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Abstract. We generalize results of Calderbank, Hanlon and Robinson on the representation of the symmetric
group on the homology of posets of partitions with restricted block size. Calderbank, Hanlon and Robinson
consider the cases of block sizes that are congruent to Ocheodl 1 modd for fixed d. We derive a general
formula for the representation of the symmetric group on the homology of posets of partitions whose block sizes
are congruent t& modd for anyk andd. This formula reduces to the Calderbank-Hanlon-Robinson formulas
whenk = 0, 1 and to formulas of Sundaram for the virtual representation on the alternating sum of homology.
Our results apply to restricted block size partition posets even more general thamtigd partition posets.

These posets include the lattice of partitions whose block sizes are bounded from below by sokeJixethain

tools involve the new theory of nonpure shellability developed byt and Wachs and a generalization of a
technique of Sundaram which uses Whitney homology to compute homology representations of Cohen-Macaulay
posets. An application to subspace arrangements is also discussed.
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Introduction

Shellability is a well-known notion in algebraic and topological combinatorics which until
recently applied only to pure (i.e., all maximal chains have the same length) posets and
simplicial complexes. In [7, 8] Bjfner and the author extend the theory of shellability to
nonpure posets and complexes. The nonpure setting provides for a richer theory which
enables one to analyze many important and natural classes of posets that are nonpure. One
major distinction between pure shellability and nonpure shellability is that a pure shellable
poset can have nonvanishing homology only in the top dimension while a nonpure shellable
poset can have nonvanishing homology in various dimensions.

In this paper, we use the theory of nonpure shellability to generalize a powerful technique
developed by Sundaram for computing the character of group actions on the top dimen-
sional homology of Cohen-Macaulay posets. We then apply the generalized technique to
computing the representation of the symmetric group on each homology for a general class
of subposets of the partition lattice induced by restricting the block sizes of the partitions.
This general class contains subposets which are nonpure shellable.

Homology of restricted block size partition posets was first considered by Calderbank,
Hanlon and Robinson [10] who derived beautiful plethystic formulas yielding the character
of the representation of the symmetric group on the top homology df-thiesible partition
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lattice (all block sizes divisible by some fixedl and the 1 modi partition lattice (all block

sizes congruent to 1 mad), both of which are pure. A key fact used in the Calderbank,
Hanlon and Robinson proof is that the two posets are pure shellable which was proved
respectively by Wachs and &ijrier (cf. [10, 17]). For gener&| thek modd partition poset

is not pure and that is where the difficulty lies in computing the homology representations
of the generak modd partition posets.

In [21], Sundaram gives a formula for the virtual representation of the symmetric group
on the alternating sum of homology of tlkemod d partition poset. When the poset
is pure and shellable, as in the cdse= 0, 1, Sundaram’s formula gives the nonvirtual
representation on the top dimensional homology since homology in every other dimension
vanishes. However, when the poset is not pure, as for gekeoale cannot extract the
nonvirtual representation on each homology from the virtual alternating sum representation,
even though, as we establish here, the poset is shellable.

In this paper, we succeed in obtaining a formula which gives the representation of the
symmetric group on each homology of the gen&ratodd partition poset. Our formula
refines the alternating sum formula of Sundaram and reduces to the formulas of Calderbank,
Hanlon and Robinson whén= 0, 1. More generally, we give two simple conditions on sets
T C P and show that these conditions imply tti&}, the poset of partitions oh] whose
block sizes are i, is shellable and its dual is semipure (i.e., all proper principal lower

order ideals are pure). Then we derive a formula giving the representation of the symmetric
groupS, on each homology of1T. The simple conditions are satisfied, for example, by
the settk +id | i € N}, for allk,d € P. Whenk = d we have thal-divisible partition

lattice and when Xk k < d we have th& modd partition poset. Whed = 1, we have the

at leask partition lattice, which was first proved to be shellable in [7]. Our formula, when
d = 1, implies another formula of Sundaram for the virtual representation of the symmetric
group on the the alternating sum of homology of the “at I&gsrtition lattice”.

Sundaram’s technique for computing virtual representations on alternating sums of ho-
mology is based on her result equating alternating sums of homology representations with
alternating sums of Whitney homology representations. When all but the top homology
vanishes, this reduces to a formula expressing the top homology representation as an alter-
nating sum of Whitney homology representations. We generalize this result to semipure
posets that satisfy a certain homological condition implied by shellability, by introducing a
new doubly indexed Whitney homology and expressing the homology representation of the
posetin terms of the doubly indexed Whitney homology representations. As a consequence,
we are also able to express the Betti numbers of the poset in terms ofthiedvfinction
of certain intervals.

