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Abstract. By using totally isotropic subspaces in an orthogonal sgat€2i, 2), several infinite families of
packings of 3-dimensional subspaces of rehldimensional space are constructed, some of which are shown to
be optimal packings. A certain Clifford group underlies the construction and links this problem with Barnes-Wall
lattices, Kerdock sets and quantum-error-correcting codes.
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1. Introduction

The central problem is to arran@jen-dimensional subspacesRf" so they are as far apart

as possible. Numerous constructions and bounds were given in [10, 20] (see also [21]). In
the present paper we give an algebraic framework for constructing such arrangements that
explains all the examples constructed or conjectured in [20].

The two main constructions obtained by these methods are stated in Theorems 1 and 2.
Theorem 3 describes an unrelated construction which yields another infinite family of
optimal packings. Table 1 summarizes the parameters of the packings obtained in dimensions
up to 128.

G(m, n) will denote the Grassmannian spacenedimensional subspaces Bf". We
shall refer to the elements @(m, n) asn-dimensional planes, or simplglanes For
reasons discussed in [10], we define dictancebetween twan-dimensional planeP, Q
in R™ by

d(P, Q) = |/si? 6y + -+ sirP6y )

whereb,, . .., 6, are the principal anglédetweerP andQ. For given values ah, n, N we
wish to find the best packings of planes inG(m, n), that is, subset® = {Py, ..., Py} C
G(m, n) such thatd(P) = min; d(P, P;) is maximized {(P) is called theminimal
distanceof the packing). We refer to [10] for applications and earlier references.

Itwas shown in [10]tha® (m, n) equipped with the metric (1) has anisometricembedding
in RP, D = (m— 1)(m + 2)/2, obtained by representing each pldPes G(m, n) by
the orthogonal projection frol™ to P. If Ais ann x m generator matrix foP, whose
rows are orthonormal vectors spanniRgthen the projection is represented by the matrix
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ITp = A'A, wheret denotes transpositiolil p is anm x m symmetric idempotent matrix
with tracen, and so lies ifRP. All suchITp for P € G(m, n) lie on a sphere of radius
J/nim—=n)/m in RP. Furthermore, if two plane®, Q € G(m, n) are represented by
projection matriceslp, I1q then

1
d*(P, Q) = n — trace (ITp o) = S Ie — Mqll?, )

wheré || || denotes thé., or Frobenius norm of a matrix ([10], Theorem 5.1).
It follows from this embedding that iP is a packing ofN planes inG(m, n) then
n(m —n) N

d(P)z = ~m  N_-1 3

(the “simplex bound”). Equality required < D +1 = (”‘;1), and occurs if and only if
the N points inRP corresponding to the planes form a regular equatorial simplex ([10],
Corollary 5.2). Also, folN > D + 1,

d(P)? < nm-n

(4)

(the “orthoplex bound”). Equality requird$ < 2D = (m — 1)(m + 2), and occurs if the

N points form a subset of the@vertices of a regular orthoplex (generalized octahedron).
If N = 2D this condition is also necessary ([10], Corollary 5.3).

2. The algebraic framework

The following machinery was used in [7] to construct Kerdock sets, among other things,
and in [8, 9] to construct quantum error-correcting codes. The starting point is the standard
method of associating a finite orthogonal space to an extraspecial 2-group, as described for
example in [2], Theorem 23.10, or [15], Theorem 13.8.

The end result will be the construction of various packings-epaces in a parent space
V = R™, wherem = 2'. As basis vectors fov we uses,, u € U = F}. The constructions
will involve certain subgroups of the real orthogonal gra@p= O(V, R).

