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Biprimitive Graphs of Smallest Order
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Abstract. A regular and edge-transitive graph which is not vertex-transitive is saidgerhesymmetricEvery
semisymmetric graph is necessarily bipartite, with the two parts having equal size and the automorphism group
acting transitively on each of these parts. A semisymmetric graph is dafiechitive if its automorphism group

acts primitively on each part. In this paper biprimitive graphs of smallest order are determined.
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected. For the
group-theoretic concepts and notation not defined here we refer the reader to [4, 9].

For a graphX we letV (X), E(X) and AutX be, respectively, the vertex set, the edge set
and the automorphism group ¥f A graphX is said to bevertex-transitiveedge-transitive
andsymmetri¢crespectively, if AutX acts transitively on the set of vertices, edges, or arcs
of X, respectively. Moreover, we say thAtis semisymmetridf it is regular and edge-
transitive but not vertex-transitive. We remark that every semisymmetric graph is bipartite
with the two parts of equal size and the automorphism group acting transitively on each
of these two parts. The study of semisymmetric graphs was initiated by Folkman [8] who
gave a construction of several infinite families of such graphs including, among others, a
smallest semisymmetric graph on 20 vertices. At the end of his paper several problems
were posed, most of which have already been solved (see [1, 2, 10-12, 14]). In all of the
semisymmetric graphs given by Folkman [8] the automorphism group acts imprimitively
on each of the two bipartition parts. A semisymmetric graplis called biprimitive if
Aut X acts primitively on each of the two parts of the bipartition. The first construction
of a biprimitive graph is due to lofinova and Ivanov who gave a classification of cubic
biprimitive graphs [10]. It follows from their classification that only five such graphs exist.

In 1995, the first author constructed an infinite family of biprimitive graphs by giving, for
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each primep = 1 (mod 48, a biprimitive graph with the automorphism group isomorphic
to PSL(2, p) (see [6]). Moreover, biprimitive graphs of ordep@, wherep andq are
distinct primes, have been classified in [7].

It is the purpose of this paper to give the construction of biprimitve graphs with the
smallest order. More precisely, we shall prove the following result.

Theorem 1.1 A biprimitve graph with the smallest order h@@vertices and is isomorphic
to one of the graphs §J and U5, defined in SectioB, with respective valenciesand 36
and automorphism groups isomorphicAat U, (2).

In Section 2 the methods for constructing semisymmetric graphs are given together with
some results on semisymmetric graphs to be used in Section 3, where the dfzphs!
U3S are defined and the proof of Theorem 1.1 is given.

2. Preliminaries

We first recall the general methods for constructing semisymmetric graphsG beta
permutation group on a s&t having two orbitdJ andW of the same cardinality and no
other orbits. Furthermore letq, ..., A, be the orbits of the action & onU x W. For
anyi € {1,...,r}, letX; = X(G, V, Aj) denote the bipartite graph with vertex $etand
edges of the formiw, where(u, w) € A;. Of course X is regular and edge-transitive with
bipartition (U, W). Moreover,X; is semisymmetric if and only if its automorphism group
preserves the two orbits &.

Conversely, every semisymmetric graph can be obtained in the way described above.
Namely, letX be a semisymmetric graph with the automorphism gr@ugnd bipartition
(U, W) of its vertex seV. Takeu € U andw € W and letH = G, andK = G,,. It may
be easily seen that there is a one-to-one correspondence between the dibis @ (as
well as the orbits oK onU) and the orbits of the action @ on the setJ x W, giving us
precisely the situation of the previous paragraph.

For a vertexy of a graphX we letN(v) denote the set of neighbors ofn X.

Lemma 2.1 [7] Let X be a regular bipartite graph with bipartitiodJ, W) (such that
[U| = |W]) of its vertex set V and let G be a subgrouphoft X with orbits U and W. Let
ueUweW H=G,,K=G,andD={geG | w? € N(u)}. If there exists an
elementr € AutG suchthatH = K, K = H and I’ = D~ 'then X is vertex-transitive.
In particular,

(i) if G is Abelian and acts regularly on each of U and Yen X is vertex-transitive

(i) if the lengths of the orbits of H on Wbr the orbits of K on U are all distinct then X
is vertex-transitive.

Proof: Under tbe assumptions, it is easily seen that for gng G, w? € N(u) if
and only ifw@™" € N(u). We define now a mapping of V (X) interchangingJ and
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W by letting
9% :=v¥ and (w9’ :=u?¥
for anyg € G. Obviously,s is well-defined. Observe that

UPp® ¢ E(X) = uw%% ¢ E(X)
= uw @i ¢ E(X)
< u%w% e E(X)
— (U®)7 (w97 e E(X).

