
consider a companiaf-dimensional statistical model (called th&-2 2-vertex model) whose free energy is given

by the logarithm of the number of perfect matchings of our hypergraphs. We prove that the limit defining the free
energy per site of the+ 2-vertex model exists and we obtain bounds for it. As a consequence, we obtain an
especially good asymptotical approximation for the number of matchings of our hypergraphs.

1. Introduction

The Aztec diamond graphs, introduced in [5], can be defined as follows. Consider a
(2n + 1) x (2n + 1) chessboard with black corners. The graph whose vertices are the
white squares and whose edges connect precisely those pairs of white squares that are
diagonally adjacent is called thztec diamonaf ordern, and is denotedD,, (figure 1
illustrates the case = 5).

A perfect matchingf a graph is a collection of vertex-disjoint edges collectively incident
to all vertices. We will often refer to a perfect matching simply asadching The number
of matchings of a grap® is denoted byM (G).

The number of perfect matchings 8D, is given by the simple formuld (AD,) =
2n(+D/2 (see [2] and [5]).

The work in this paper was motivated by the following. Modify the definition of the Aztec
diamond by replacing th@n+1) x (2n+ 1) chessboard by a2x 2n toroidalchessboard.

The resulting graph, denot&D,, is called thetoroidal Aztec diamonadf ordern. What
can be said abow (TD,)?

As noted for example in [5], this question is closely related tostipgare-ice modebf
statistical mechanics, solved by Lieb [6—8] and Sutherland [11]. More precisely, the limit
liMmn_ 0 (1/n?) log M (TD,) turns out to be the free energy per site of this model, for a
particular choice of Boltzmann weights.

Guided by an alternative description of the matchings of the toroidal Aztec diamond,
in Section 2 we construct hypergraphs, denot@, n,, which may be regarded as
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Figure 1

d-dimensional generalizations ®D,. The limit

Lg = lim (1/n%) log M(TDpo) (1.1)

(wheren@ stands ford subscripts equal ta and M(H) denotes the number of perfect
matchings of the hypergrapt) turns out to be the free energy of a certdidimensional
generalization of the square-ice model, for a suitable choice of Boltzmann weights.

The model arising this way is a vertex model onZidattice, with two types of admissible
arrow configuration around a vertex balancedconfigurations, in which each pair of
collinear edges incident toare oriented in the same direction; espkcialconfigurations,
in which either all edges point towardsor all point away fromw. We weight the special
and balanced states layandb, respectively ¢, b > 0). Since the partition function is
a homogeneous function of the weights, we may assume without loss of generality that
b=1.

For the sake of notational simplicity, in the indexing set of an obfgate will often
denote byn® a sequence af integers equal to. Moreover, we will IetO® stand for
One (for example, we writdl D& for the hypergraph on the right-hand side of (1.1)).

We employ the transfer matrix method (see, e.g., [10]) to prove that the limit defining
the free energy per site of odrdimensional model exists (see Theorem 3.5). The main
result of this paper is Theorem 3.10, which gives bounds for the free energy per site. As a
corollary, we obtain that.q = ((d — 1)/2) log 2+ g, Where O< gq < 2-94-@-32"2,

2. Higher dimensional toroidal Aztec diamonds and the (24 2)-vertex model

For the purpose of constructing higher dimensional analogs of the Aztec diamond we will
find it convenient to view the matchings 8D, as follows. LetG, be the subgraph of

the gridZ? induced by the vertices having nonnegative coordinates not exceediFige
union of any two incident edges &, that form a 90 angle is called &-claw. A partition

of the edges of3,, into 2-claws is called a 2-claw covering. Clearly, there is a bijection
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between 2-claw coverings &), and perfect matchings of the graph whose vertices are the
midpoints of edges o6, with an edge connecting the midpointsesénd f precisely if
eU f is a 2-claw. However, this graph is isomorphicAD,, (see figure 2).

Therefore, the matchings AD,, can be identified with 2-claw coverings@f,. This point
of view is useful because it provides the setting for the following very natural generalization.
LetG® be the subgraph of trledimensional grid grapA® induced by the vertices having
nonnegative coordinates not exceedin@efine al-clawto be the union of ang pairwisely
orthogonal edges a8 that are incident to a common vertex. The question then is to
determine the number ofclaw coverings ofG(@,

Just as fod = 2, we can rephrase this as a matching problem as followsADEY be
the uniformd-hypergraph whose vertices are the midpoints of edg&®f with d vertices
connected by an edge precisely if they are midpoints of edges®that form ad-claw.