Fora, b € U we define transformations(a) € O, Y(b) € O by

X(@) :e — eia, Y(b):e, — (-1)PY,, ueU,

where the dot indicates the usual inner productin ThenX = (X(@) : a € U),
Y = (Y(b) : b € U) are elementary Abelian subgroups®@fof order 2, andE = (X, Y)
C Ois an extraspecial 2-grodf order 2+ ([7], Lemma 2.1). The elements & have
the form+X (@)Y (b), a, b € U, and satisfy

Y(b)X(@) = (-1**X @Y (b),
(=X @Y (b)) (=13 X @YD) = (=Pt X @+ a)Y(b+b).
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The centerE(E) of E is {+1}, andE = E/E(E) is an elementary Abelian group of
order 2 whose elements can be denotedXg)Y (b), a, b € U, where we are using the
bar ~ for images under the homomorphism frdinto E. As in [2], Theorem 23.10, we
define a quadratic for® : E — F, by

_ 0 ifg?>=+I

for § € E, whereg € E is any preimage of, and soQ(X(a)Y (b)) = a- b.
The associated alternating bilinear foBrt E x E — [ is given by

B(01, 82) = Q(01 + 02) + Q(01) + Q(02),
for g1, g, € E, and so
B(X(@)Y(b), X@)Y) =a-b+4a -b. (5)

Then(E, Q) is an orthogonal vector space of tyd (2i, 2) and maximal Witt index (cf.
[12]).
The normalizer of in O is a certain Clifford groupl., of order

i—1
2i2+i+2(2i —1 H(4j —1
j=1
(cf. [7], Section 2).L is generated by, all permutation matrice&(A,a) € O : g, —
€aura, U € U, whereA is an invertiblei x i matrix overF, anda € U, and the further
matrix H = (Hy,), Hyy = 27/2(=1)¥",u,v e U.

The groupL acts onE by conjugation, fixing the center, and so also actdorin fact
L acts onE as the orthogonal group* (2i, 2) ([7], Lemma 2.14).

This Clifford groupL has arisen in several different contexts, providing a link between
the present problem, the Barnes-Wall lattices (see [4, 5, 20, 22]), the construction of orthog-
onal spreads and Kerdock sets [7], and the construction of quantum error-correcting codes
[3, 9]. It also occurs in several purely group-theoretic contexts—see [7] for references.

The connection with quantum computing arises because if certain conditions are satisfied
the invariant subspaces mentioned in Theorem 1 form good quantum-error-correcting codes
[8,9].

3. The construction from totally singular subspaces

A subspaceS C E is totally singularif Q(g) = O forallg € S. Then dimS < i, and
if dim S = i then Sis maximally totally singular It follows from (5) that the preimage
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T C E of a maximally totally singular space is an Abelian subgroup o, of order
241 T contains—1, and has 2 linear characters, associated witmautually perpendi-
cular one-dimensional invariant subspaces forming a coordinate f/ame c V ([7],
Lemma 3.3).

Sincel acts asO*(2i, 2) on E, L takes any ordered pair of maximally totally singular
subspaces that meet{i@} to X andY, respectively. The corresponding coordinate frames
inV are

f(X)={ v /22( 1" :vel (6)
ueU
and
FY) ={ey:ueU}, )
respectively.

If SC T has dimensiok, its preimageS € E has 2 linear characters, and Bistinct
invariant subspaces, each of which is spanned by & the vectors inF(T).
We can now state our first main construction for Grassmannian packings.

Theorem1 Givenk, wittD < k < i—1, the setof allinvariant subspaces of the preimages
S of all(i — k)-dimensional totally singular subspac8sofE is a packing of N planes in
G(2', 2¢) with minimal distance d= 2&-1/2 where

=2 k[ }]‘[(2'+1)

and

i B (2l _1)“_(2i7k+1_1)
[k]_ 2-1---2-1

is a Gaussian binomial coefficient.

Proof: There are
1=t
[k] [[@+D
j=k

choices forS ([6], Lemma 9.4.1) and eacByields 2 planes.
We compute the distance between two planes from (2). Suppoisea Z-dimensional
invariant subspace of corresponding to the charactgy of the subgrous; <€ E, for
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j =12. Wemay assumel € S NS andyi(—1) = x2(—1) = —1. Then

1

@Zx;(gmeo

geS;

j =

is the orthogonal projection onte;. Also

traceIl; IMy) = Y Y xa(@)xa(g) tracegigy)

