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Biprimitive Graphs of Smallest Order
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Abstract. A regular and edge-transitive graph which is not vertex-transitive is said to besemisymmetric. Every
semisymmetric graph is necessarily bipartite, with the two parts having equal size and the automorphism group
acting transitively on each of these parts. A semisymmetric graph is calledbiprimitive if its automorphism group
acts primitively on each part. In this paper biprimitive graphs of smallest order are determined.
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1. Introduction

Throughout this paper graphs are assumed to be finite, simple and undirected. For the
group-theoretic concepts and notation not defined here we refer the reader to [4, 9].

For a graphX we letV(X), E(X) and AutX be, respectively, the vertex set, the edge set
and the automorphism group ofX. A graphX is said to bevertex-transitive, edge-transitive
andsymmetric, respectively, if AutX acts transitively on the set of vertices, edges, or arcs
of X, respectively. Moreover, we say thatX is semisymmetricif it is regular and edge-
transitive but not vertex-transitive. We remark that every semisymmetric graph is bipartite
with the two parts of equal size and the automorphism group acting transitively on each
of these two parts. The study of semisymmetric graphs was initiated by Folkman [8] who
gave a construction of several infinite families of such graphs including, among others, a
smallest semisymmetric graph on 20 vertices. At the end of his paper several problems
were posed, most of which have already been solved (see [1, 2, 10–12, 14]). In all of the
semisymmetric graphs given by Folkman [8] the automorphism group acts imprimitively
on each of the two bipartition parts. A semisymmetric graphX is calledbiprimitive if
Aut X acts primitively on each of the two parts of the bipartition. The first construction
of a biprimitive graph is due to Iofinova and Ivanov who gave a classification of cubic
biprimitive graphs [10]. It follows from their classification that only five such graphs exist.
In 1995, the first author constructed an infinite family of biprimitive graphs by giving, for
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each primep ≡ 1(mod 48), a biprimitive graph with the automorphism group isomorphic
to PSL(2, p) (see [6]). Moreover, biprimitive graphs of order 2pq, where p andq are
distinct primes, have been classified in [7].

It is the purpose of this paper to give the construction of biprimitve graphs with the
smallest order. More precisely, we shall prove the following result.

Theorem 1.1 A biprimitve graph with the smallest order has80vertices and is isomorphic
to one of the graphs U480 and U36

80, defined in Section3, with respective valencies4 and36
and automorphism groups isomorphic toAut U4(2).

In Section 2 the methods for constructing semisymmetric graphs are given together with
some results on semisymmetric graphs to be used in Section 3, where the graphsU4

80 and
U36

80 are defined and the proof of Theorem 1.1 is given.

2. Preliminaries

We first recall the general methods for constructing semisymmetric graphs. LetG be a
permutation group on a setV having two orbitsU andW of the same cardinality and no
other orbits. Furthermore let11, . . . , 1r be the orbits of the action ofG on U ×W. For
any i ∈ {1, . . . , r }, let Xi = X(G,V,1i ) denote the bipartite graph with vertex setV and
edges of the formuw, where(u, w) ∈ 1i . Of course,Xi is regular and edge-transitive with
bipartition(U,W). Moreover,Xi is semisymmetric if and only if its automorphism group
preserves the two orbits ofG.

Conversely, every semisymmetric graph can be obtained in the way described above.
Namely, letX be a semisymmetric graph with the automorphism groupG and bipartition
(U,W) of its vertex setV . Takeu ∈ U andw ∈ W and letH = Gu andK = Gw. It may
be easily seen that there is a one-to-one correspondence between the orbits ofH on W (as
well as the orbits ofK onU ) and the orbits of the action ofG on the setU ×W, giving us
precisely the situation of the previous paragraph.

For a vertexv of a graphX we let N(v) denote the set of neighbors ofv in X.

Lemma 2.1 [7] Let X be a regular bipartite graph with bipartition(U,W) (such that
|U | = |W|) of its vertex set V and let G be a subgroup ofAut X with orbits U and W. Let
u ∈ U , w ∈ W, H = Gu, K = Gw and D = {g ∈ G

∣∣ wg ∈ N(u)}. If there exists an
elementσ ∈ Aut G such that Hσ = K , K σ = H and Dσ = D−1 then X is vertex-transitive.
In particular,

(i) if G is Abelian and acts regularly on each of U and W, then X is vertex-transitive;
(ii) if the lengths of the orbits of H on W(or the orbits of K on U) are all distinct then X

is vertex-transitive.

Proof: Under the assumptions, it is easily seen that for anyg ∈ G, wg ∈ N(u) if
and only ifw(g

−1)
σ ∈ N(u). We define now a mappingσ of V(X) interchangingU and
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W by letting

(ug)σ := vgσ and (wg)σ := ugσ

for anyg ∈ G. Obviously,σ is well-defined. Observe that

ug0wg1 ∈ E(X)⇐⇒ uwg1g−1
0 ∈ E(X)

⇐⇒ uw(g0g−1
1 )

σ ∈ E(X)

⇐⇒ ugσ1wgσ0 ∈ E(X)

⇐⇒ (ug0)
σ
(wg1)

σ ∈ E(X).