Then thed-claw coverings ofG@ can be identified with perfect matchings,@Dg‘” (by
a perfect matching of a hypergraph we mean a collection of vertex-disjoint edges that are
collectively incident to all vertices).

The edges oAD@ can be visualized as follows. Consider an interior vertet G@

(i.e., no coordinate ob is 0 orn). The midpoints of the @ edges incident t@ form a
regular @-dimensional) octahedrd@y centered at. Consider translations @y centered

at each vertex oGg‘” (disregard the vertices of these translates whose coordinates do not
all fall in the range [0n]). Then the edges oD@ are precisely thed — 1)-dimensional
faces of these octahedra.

Inthe study of statistical-mechanical models itis customary to consider toroidal boundary
conditions, i.e., toidentify corresponding vertices on opposite faces of the “crystalr,(Let
andTD® be the graphs obtained by applying this procedu@{{dandAD®, respectively
(in particular,TD{? is the grapiTD, defined at the beginning of Section 1). Then the edges
of TD§{” are precisely thed — 1)-faces ofn® octahedra that touch only at vertices, which
we will refer to ascells

The use of the same name as in the case of the “cellular graphs” of [3] is not accidental
(a graph is said to beellular if its edges can be partitioned into 4-cycles so that at most
two of them meet at a vertex). Indeed, all the results in Section 2 of [3] have correspondents
for cellular d-hypergraphsi.e., uniformd-hypergraphs whose edges can be partitioned
into cells so that each vertex is contained in at most two cells (see also Section 5 of [2]).

Toillustrate this, consider for exampl®@. Its cells can be naturally grouped in “lines,”
so that each cell is contained in precisdliines (collect in a line the cells whose centers
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have all but one of their coordinates identical). For the case under consideration each line
L isin fact a “cycle,” i.e., every cell of is bordered by two other cells &f.

Let 1 be a perfect matching GiD{@. Assign one of the numbers 1, 01 to each cell
of TD® according as the cell contains 2, 1 or 0 edgeg @fwo is the maximum number
of disjoint (d — 1)-faces in an octahedron of dimensidj Then by an argument similar
to the one used to prove Lemma 2.2 of [3] it can be shown that the obtained patiern
“sign-alternating” (i.e., the nonzero elements alternate in sign along each cycle).

Conversely, consider an assignment of 1's, 0's ar¢ to the cells of D@ forming an
alternating sign pattern (for short, ASR) LetC be the collection of cycles ok consisting
entirely of zeroes. Using the argumentin the proof of Lemma 2.3 of [3], we obtain that, once
we fix orientations on the cycles h the matchings compatible with these orientations and
having corresponding patter are uniquely determined on the 0-cells and can be freely
chosen (from 2~ possibilities) on the 1-cells.

Consider now in the same picture the gragf, with vertices at the centers of the cells
of TD@ and edges passing through these cells.igfthe center of a 1-cell (resp=1-cell)
then orient all edges a® incident tov so that they point away from (resp., towardsgall
such arrow configurations around a verggecial Finally, if v is the center of a 0-ced,
orient the edges dF (¥ along each cycle containirggo that they point away from the 1-cell
and towards the-1-cell bordering the run of zeroes containingn casec is contained in a
cycle of zeroes, pick one of the two orientations of the corresponding cy@|€ ofvith all
edges pointing in the same direction along the cycle). This results in an arrow configuration
aroundv such that from the two edges incidenttparallel to any given coordinate axis one
points toward® and the other away from we call such vertex configuratiobalancedthe
four balanced and the two special vertex configurations corresponding Bare shown in
figure 3(a)). Call an orientation Gi(¥ admissiblef the arrow configuration around each
vertex is either balanced or special. Then the preceding paragraph shows that there is a
natural correspondence between perfect matching@ﬁﬁ‘? and admissible orientations of
T with precisely £-YN matchings corresponding to an admissible orientation having
N special vertex configurations pointing outward.

This suggests considering the following model, which we will call ¢+ 2)-vertex
model Consider the set of admissible orientationsTg?. Weight the balanced vertex

(G

(b)

Figure 3
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configurations by 1 and the special onesabby 0. The weight of an admissible orientation
is the product of weights of all vertex configurations. Paetition function denoted (¥ (a),
is the sum of the weights of all admissible orientations.