GES ReS

1
SISl

1
- > D xa(@)xa(g) tracegigy)
1SS 6iSNS gt

2 -1
1SS gl;sle(glbcz(gl ) trace(l)
2SS N2
= 1SS if 1=x20nS§ NS .
0 otherwise

This implies from (2) that

x_ 1SN S

=2 ifxyi=0nSNS
d?(Py, Py) = 1SS 9)

2K otherwise

Soif§ = Sandy; # x2the planes are orthogonal and at distarfég dtherwiseS, # S,
S N S| < 211 and their distance satisfies

42 > 2k — k-1 _ pk-1

as claimed. a
The principal angleg, . . ., 6x between any two planes in the packing may be found by a
similar calculation, using the fact that the singular valueH off, are co$6s, . . ., COS O

together with 2— 2K zeros. It turns out that the principal angles are either all equal 2o
or elseN; of them are equal to arccos?* and ¥ — Ny are equal tor/2, wherer is the
rankof QonS U S and

Nl — 22k7i+r/2|Sl N SZ' )
Examples Takingk = 0 in the theorem we obtain a packing of

+2(2242)---(2 42
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lines inG(2', 1) with minimal angler/4 (as in [20]). These are the lines defined by the
minimal vectors in the2dimensional Barnes-Wall lattice together with their images under
H (cf. [11], p. 151)*

Withi =2, k =1 andi = 3, k = 2 we obtain two important special cases: 18 planes
in G(4, 2) and 70 planes i5(8, 4) (cf. [10, 20]). More generally, whek =i — 1 we
obtain the packing of

fi)=22 —1@1+1

planes inG(2', 2-1) with d> = 2'-2 that is the main result of [20]. These packings
meet the orthoplex bound of (4) and are therefore optimal. (We do not know if any of
the other examples are optimal. Even if not optimal as Grassmannian packings, they may
be optimal subject to constraints on the spectrum of distances between planes—cf. [7],
Proposition 3.12.) Anexplicitrecursive construction for the specialkasé—1is givenin

[20].

Fork = 1 andk =i — 2 we obtain two further sequences of packings whose existence
was conjectured in [20].

The construction given in the theorem can be restated in an equivalent but more explicit
way as follows. LetP, be the #-dimensional plane spanned by the coordinate veegrs
whereu € U is of the form 0Q..0 = ...x, with i — k initial zeros. Then the packing
consists of all the images & under the group..

The parameters of all the packings obtained from the theorem in dimensions up to 128
can be seen in Table 1.

Many other packings can be obtained from the images ubhagrother starting planes,
and still more by replacindg. by smaller groups. We mention just one such family. With
them = 2' coordinate vectors, € V arranged in lexicographic order, lé(m, n) denote
the packing inG(m, n) obtained from the images under of the plane spanned by the
first n coordinate vectors. Th&(2', 2) are the packings described in Theorem 1. In
particular,C(2', 2=2) containg1/3) f (i) f (i — 1) planes and had® = 2 ~3. The numerical
evidence (see the entries marked “(1a)” in Table 1) suggestsCit2at3- 2 —3) contains
(1/3)f@i)f(i — 1) f( — 2) planes and had? = 24, and that£(2', 5-2~%) contains
(1/3)f@i)f(i —1)f({ —2) f( — 3) planes and had? = 25,

4. Spreads and clique-finding

The packings constructed in Section 3 contains very large numbers of planes. Smaller
packings can be obtained by using only some of the totally singular spaces.

Theorem 2 Suppose a set of M totally singulér— k)-subspace$ of E can be found
such that any pair intersect in a space of dimension at most |. Then the set of invariant
subspaces of all the preimagesS E is a packing oR ~KM planes in G2', 2X) with
minimal distance satisfying

d2 > 2k _ 22k+|—i . (10)
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Table 1 Parameters of Grassmannian packings constructed in this paper.

m n N & Source
3 1 6 45 @3
4 1 12 34  (2a)
4 1 24 2
4 1 24 0.5182..  [10]
4 2 1 ()
4 2 &5  [10]
4 2 18 1@
7 3 28 169 (3
8 1 240 2 Q)
8 2 20 32 (2d)
8 2 20 15789..  [10]
8 2 40 32 (20)
8 2 44 32 [10]
8 2 420 1
8 3 1680 12 (la)
8 4 70 2 W