Sundaram expresses the Frobenius characteristic of each Whitney homology of the dual
of a partition poset as a homogeneous component of the plethysm of certain symmetric
functions. We refine and abstract her results by expressing a generating function for the
Frobenius characteristic of the doubly indexed Whitney homology as a plethysm of a
certain symmetric function with a certain generating function for the complete homogeneous
symmetric functions.

In Section 1 we review Sundaram’s result equating alternating homology representa-
tions with alternating Whitney homology representations. We also discuss some homologi-
cal consequences of nonpure shellability, one of which is Stanley’s recent notion of
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sequentially Cohen-Macaulay (the nonpure version of Cohen-Macaualay). We present
a new characterization of sequentially Cohen-Macaulay which follows from one due to
Duval [11].

In Section 2 we introduce the notion of doubly indexed Whitney homology and a variant
of it. Doubly indexed Whitney homology is used to express homology representations of
any semipure sequentially Cohen-Macaulay poset. The variant is used to do the same for
sequentially Cohen-Macaulay posets whose dual is semipure.

In Section 3 we present the two simple conditions on alset P and show that these
conditions imply thaf1] is shellable and its dual is semipure. We discuss examples of sets
T that satisfy the conditions, one of which is the 8et-id | i € N}.

In Section 4 we derive the plethystic formulas for the generating function of the Frobenius
characteristic of the doubly indexed Whitney homology of the dudl bf By combining
this with the results of Section 2, we obtain a generating function for the characteristic of
homology ofI1] in each dimension. This result specializes to generating functions for the
characteristic of homology of tHemodd and the at leadt partition poset.

The doubly indexed Whitney homology representations of the dual of the partition posets
decompose naturally into representations which are induced up from direct products of
wreath products. In Section 5 we prove a general plethystic formula, stated and used
in Section 4, for the generating function of the Frobenius characteristic of these induced
representations.

In Section 6, we present some identities which can be derived from the formulas of
Section 4. They can also be explained by considering the variant of doubly indexed Whitney
homology onI1!. We also touch upon connections with subspace arrangements. We use
the formulas of Section 4 and an equivariant Goresky-MacPherson formula of Sundaram
and Welker [24] to derive a formula for the representation of the symmetric group on the
cohomology of the complement of a complexified subspace arrangement whose intersection
lattice isTI; .

1. Preliminaries

Let P be a finite bounded poset of length= ¢(P) > 0, with minimum elemend and
maximum elementi.. Let P denote the induced subposet{0,1}. Forx < yin P,
(X, y) denotes the open intervet € P | X < z < vy}, [X, y] denotes the closed interval
{ze P | x <z < y}andi(x, y) denotes the length([x, y]) of the interval. P is said to
be pure (also known as ranked or graded) if all its maximal chains have the same length.
Recall that if¢(P) > 1, theorder compleyof P, denoted byA(P), is defined to be the
(¢ — 2)-dimensional simplicial complex whose vertices are the elemenisarid whose
faces are the chains ¢f. Forr € Z and¢(P) > 1, let H, (P) denote the th reduced
simplicial homologyH; (A(P), C). For¢(P) = 0 (i.e.,|P| = 1), defineH; (P) to beC if
r = —2 and 0 otherwise. For < yin P, let H, (x, y) denote the th homologyH; ([, y])
of the interval k, y]. If [x, y] has vanishing homology in all dimensions below the top
dimension¢(x, y) — 2 then we writeH (x, y) instead ong(x y—2(X, y).
Whitney homology for geometric lattices was introduced by Baclawski [1]. A formula-
tion due to Bprner [2] characterizes Whithey homology for any bounded pBsas the
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direct sump, H,_»(0, x). Here, we slightly modify this formulation by defining thi
Whitney homologgf P to be

WHP) = P HFr20.%.

xeP\{1}

If a finite groupG acts as a group of automorphismsothen we say tha® is aG-poset.
For eachx € P, any elemeny € G acts as a map from chains if, x) to chains of the
same length in0, gx). This induces a linear map from the vector space whose basis is
the set of lengthr chains of(0, x) to the vector space whose basis is the set of length
chains of(0, gx), for eachr. Since this map commutes with the boundary maps on the
corresponding chain vector spaces, it induces a linear map foi, x) to H, (0, gx).
Hence, the action o& on P induces a representation 6fon H, (P) and onW H (P) for
eachr. The following important relationship between th&enodules was established by
Sundaram [20] as a consequence of the Hopf trace formula.