LetC be acycle o consisting of vertices withd — 1 of their coordinates identical and
consider an admissible orientation Bf®". Then alongC, the two special configurations
occur alternately. Therefore, the two special configurations appear the same number of
times in every admissible orientation. This shows that the partition function is not affected
by changing the weight of one special configuratiorataand the other to 1. The above
arguments show then that

M(TDY) = Z(®(2¢@-172). (2.1)

For d =2, the above described model is equivalent to the square-ice (also known as
six-vertex) model. Indeed, reverse arrows on all horizontal segments in each admissible
orientation ofT.?. This amounts to changing the admissible configurations around a vertex
tothe ones showninfigure 3(b). However, these are precisely the allowed local arrangements
in the square-ice model (see, e.g., [1, p. 128]).

An important characteristic of a statistical model is fiee energy per sitedefined (up
to a multiplicative constant) to be the limit lig, .. (1/N) log Z, whereZ is the partition
function andN is the number of “particles” in the system. This limit is expected to exist,
from a physical point of view. We prove (Theorem 3.5) that this limit does indeed exist for
ourd-dimensional model. Our method can in fact be applied to prove the existence of this
limit for a large class of statistical models (see Remark 3.6).

3. Bounds for the free energy of the (2+ 2)-vertex model

coordinategxy, ..., Xq) satisfying 0< x < n;,i = 1,...,d. We will find it useful to
enlarge the set of objects under consideration to admissible orientations of the toroidal grid
Tn,....n, Obtained by identifying vertices &, ., having equalth coordinates modulo
I"Ii,i =1,...,d.

Our derivation of an upper bound ferff’)(a) relies on the following ideas. First, we use
the transfer matrix method to encode the admissible orientations of our toroid&hgrid,
as closed walks in a certain weighted directed grépMore preciselyZ® (a) turns out
to be the trace of thaq-th power of the adjacency matri& of S, so it equals the sum
of the ng-th powers of its eigenvalues. A simple but crucial observation is that the matrix
A is symmetric, and therefore its eigenvalues are real. The other key observation is that
our problem is invariant under permutations of theoordinates, so in particular, for any
choice ofi € {1, ..., d}, we could have constructe®isuch thatz® (a) is the trace of the
n;-th power of its adjacency matrix. These two simple facts allow us to prove Lemma 3.2,
and then deduce a family of upper bounds for the free energy per site (see inequality (3.5);
an application of bounds analogous to these for the case of the three dimensional dimer
problem is given in [4]).

However, in order for the bounds (3.5) to be effective, one needs to be able to determine
(or estimate) the largest eigenvalue of the ma#ifwhose entries involve the paramedgr

.....
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for some particular (even) values of thgs, and this seems to be very difficult even for

small values. The way we resolve this is by proving Lemma 3.8, which relates the partition

function in dimensiord to the one in dimensiod — 1. The statement of Lemma 3.8 was

suggested by Lemma 3.2 and the fact that, when one afithés 2, all the information in

the admissiblal-dimensional configurations is contained in the admissible orientations of

a grid in one dimension lower. Proposition 3.9 and Theorem 3.10 are then deduced easily.
Let Sbe the graph consisting of tmgn, - - - ng_; disjoint edges

[(Xl’ AR Xd—l’ 0)’ (Xl7 MR Xd—l’ 1)]7

0<x < ni,i =1...,d-1.

Define a weighted directed grajihas follows. Take the vertices @f to be the 2:+Ma-1
orientations ofS. Let @ andp be two such orientations. Translatesuch that its edges
are the segment$¥y, ..., Xg—1, =1, X1, ..., %4-1, 0,0 < x < nj,i =1,...,d - 1.
Let G be the subgraph df,, . n, contained in the hyperplang = 0 (G is isomorphic to
Th,....ns_1)- Define the weight of the edge framto g to be the total weight of the orientations
of G which give rise only to admissiblal{dimensional) arrow configurations around the
vertices ofG (if no such orientation exists the weight is taken to be zero).
function Z,,
€6 -6, is a closed walk, theee_.;---e,e1---6_;1 is in general a different closed
walk).

Indeed, by considering the hyperplartés: x4 =i,i =0,...,ng — 1, any admissible
orientation ofT, _,, can be regarded as a closed walk of lengtin the above constructed
graphD. Itis clear that the weight of any such given wélks equal to the total weight of
admissible orientations dt,, .. n, With configurations between the hyperplatgspecified
by the vertices o€.