Henceσ ∈ Aut X and soX is vertex-transitive.
Of course, if (i) holds, the conclusion is true by takingH = K = 1 andgσ = g−1, for

anyg ∈ G. Similarly, if (ii) holds, the conclusion is true as|Hgσ K | = |Hg−1K |, for any
g ∈ G, which implies thatDσ = D−1. 2

The next three propositions, extracted from [7, 8, 13], will be used in the proof of
Theorem 1.1.

Proposition 2.2 [7] The smallest biprimitive graphs or order2pq, where p and q are
distinct primes, have110vertices.

Proposition 2.3 [8] The smallest order of a semisymmetric graph is20. Besides, there
exists no semisymmetric graphs of order2p or 2p2, where p is prime.

Proposition 2.4 [13] Let G be a transitive group on a set V, let H = Gv for somev ∈ V
and let K be a subgroup of H. If the set of G-conjugates of K which are contained in H
form t conjugacy classes of H with representatives K1, K2, . . . , Kt , then K fixes

t∑
i=1

|NG(Ki ) : NH (Ki )|

points of V .

The last proposition of this section deals with the automorphism group of a biprimitive
graph.

Proposition 2.5 Let X be a biprimitve graph. ThenAut X is not an affine group and its
rank r(Aut X) is at least3.

Proof: Let (U,W) be the bipartition of the vertex setV of X, let |U | = n = |W| and let
G = Aut X. To prove (i) assume on the contrary thatG is an affine group. Then it has an
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elementary Abelian normal subgroupT which is regular on bothU andW. By Lemma 2.1
we have thatX is vertex-transitive, a contradiction.

As for (ii), suppose thatG acts doubly transitively on bothU andW. If these two actions
are equivalent, thenX must be isomorphic either toKn,n or to Kn,n minus a 1-factor, which
are both vertex-transitive graphs. If on the other hand, these two representations are inequiv-
alent, then [3, Theorem 5.3] implies thatG is an almost simple group and the two represen-
tations ofG can be exchanged by an involutionσ in Aut S, whereS= soc G. This forces
X to be vertex-transitive by Lemma 2.1, completing the proof of Proposition 2.5. 2

3. Proof of Theorem 1.1

We now give the definition of the two graphsU4
80 and U36

80. Let V(4, 4) be the four-
dimensional unitary space overGF(4). LetU andW be, respectively, the set of bases and the
set of non-isotropic points of the projective space PG(V(4, 4)) ofV(4, 4) and letG = U4(2).
Then|U | = 40= |W| andG acts primitively on bothU andW. Take an arbitrary unitary
baseB = {e1, e2, e3, e4} of V(4, 4), where〈e1, e2〉 and〈e3, e4〉 are two hyperbolic planes
of V(4, 4) such that for each elementw = x1e1 + x2e2 + x3e3 + x4e4 ∈ V(4, 2) we have
(w,w) = x1x2

2 + x2x2
1 + x3x2

4 + x4x2
3. Letting H = GB we have thatH is isomorphic

to Z3
3 : S4, an extension ofZ3

3 by S4. Then H has precisely two orbits onW. The first
one, call itD1, has cardinality 4 and consists of all those〈w〉 ∈ W for which (w,w) = 1
and eitherx1 = x2 = 0 or x3 = x4 = 0. The second one, call itD2, has cardinality 36
and consists of all those〈w〉 ∈ W for which (w,w) = 1 andxi = 1 for precisely one
i ∈ {1, 2, 3, 4}. Now letu = B ∈ U , letw ∈ W and letK = Gw. The graphsU4

80 andU36
80

are defined to be, respectively, the graphsX(G,V(4, 4),11) andX(G,V(4, 4),12), with
11 and12 corresponding, respectively, toD1 and D2 in the one-to-one correspondence
between the orbits of the action ofG on U ×W and the orbits ofH on W, as mentioned
in the second paragraph of the previous section. Of course, the graphsU4

80 andU36
80 are

bipartite and regular of order 80 and with respective valencies 4 and 36 and, moreover,G
acts transitively on their edge sets.

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1: Letting Y ∈ {U4
80,U

36
80}, we first show thatY is biprimitive and

that AutY is as claimed. LetA = Aut U4(2) ∼= U4(2) : Z2. Then by [5, Table 2] we have
that A is a maximal uniprimitive subgroup ofS40 having two representations of degree 40.
It follows that A is the maximal subgroup of AutY preservingU andW. Supposing that
Y is vertex-transitive we have [AutY : A] = 2. Let τ ∈ Aut Y\A. SinceA is a complete
group, it follows thatτ ∈ C(Aut Y)(A) and soτ is an involution and thus AutY ∼= A× Z2.
But this implies thatA has two equivalent representations onU andW, a contradiction.
HenceY is semisymmetric and so biprimitive.