Hences € Aut X and soX is vertex-transitive.

Of course, if (i) holds, the conclusion is true by takilg= K = 1 andg® = g1, for
anyg e G. Similarly, if (i) holds, the conclusion is true aslg° K | = |Hg 1K |, for any
g € G, which implies thaD’ = D1, ]

The next three propositions, extracted from [7, 8, 13], will be used in the proof of
Theorem 1.1.

Proposition 2.2 [7] The smallest biprimitive graphs or ord@pq, where p and q are
distinct primeshavellOvertices.

Proposition 2.3 [8] The smallest order of a semisymmetric grap2@s Besidesthere
exists no semisymmetric graphs of or@gror 2p?, where p is prime.

Proposition 2.4 [13] Let G be atransitive group on aset ¥t H = G, for somev € V
and let K be a subgroup of H. If the set of G-conjugates of K which are contained in H
form t conjugacy classes of H with representativas K, . . ., K, then K fixes

t
>IN (Ki) - Nu (K|
i=1

points of V.

The last proposition of this section deals with the automorphism group of a biprimitive
graph.

Proposition 2.5 Let X be a biprimitve graph. Thehut X is not an affine group and its
rank r(Aut X) is at least3.

Proof: Let (U, W) be the bipartition of the vertex sgt of X, let|U| = n = |W| and let
G = Aut X. To prove (i) assume on the contrary ti@&is an affine group. Then it has an
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elementary Abelian normal subgrotipwhich is regular on botk) andW. By Lemma 2.1
we have thak is vertex-transitive, a contradiction.
As for (ii), suppose thaB acts doubly transitively on bothh andW. If these two actions
are equivalent, theX must be isomorphic either #§, , or to K, , minus a 1-factor, which
are both vertex-transitive graphs. If on the other hand, these two representations are inequiv-
alent, then [3, Theorem 5.3] implies thatis an almost simple group and the two represen-
tations of G can be exchanged by an involutienin Aut S, whereS = soc G. This forces
X to be vertex-transitive by Lemma 2.1, completing the proof of Proposition 2.5. O

3. Proof of Theorem 1.1

We now give the definition of the two graphg, andUSS. Let V (4, 4) be the four-
dimensional unitary space over~(4). LetU andW be, respectively, the set of bases and the
set of non-isotropic points of the projective space PG(V(4, &))@, 4) and letG = U,4(2).
Then|U| = 40 = |W| andG acts primitively on botlJ andW. Take an arbitrary unitary
baseB = {e), &, &3, &4} of V(4, 4), where(e;, &) and(es, &4) are two hyperbolic planes
of V (4, 4) such that for each element = x;e; + X2€; + X363 + X4&4 € V (4, 2) we have
(w, w) = X1XZ + XoX2 + X3X2 + x4x2. LettingH = Gg we have thaH is isomorphic
to zg . &, an extension ozg by . ThenH has precisely two orbits oWw. The first
one, call itD1, has cardinality 4 and consists of all thas® € W for which (w, w) =1
and eitherx; = x, = 0 orxz = x4 = 0. The second one, call b,, has cardinality 36
and consists of all thosaw) € W for which (w, w) = 1 andx; = 1 for precisely one
i €{1,2,3,4). Nowletu = B e U, letw € W and letk = G,,. The graph&J§, andu3%
are defined to be, respectively, the grapii&s, V (4, 4), A1) and X (G, V (4, 4), A,), with
A1 and A, corresponding, respectively, ©; and D, in the one-to-one correspondence
between the orbits of the action &onU x W and the orbits oH on W, as mentioned
in the second paragraph of the previous section. Of course, the dufplamd U3S are
bipartite and regular of order 80 and with respective valencies 4 and 36 and, mof&over,
acts transitively on their edge sets.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: LettingY € {Ug,, U3S}, we first show tha is biprimitive and
that AutY is as claimed. LefA = AutU4(2) = U4(2) : Z,. Then by [5, Table 2] we have
that A is a maximal uniprimitive subgroup &, having two representations of degree 40.
It follows that A is the maximal subgroup of At preservingJ andW. Supposing that
Y is vertex-transitive we have [Alt : A] = 2. Lett € AutY\A. SinceA is a complete
group, it follows thatr € Cauty)(A) and sor is an involution and thus At = A x Z,.
But this implies thatA has two equivalent representationsldrand W, a contradiction.
HenceY is semisymmetric and so biprimitive.