Pick a linear order on the vertices Bfand letA be the transfer matrix, i.e., the matrix
whose(i, j) entry is equal to the weight of the edge framo j. Let An,.  n, .1 be the
eigenvaluesof (I =1, ..., 2""e-1), Then by the Transfer Matrix Theorem [10, Corollary
4.7.3], we obtain

an,...,nd = Z ()»nl,...,nd_lgl)nd- (3.1)
|

.....

Lemma 3.1 The matrix A is symmetric.

Proof: Leti andj be two vertices oD and letG be, as before, the subgraph™f. ... n,
induced by the vertices wittith coordinate zero. Defingt;; (resp..M;;i) to be the set of
admissible orientations @ compatible with the transition from vertéxo vertex;j (resp.,
vertex j to vertexi).

Givena € M;j, leto’ be the orientation o6 obtained by reversing all arrowsin We
claim thata’ € M.

Indeed, let be a vertex of5. Suppose the oriented segmentsémd|j are positioned as
in the definition of the weight fromto j. Thenv is incident to 2 — 2 edges of5 (which
we leave unoriented for the moment) and to one oriented edge in lothj. Write (i, j)



HIGHER DIMENSIONAL AZTEC DIAMONDS 287

to express the fact thatis followed by j. The only instances when the neighborhood of
is not the same fofi, j) as for(j, i) occur when the corresponding edges$ ahd j have
opposite orientations: in such cases the edges point towdaiq(i, j) if and only if they
point away fromw for (j, i).

However, in this case the orientation @fin the neighborhood of is forced to be the
appropriate special vertex configuration, and all we have to do to pass from the orientation
determined by(i, j) to the one determined hyj, i) is reverse all arrows . Since the
operation of reversing all arrows @ preserves balanced arrow configurations around its
vertices, we obtain our claim.

By interchanging the roles ofand j, we obtain that there is a similar map frai i
to M;;, and it follows from our construction that the two maps are inverse to one another.
Therefore, the map — «’, which is clearly weight-preserving, is a bijection. This implies
thatAij = Aji- O

Since the entries oA are nonnegative, the Perron-Frobenius theorem (see, e.g., [9])

,,,,, _, = 0 greater or equal than the absolute value of

all remaining eigenvalues.

Lemma 3.2 Letn, k > 2be even. Then for all nonnegative<id — 2 we have

1
log Akirne-i-n < - log2+ log Aki+vpa-i-2

Kind—i—1 Ki+1nd—i-2

(recall that i) denotes a sequence of j subscripts equal o m

Proof: By Lemma 3.1, the eigenvalues Afare real. Sinc& is even, we have by (3.1)

()\.k(i)n(d—\—l))k < Z ()\.k(i)n(d—i—l);j)k = Zxipa-i-v k. 3.2)

j
However, since our model is invariant under permutation of coordinates, we have that
Zyina-i-y x equalsZyi+vne-i-n. Using (3.1) and the fact thatis even we obtain
Zyasvn@-i-y = Z ()‘k““’n(d’i’z’;i)n < KT ()Lk(i+1)n(d—i—2))n. (3.3)
i
From (3.2) and (3.3) it follows that

Ki+1pd—i—2

()\k(i)n(d—\fl))k S 2 ()\.k(i+1)n(d7i72))n.

Taking the logarithm of both sides and dividing kly*n—'—1 we obtain the statement
of the lemma. O

Corollary 3.3 For n, k even we have

1 d-1 1 _
o logA@-Y < ——log2+ . logr 0. (3.4)



288 Clucu

Proof: Apply Lemma3.2foi =0,1,...,d — 2. We obtain a chain of inequalities that
implies the statement of the corollary. O

Lemma 3.4 The sequenci1/(2n)4~1)log Aé?,’l)}n is convergent.
Proof: Letl and|l be the superior and inferior limit of the sequence in the statement of
the lemma, respectively. By taking the superior limitas> oo of both sides of (3.4) we
obtain

f< 1 joga@D (3.5)

= @a1 09%a '

forall k > 1. However, taking the inferior limit of both terms of the above inequality as
k — oo we obtainl < |, which completes the proof. O

Denote bylq4(a) the limit of the sequence in the statement of Lemma 3.4, whésehe
weight of the two special vertex configurations. Recall @@t (a) is the partition function
when the special configurations are weightedby

Theorem 3.5
lim = logZ@ () = | a) (3.6)
lim —5109Zi @) = l4(@). .
Proof: We show firstthatfon > 1andi =1, ..., d we have
Zni (n+1)@» (@) < Zni-n(pyya-i+n (). 3.7)

Indeed, we can regard the two partition functions as being the generating functions for
closed walks of lengtih and respectively + 1 in a suitable directed gragb. However,
each closed wallkC of lengthn can be augmented to a closed wéalkof lengthn + 1 by
inserting a loop at a vertex, sin has loops at all vertices. Therefore, as the weight of
C’ is clearly at least as large as the weighCofwe obtain 53.7).