16 1 144 1316  (2a)

16 1 4320 12 O

16 2 72 74 (2d)

16 2 136 74 (20

16 2 1040 32 (20

16 2 16200 1

16 3 151200 2 (la

16 4 72 154  (2e)

16 4 180 3 (2b)

16 4 6300 2

16 5 453600 12 (1a)

16 6 113400 1 (1a)

16 7 64800 2 (la

16 8 270 4 ()

23 11 276 14425  (3)

31 15 496 25633 (3)

32 146880 2@

32 272 138 (2d)

(Continued on next page.
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Table 1 (Continued)

m n N & Source
32 2 1138320 1@
32 4 948600 2 W
32 8 94860 4@
32 16 1054 8 O
47 23 1128 5769  (3)
64 1 2112 6364  (2a)
64 1 9694080 2
64 2 1056 3116 (2d)
64 2 152681760 1 (1)
64 4 1056 6316  (2¢)
64 4 262951920 2 (1)
64 8 2376 7 (2b)
64 8 56346840 4 (1)
64 16 2772 12 (2b)
64 16 1460844 8 (1)
64 32 4158 16 (1)
71 35 2556 129673 3)
79 39 3160 16001 3)

103 51 5356 270405  (3)

127 63 8128 4096129  (3)

128 1 1260230400 2 Q)

128 2 4160 6232 (2d)

128 2 40012315200 1

128 4 140043103200 2 Q)

128 8 62019088560 4@

128 16 3445504920 8 1)

128 32 22882860 16 Q)

128 64 16510 32 (2)

Proof: The bound on the minimal distance follows from (9). Equality holds in (10) if and
only if some pair of the subspaces intersect in a subspace of dimension éxactly O

Examples

(&) Anorthogonal spread7, 16, 18] is a partition of the nonzero totally singular points of
E into 2~ + 1 totally singulaii -spaces. Such a partition exists if and onli i even
(the construction is closely related to Kerdock codes), and then Theorem 2 applies with
M=2-141k=1=0,producing 221 +1) linesinG(2, 1) with minimal angle
arccos 2'/2,
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(b) More generally, aspread([14], Theorem 4.1.1) in a projective spaf&5(s, q) is a
partition of the points into copies d? G(r, q), and exists if and only if + 1 divides
s+ 1. Suppose nowis even and dividesi. If we take every totally singularspace
in an orthogonal spread and partition the nonzero points into copieB &f(q — 1, 2),
using a spread, we obtaM = (2' — 1)/(2] — 1) totally singularj-spaces irE which
meet only in the zero vector. This produces a packings @21+ 1)(2 —1)/(2/ —1)
planes inG(2', 2'1) with d? = 2\-1 — 212,

In particular, becauseis even we can always take= 2, obtaining 42' -1 + 1)
(2" —1)/3 planesinG(2', 21-2) with d?2 = 3.2 4. These packings meet the orthoplex
bound of (4).

(c) When the general constructions in (a) and (b) are not applicable, or do not give the
desired parameters, we may always resort to clique-finding. We form a graph whose
nodes represent all totally singulér— k)-spacesS C E, with an edge joining two
nodes if the corresponding spaces intersect in a space of dimension atamasiearch
for a maximal clique. Theorem 2 gives the parameters of the resulting packing.

For example, wheh = 3,k = 1,1 = 0, the graph on 2-spaces has 105 nodes and
contains maximal cliques of size 10, producing packings of 40 plan@$8n2) with
d? = 1.5. These are suboptimal however, since packings of 44 plar@g3i) with
d? = 1.5 were obtained in [10].

Fori =4,k = 1,1 =0, the graph on 3-spaces has 2025 nodes and contains cliques
of size 17 (which is probably maximal), leading to packings of 136 plan&g 16, 2)
with d> = 1.75. Forl = 1 the graph contains cliques of size at least 130, giving
1040 planes ifG (16, 2) with d?> = 1.5. We do not know if these are optimal.