It remains to be seen that no biprimitive graph on at most 80 vertices, othedghand
U3, exists. For that purpose we now Détbe a regular bipartite graph with bipartition
(U, W), such thafU| = n = |W|, wheren < 40, admitting a groufis having orbitsU
andW on V (X) and, moreover, acting primitively dd andW and transitively ore (X).
Clearly, X is connected. By Propositions 2.2 and 2.3 we may assume thatlénd that
n is not of the formp, p? or pg, wherep andgq are distinct primes. FurthermorgG) > 3
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Table 1

Row G* Degree ofG* Point stabilizer inG* Rank of G*
1 Us(2) 27 2 As 3
2 Ua(2) 36 S 3
3 Us(2) 40 3, :2A4 3
4 Ua(2) 40 Iy 3
5 Uz (3 36 L2(7) 3
6 Ag 28 S 3
7 Ag 36 S 3
8 L2(8) 28 Dig 4
9 L2(8) 36 D14 5

10 As.2 36 D2o 4

11 As X Ag 36 As x As 3

12 As x As 36 D10 x D1g 3

andG is not an affine group in view of Proposition 2.5. In addition, soc G acts transitively
on bothU andW.

The starting point for our analysis of the structure of the gr@ujs the classification
of primitive permutation groups of degree less than 1000, with the exception of the affine
groups given in [5]. Those groups among them which satisfy all of the conditions of the
previous paragraph are listed in Table 1. An explanation on the contents of this table is
in order. Primitive groups are partitioned intohorts, where two groups lie in the same
cohort if and only if they have the same degree and their respective socles are permutation
isomorphic. Now given any primitive group of degree £40h < 40, with socleT andN
being the normalizer of in S, it follows from [5, Lemma 3] that every other primitive
group betweeil andN must lie in the same cohort, witl as the unique maximal element
of that cohort. Now Table 1 gives the primitive gro@3 as the minimal element of the
cohort, its degree, a description of the point stabilize®in and finally the rank oG*.

Let us now use the information gathered in Table 1 to analyze the gdo(idereafter by
a row we mean a row of Table 1.) If the represention&ain U andW are inequivalent,
then it follows by Table 1 (see rows 3 and 4) that $60 = U4(2), giving rise to the two
graphsUg, andUZ®. We may therefore assume that the representatio@s@fU andW
are equivalent. There are verticess U andw € W such that the vertex stabilize@,
andG,, coincide. Let us denote them Y. We shall now prove thaX is vertex-transitive.
In view of Lemma 2.1, it is sufficient to prove that all the nontrivial suborbit$soére
self-paired. Morever, for each cohort, if all the nontrivial suborbits of its minimal element
are self-paired, the same holds for any other member of that cohort. Hence in what follows
we may assume th& is one of the minimal elemenG* in Table 1.

Each groupG*, with the exception of those in rows 1, 8, 9 and 10, has rank 3 and even
degree. Therefore the two nontrivial suborbits have distinct lengths and are thus self-paired.

Next, the group in row 1 is of rank 3 and its point stablizers are isomorphit toA2,
which has no subgroup of index 2. It follows that the two nontrivial suborbitsohave
distinct lengths, and are therefore self-paired.
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As for the groupG* in row 8, letH be one of its point stabilizers, and thus isomorphic
to Dis. Let’H = {Hg | g € G*} and consider the right multiplication @&* on H. It
follows by Proposition 2.4 that any subgrouptéfof order greater than 2, fixes only one
element ofH, that is the cosdtl. Therefore, for each nontrivial suborbit, the corresponding
stabilizer inH must be a subgroup of order 2 Bff. In particularG* has three nontrivial
suborbits, all of length 9. LeK be such a subgroup of order 2th SinceNy (K) = K and
Ng(K) = Z3, it follows by Proposition 2.4 tha fixes four elements df(, and moreover,

K fixes precisely one element of each nontrivial suborbit. Since, for any two fixed elements
of K, there is an element iNg (K) interchanging them, [15, Theorem 16.4] implies that
all suborbits are self-paired.

The groupG* in row 9 is dealt with in an analogous way. Firstly, it may be seen that its
subdegrees are 1, 7, 7, 7, 14. The proof that the three suborbits of length 7 are self-paired
now follows almost word-by-word the above proof of self-pairedness of the suborbits of
length 9. We omit the details.

Finally, we are left with the grou@* in row 10. LetH be a point stabilizeD,, and let
H = {Hg \ g € G*} and consider the right multiplication &* on H. Proposition 2.4
implies that any nontrivial subgroup &f other thanZ, or Z, x Z, fixes only one element
of H, that is the coseitl. Hence, for each nontrivial suborbit, the corresponding stabilizer
in H must be the identity group &£, or Z, x Z,. It follows that the possible lengths of
the three nontrivial suborbits &* are 5, 10 and 20, and in order for the lengths of the
suborbits to add up to 36, the subdegrees must be precisely 1, 5, 10, 20. Thus the suborbits
are all self-paired, completing the proof of Theorem 1.1. O
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