Repeated application of (3.7) implies thaf (a) < Z\%,(a), for alln > 1. In view
of this, to prove (3.6) it suffices to show that the even-index terms of the sequence on the
left-hand side converge tg(a).

Let thereforen be even. Using (3.1) and the fact that the eigenvalues are real we obtain

(A& < 20 (@) = Z (Anon:j)" < 27 (9D,

J

Taking the logarithm and dividing by we are led to
1 - 1 1 1 _
e loga@-b < = logz@(a) < = log 2+ 1 logr @b,

Using Lemma 3.4 and letting — oo we obtain (3.6). O
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Remark 3.6 The argument in the above proof can be used to prove the existence of the
corresponding limit for anyd-dimensional) statistical model provided

(i) the set of admissible configurations is invariant under permutations of the coordinates,
(ii) the admissible configurations can be interpreted as closed walks in a weighted directed
graphD, and
(iii) the incidence matrix ob is symmetric and all diagonal entries are positive.

In particular, using a suitable modification @fi ), we can apply this argument to the
dimer problem on the-dimensional toroidal grid," .

Lemma3.7 Zn@=A+a"+@-a)".

Proof: The graphT, is a cycle; all its orientations are admissible and contain the same
number of each type of special configurations. The total weight of the orientations contain-
ing exactly 2 special configurations is(g ya?. We obtain

Zn(@) = 22 <2ni>a2‘ =A1+a"+1-a".

O

The subgraph ofy, ., induced by the vertices that have all but one of their coordinates
identical is called a@ircuit. In case an orientation is given, a circuitimnotonef all edges
point in the same direction along the circuit.

Given an admissible orientation ©f, . n,, assign value zero to its balanced vertices and
values 1 and-1 to the special vertices with arrows pointing outward and inward, respec-
tively. The resulting array, which is said to have shdpg ..., ng), is clearly an alter-
nating sign pattern (i.e., the nonzero entries alternate in sign along each circuit). Let
ASRn,, ..., Nng) be the set of alternating sign patterns of shape. .., ng). We claim
that given such a patter, there are precisely? admissible orientations giving rise #9
wherez(A) is the number of cycles oA consisting entirely of zeroes (a cycle Afis the
set of entries along a circuit).

Indeed, A determines the orientation along all circuits corresponding to cycle& of
containing nonzero elements. However, circuits corresponding to the remaining cycles of
A must be monotone and can therefore be oriented in two different ways.

The following result is crucial in obtaining an upper boundlfga).

Lemma 3.8
Zonan(@) < 2" AN ZA-D (52 9
Proof: An alternating sign pattern of shag@ n®-) can be regarded as a pak, B),

A, B € ASRn“~Y), whereA andB are so that their corresponding entries form 2-cycles
along which the nonzero elements alternate in sign. Since this impkes— B, we may



290 CluCcu
in fact identify ASR2, n@-9) with ASRn@-D). Using the correspondence between ad-
missible orientations anliSB mentioned above we obtain that

Zynen (@) = Z 22 N (AN (A) | 92(A) gN- (AN, (A) | oNo(A) (3.8)
AcASRN@-1)

whereN, (A), N_(A) andNg(A) denote the number of 1's;1's and 0’s inA, respectively.
Sincez(A) cannot exceedd — 1)n~2, the total number of cycles of, and since
No(A) = n9~1 — N, (A) — N_(A), we deduce from (3.8) that

Zpnev(@) <20 HEZINTE RN 2B g2 ) Ne W EN-(A),
AcASRN(@-D)

Using again the correspondence between admissible orientations and ASPs we identify
the sum on the right-hand side as be#{~ (a/2), thus completing the proof. O

Proposition 3.9 4(a) < (1/2)log2+ (1/2)l4_1(a2/2).

Proof: Letn be even. By Lemma 3.2 we have that

1 1 1
e logr@-b < = log 2+ g2 log Az ne-2.