Instead of orthogonal spreads in real space, we can also make use of their analogues

in complex or quaternionic space. Since the packings obtained do not seem especially
good we give only a summary.

(d) A symplectic spreatb the complex analogue of an orthogonal spread, and leads to a
family of 2-1(21-1 + 1) vectors inC2~" whose angles are/2 or arccos 20-/2, for
i > 2 ([7], Theorem 5.6). This produces packings 022/ -1 + 1) planes inG(2', 2)
with d? = 2 — 2-0-2,

(e) Inasimilar way, Kantor [17] constructs a family f2(2'~1 + 1) lines in quaternionic
space of dimension' 22 whose angles are/2 or arccos 20-2/2, for all eveni > 4.
This produces packings of 2(2~* + 1) planes inG(2', 4) with d*> = 4 — 2-0-2],

5. Aninfinite family of packings meeting the simplex bound

A packing of 28 planes i (7, 3) meeting the simplex bound of (3) was given in [10]. This
may be generalized as follows.

Let p be a prime which is either 3 or congruentt@ modulo 8, so that a Hadamard matrix
H of order(p + 1)/2 exists. LetQ = {qi, ..., 0p-1,2} denote the nonzero quadratic
residues modul@, andR = {ry,...,rp-1,2} the nonresidues. The entries df will
be denoted byHst, for0 < s, t < (p—1)/2, where we assumiés o = Ho; = 1foralls,t.
We will construct a packing is(p, pT_l). Letes(0 < s < p—1) be coordinate vectors in
RP,letC = (1++/p+2)//p+ 1, andfixanelemerk e R. LetP,(0 <t < (p—1)/2)
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be the(p — 1)/2-dimensional plane spanned by the vectors

For eachP; we obtainp — 1 further planes by applying the cyclic permutation of coordinates
& — &.1modp), for a total ofp(p + 1)/2 planes.

Theorem 3 The above construction produces a packing dfp p- 1)/2 planes in
G(p, p%l) in which the distance between every pair of planes satisfies

2_ (p+17
4p+2)°

This packing meets the simplex bound3)fand is therefore optimal.

Proof: The principal angles between two planes in the same orbit under the cyclic shift,
for examplePy and P, are 0(2; times) and arcsin@/(1 + C?) (2 times), and so

p+1 4C2  (p+1)?

2 —
o P) =G5 “ap+ o

(11)

If the two planes are in different orbits, it is best to compute the corresponding projection
matrices and then use (2) to compute the distance, making use of Perron’s theorem [19]
on quadratic residues. Again the distance is given by (11). We omit the details of this
calculation. O

For example, whep = 7 andC = /2, takingk = 3 we find that the planeB,, . .., Ps
are generated by

01 2 3 4 5 6

0 1 0 £C 0 O 0

0 01 0 O 0 #C|,
0 0 0 0 1 #£C 0

where the product of the signsidl (as givenin[10]). The full set of 28 planesis obtained by
cycling the seven coordinates. Changitg 6 we obtain a packing with the same distances
but in which some of the principal angles have changed, showing that the packings of
Theorem 3 are not unique.
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Packings obtained from Theorem 3 are labeled “(3)” in Table 1.

6. Atable

Table 1 lists the parameters of the packings constructed in this paper in dimensions up
to 128. When better packings with same parameters were given in [10], these are also
mentioned. In the last column, “(1)” refers to Theorem 1, “(1a)” to the packings described
at the end of Section 3, “(2a)”. ., “(2e)” to the examples following Theorem 2, and “(3)”
to Theorem 3.

We must stress however that a very large number of other packings are known, especially
in dimensions up to 16: see the constructions and tables in [10] and [21].

Notes

. [13], p. 584.

. [13], p. 56.

. [15], p. 349.

The group of the Barnes-Wall lattice in dimensidtis2a subgrougs of index 2 inL. This lattice can therefore
be constructed by taking unit vectors along the coordinate ft&(Ye, forming their images und&s and then
taking their integral closure.

rwNPR
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