It remains to be seen that no biprimitive graph on at most 80 vertices, other thanU4
80 and

U36
80, exists. For that purpose we now letX be a regular bipartite graph with bipartition

(U,W), such that|U | = n = |W|, wheren ≤ 40, admitting a groupG having orbitsU
andW on V(X) and, moreover, acting primitively onU andW and transitively onE(X).
Clearly,X is connected. By Propositions 2.2 and 2.3 we may assume that 10≤ n and that
n is not of the formp, p2 or pq, wherep andq are distinct primes. Furthermore,r (G) ≥ 3
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Table 1.

Row G∗ Degree ofG∗ Point stabilizer inG∗ Rank ofG∗

1 U4(2) 27 24 : A5 3

2 U4(2) 36 S6 3

3 U4(2) 40 3+ : 2A4 3

4 U4(2) 40 33 : S4 3

5 U3(3) 36 L2(7) 3

6 A8 28 S6 3

7 A9 36 S7 3

8 L2(8) 28 D18 4

9 L2(8) 36 D14 5

10 A6.2 36 D20 4

11 A6 × A6 36 A5 × A5 3

12 A5 × A5 36 D10× D10 3

andG is not an affine group in view of Proposition 2.5. In addition, soc G acts transitively
on bothU andW.

The starting point for our analysis of the structure of the groupG is the classification
of primitive permutation groups of degree less than 1000, with the exception of the affine
groups given in [5]. Those groups among them which satisfy all of the conditions of the
previous paragraph are listed in Table 1. An explanation on the contents of this table is
in order. Primitive groups are partitioned intocohorts, where two groups lie in the same
cohort if and only if they have the same degree and their respective socles are permutation
isomorphic. Now given any primitive group of degree 10≤ n ≤ 40, with socleT andN
being the normalizer ofT in Sn, it follows from [5, Lemma 3] that every other primitive
group betweenT andN must lie in the same cohort, withN as the unique maximal element
of that cohort. Now Table 1 gives the primitive groupG∗ as the minimal element of the
cohort, its degree, a description of the point stabilizer inG∗, and finally the rank ofG∗.

Let us now use the information gathered in Table 1 to analyze the groupG. (Hereafter by
a row we mean a row of Table 1.) If the representions ofG onU andW are inequivalent,
then it follows by Table 1 (see rows 3 and 4) that soc(G) = U4(2), giving rise to the two
graphsU4

80 andU36
80. We may therefore assume that the representations ofG onU andW

are equivalent. There are verticesu ∈ U andw ∈ W such that the vertex stabilizersGu

andGw coincide. Let us denote them byH . We shall now prove thatX is vertex-transitive.
In view of Lemma 2.1, it is sufficient to prove that all the nontrivial suborbits ofG are
self-paired. Morever, for each cohort, if all the nontrivial suborbits of its minimal element
are self-paired, the same holds for any other member of that cohort. Hence in what follows
we may assume thatG is one of the minimal elementsG∗ in Table 1.

Each groupG∗, with the exception of those in rows 1, 8, 9 and 10, has rank 3 and even
degree. Therefore the two nontrivial suborbits have distinct lengths and are thus self-paired.

Next, the group in row 1 is of rank 3 and its point stablizers are isomorphic to 24 : A5,
which has no subgroup of index 2. It follows that the two nontrivial suborbits ofG∗ have
distinct lengths, and are therefore self-paired.



156 DU AND MARUŠIČ

As for the groupG∗ in row 8, let H be one of its point stabilizers, and thus isomorphic
to D18. LetH = {Hg

∣∣ g ∈ G∗} and consider the right multiplication ofG∗ onH. It
follows by Proposition 2.4 that any subgroup ofH of order greater than 2, fixes only one
element ofH, that is the cosetH . Therefore, for each nontrivial suborbit, the corresponding
stabilizer inH must be a subgroup of order 2 ofH . In particularG∗ has three nontrivial
suborbits, all of length 9. LetK be such a subgroup of order 2 inH . SinceNH (K ) = K and
N∗G(K ) ∼= Z3

2, it follows by Proposition 2.4 thatK fixes four elements ofH, and moreover,
K fixes precisely one element of each nontrivial suborbit. Since, for any two fixed elements
of K , there is an element inN∗G(K ) interchanging them, [15, Theorem 16.4] implies that
all suborbits are self-paired.

The groupG∗ in row 9 is dealt with in an analogous way. Firstly, it may be seen that its
subdegrees are 1, 7, 7, 7, 14. The proof that the three suborbits of length 7 are self-paired
now follows almost word-by-word the above proof of self-pairedness of the suborbits of
length 9. We omit the details.

Finally, we are left with the groupG∗ in row 10. LetH be a point stabilizerD20 and let
H = {Hg

∣∣ g ∈ G∗} and consider the right multiplication ofG∗ onH. Proposition 2.4
implies that any nontrivial subgroup ofH other thanZ2 or Z2× Z2 fixes only one element
ofH, that is the cosetH . Hence, for each nontrivial suborbit, the corresponding stabilizer
in H must be the identity group orZ2 or Z2 × Z2. It follows that the possible lengths of
the three nontrivial suborbits ofG∗ are 5, 10 and 20, and in order for the lengths of the
suborbits to add up to 36, the subdegrees must be precisely 1, 5, 10, 20. Thus the suborbits
are all self-paired, completing the proof of Theorem 1.1. 2
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