Take the superior limit of both sidesaspproaches infinity by even values. By Theorem
3.5, this gives rise on the left-hand sidd §¢a) and we obtain

. 1
lg(@) < limsup ——— 1094z na-2
n—oo,neven 2N%~

< limsup % |OQZ()\2,n‘d*2):j)n
j

n—oo,neven

= limsup i log Z5 ha-v (@). (3.9)

n—o0,neven 2nd-1
By Lemma 3.8 we have
log Zy na-n(@) < (N~ 4 (d — Hnv=2) log 2 + log Z\¢~? (a2/2).

Dividing through by 291, taking the superior limit a; — oo (n even) and using
Theorem 3.5 we obtain

lim sup F}fl log Z; ne-n (@) < (1/2)log 2+ (1/2)l4_1(a%/2). (3.10)

n—oo,neven

Relations (3.9) and (3.10) imply the inequality in the statement of the propositian.
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Theorem 3.10 For a > 0we have

1 2 2d 1
loga < l4(a) < Ioga+ — log <1+ Z(a) ) (3.11)

Proof. For the first inequality, notice that for everthere is an admissible orientation of
T.® containing only special vertex configurations: just orient all edges so that they point
from vertices of one of the bipartition classes to vertices of the other. Since the weight of
this orientation i, we obtainz® (a) > a"™, which implies the firstinequality in (3.11).

To obtain the second inequality, notice that by applying Propositiond 3:9 times we
obtain

1 1 a2
lg(a) < (1— 2—) log2+ = sl (m)

However, Lemma 3.7 implids(b) = log(1+ b) for all b > 0 and hence we obtain from
the above inequality that

1 a\>"
lq(a) < < i 1) I092+ — log <1+2(5> )
1 a\>" 172\
:<1 = l)Iog2+ IogZ() <1+§<5) )
2d—1
Ioga+ Iog( 1<E) )
2\a

Corollary3.11 Fora > 2we havdimy_.» lq(a) = loga. In other wordsthe orientation
consisting entirely of special vertex configurations dominates as co.

d

We now return to the problem which motivated the consideration ofledimensional
model, the study of the number of matchings of the hypergrimﬁ@ defined in Section 2.
By (2.1) and Theorem 3.5, the sequeric®/n?) log M(TD)}, is convergent. Letq

be its limit.

Theorem 3.12

Lg — d— log2| < (3.12)

2 = 2d+(d-3)20-2"

Proof: By (2.1) we obtain thatq = I4(29-Y/2). Apply Theorem 3.10 and use the
inequality log1 + x) < x, for x > 0. O

Remark 3.13 The error term in (3.12) decreases very fastagows. Ford = 6 it is
already less than 16°.
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Remark 3.14 Let Z 4 (a) be the generating function fokSRN®), with pattern A
weighted byaN+®+N-(A " |n the correspondence between admissible orientatiomg’of
andASRn@), the number of admissible orientations having the same ASP is at most 2 to
the number of circuits of (@, i.e., 2™, When taking the logarithm and dividing Iny,

the contribution of this multiplicative factor approaches zera as co. Therefore,

n'Lmoo(l/”d) log Z) o () = lg(a). (3.13)

It is therefore natural to ask whether the set of alternating sign patterns of shape
(N1, ..., ng) satisfies conditions (i)—(iii) from Remark 3.6. For, if this was the case, one
could use the arguments above to obtain the statement of Corollary 3.11dox ll

However, one can show that this is not the case. Indeed, suppose the alternating sign
patterns under consideration did satisfy conditions (i)—(iii) from Remark 3.6. Then all
arguments used in this section would go through, and the analogs of Lemma 3.2 and
Theorem 3.5 would imply (by taking = 1)

1 1
: d-2) @ : (d-1)
nI|_>mOo o log|ASR2“?,n®@)| < nIl_)mOO ~in log|ASR2“"P, n)|.

SinceASR2%, n®) can be identified withSRn") for all k, | > 1, the above inequality
implies

1 1 1
nl|_r>n(><3 = log|ASAN®)| < 5 nI|_r)nOO - log |JASRN)|.

By (3.13), the limits in the above inequality are equalid) andl;(1), respectively.
Then by Lemma 3.7, the right-hand side equ@dl&) log 2 = 0.34.... On the other hand,
by [6] the left-hand side equal8/2) log(4/3) = 0.43..., a contradiction.
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