Proposition 1.1 [20] Let P be a G-poset. Then the following isomorphism of sums of
virtual G-modules holds

4 -1

P D H 2(P) = P *WH (P). (1.2)

r=1 r=0

Corollary 1.2[20] Let P be a G-poset of length> 1. If Hi (P) vanishes for all i£ ¢ —2
then the G-modulél,_,(P) decomposes into a sum of virtual G-modules as follows

-1
He2(P) = @D "W H (P). (1.2)
r=0

Consequentlyif P is Cohen-Macaulayi.e., homology of all intervals vanish below the
top dimensionthen(1.2) holds.

We assume familiarity with the theory of shellable simplicial complexes and posets (cf.
[6]). Recall, in particular, that a pure shellable poset or simplicial complex is Cohen-
Macaulay. In [20], Corollary 1.2 is applied to certain examples of pure shellable posets.
Examples of nonpure posets have recently arisen which have lead to an extension of the
theory of shellability from pure to nonpure complexes and posets [7, 8]. Since a nonpure
shellable poset can have nonvanishing homology in more than one dimension, Corollary 1.2,
as it stands, cannot be used to compute the homology of nonpure shellable posets. In the
next section, we will generalize Corollary 1.2 to a class of posets which include posets that
are nonpure and shellable.

Let A be a finited-dimensional simplicial complex. Fore Z, letC, (A) denote theth
simplicial chain space ovel (C_1(A) is the one-dimensional vector space generated by
the empty face) andfi, (A) denote the th reduced simplicial homology af overC. For
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—1<m<d,letA‘™ be the subcomplex ok generated by all facets of dimension at least
m. We say thatA has thevanishing homology properif H; (A‘™) = 0 for alli < m.

Theorem 1.3 LetA be ashellable simplicial complex. Tharhas the vanishinghomology
property.

Proof: By[7, Theorem 2.9]A™M is shellable for al-1 < m < dim A. Since the dimen-
sion of thei th homology of a shellable complex is equal to the numbeardimensional
facets with a certain property [7, Theorem 3.4 and Corollary 4.2] ttheomology vanishes

if there are nd-dimensional facets. For< m, there are no dimensional facets ith ™.
Hence théth homology ofA‘™ vanishes when < m. O

Recently Stanley [19] extended the connection between pure shellability and Cohen-
Macaulayness to the nonpure case by finding a nonpure generalization of the notion of
Cohen-Macaulay. Instead of giving Stanley’s formulation we state the following charac-
terization, established by Duval [11]. There s-skeletom® of a simplicial complexA
is defined to be the subcomplex generated by all faces of dimession

Proposition 1.4 [11] A simplicial complex is sequentially Cohen-Macaulay if and only
if its pure s-skeletom[¥ is Cohen-Macaulay for al-1 < s < d.

Recall that thdink of a faceF in A is defined to be the subcomplex
lkaF={GeA|FUGeA, FNG=4¢}

We will use the following characterization of sequential Cohen-Macaulay which follows
readily from Duval’s characterization.

Theorem 1.5 A simplicial complex is sequentially Cohen-Macaulay if and only if the link
of each of its faces has the vanishing homology property.

Proof: Let A be ad-dimensional simplicial complex and I& be any face. We claim
that for allm andr such thatdinF <m<dand-1<r <m-dimF,

He (1K am F) = H; (ks F)™), (1.3)

wherem’ = m — dim F. To prove this claim we first observe th@t(Al™) = C, (A™) if
r < m. It follows that

Hr (AM) = Hy(A™)
if r < m. Next we observe that

Ik am F = (Ik s F)IM,
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It now follows that

Hr (Ikam F) = Hr ((ka F)IM)
= H, (Iky F)™),

forr < nm' as claimed.

Duval’s characterization (Proposition 1.4), says that the conditiorthatsequentially
Cohen-Macaulay is equivalent to the condition that the left side of (1.3) equals 0. Since,
setting the right side of (1.3) equal to 0O is the same as requiring that all links have the
vanishing homology property, the result holds. m|

Corollary 1.6 [19] Let A be a shellable simplicial complex. Thex is sequentially
Cohen-Macaulay.

Proof: Since the link of any face of a shellable complex is shellable [8, Proposition 10.14],
it follows from Theorem 1.3 that all the links have the vanishing homology property. Hence,
by Theorem 1.5A is sequentially Cohen-Macaulay. |

Lemma 1.7 Let A be sequentially Cohen-Macaulay. Thafi™ is sequentially Cohen-
Macaulay for all m such that1 < m < d.

Proof: First note that if-1 < m', m < d, then(A{™){™) = AMaxmm) "t follows that
if A has the vanishing homology property then so daé¥. Also note that ifF is a face
of AM then lkym F = (Ika F)M-9mF) |t follows that if the link in A of each face of
A has the vanishing homology property then the link\iff? of each face oA‘™ has the
vanishing homology property. Hence, the result follows from Theorem 1.5. O

Lemma 1.8 Let A have the vanishing homology property. Then

. Hi(A) if i
Fam) = | e r=m (1.4)
0 otherwise.

Proof: It is easy to see that the first case of (1.4) holds for any simplicial complex
Indeed, this follows from the facts th@ (A‘™) = C;(A) and the boundary mag for

A'™ andA are the same. Since the second case of (1.4) is simply the vanishing homology
property, the result is valid. ]

All of the above results pertaining to sequentially Cohen-Macaulay complexes and the
vanishing homology property are valid for homology taken over any coefficient ring. We
are grateful to an anonymous referee for the following important observation.

Proposition 1.9 Let A be a simplicial complex with the vanishing homology property
over the ring of integers. TheH; (A, Z) is free for all i and vanishes whenever there is no
facet of dimension i.
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Proof: Leti be suchthaHi (A, Z) # 0 and let be any cycle of dimensianthat is not a
boundary. Sincéd; (A2, Z) = 0, the cyclesr must involve a facet of dimensidn Since
any multiple ofo must also involve this facet, no multiple efcan be a boundary either.
ThusH; (A, Z) is free. O

We say that a bounded pogethas the vanishing homology property (resp., is shellable,
sequentially Cohen-Macaulay) if its order complaxP) has the vanishing homology
property (resp., is shellable, sequentially Cohen-Macaulay). Note that each closed interval
of P has order complex equal to the link of some faceA¢P). Hence, by Theorem 1.5,
all intervals of a sequentially Cohen-Macaulay poset are sequentially Cohen-Macaulay.

2. Refinement of Whitney homology

In this section we refine the notion of Whitney homology and use the refined notion to
extend Corollary 1.2 to nonpure posets. We give two different refinements which coincide
for the class of semipure sequentially Cohen-Macaulay posets.

Definition 2.1 Let P be abounded poset of length> 1. For eactx € P letm(x) be the
length of the longest chain containimdi.e.,m(x) = £(0, X) + £(x, 1)). Forr, m € Z, the
(r, m)-Whitney homology ofP is defined to be

WHn(P) = @ HFr20 x).
xeP\{1}
m(x)=m

Remark Baclawski’s definition of Whitney homology involves a differential which makes
Whitney homology an actual homology theory. One could formulate our refinement by
using the same differential. However, such a formulation is not needed in this work since
we are merely using the refinement of Whitney homology as a tool in computing poset
homology representations.

Note that if G is an automorphism group d?, then each’r, m)-Whitney homology
is a G-invariant subspace of Whitney homology and each Whitney homa®gyodule
decomposes into a direct sum®¥fmodules as follows,

L
WH(P)= @5 WH.u(P).

m=r+1

If P is pure then
WH (P) =WH,(P). (2.1)

Note thatW Hy ¢ (P) is the trivial G-module andV Hy m (P) is (0) for m # ¢£.
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As in [8], we say thaP is semipurdf all proper lower intervals@, X], X < 1are pure.
The following generalization of Corollary 1.2 is the main result of this section and will be
used to compute homology representations of the semipure shellable posets considered in
the next section.

Theorem 2.2 Let P be a semipure G-poset of length 1 with the vanishing homology
property. Then for each nthe G-moduleH,,_>(P) decomposes into a sum of virtual
G-modules as follows

m-—1
Hmn-2(P) = @ (-D™ W H m(P). (2.2)
r=0

Consequentlyif P is semipure and shellahler more generally semipure and sequentially
Cohen-Macaulaythen(2.2) holds.

Proof: For eachm such that 1< m < ¢, let P{™ be the induced subposet Bfon the
set{x € P | m(x) > m}. SinceP is semipureP™ is simplyi together with the order
ideal generated by coatoms of rank at least 1. Hence, all maximal chains iR™ have
length at leasm. Therefore,

A(P™) = A(P)m™-2), (2.3)
By (2.3) and Lemma 1.8 we have that

Hi_o(P) ifr >m

0 otherwise. (24)

e |

We shall first establish (2.2) fan=¢. Since P) has vanishing homology for all
dimensions but — 2, we can apply Corollary 1.2 t8‘“) to obtain,

-1
He—2(PY) = @D W H (P). (2.5)
r=0

SinceP is pure, by (2.1) we have
WH (PY) =WH (P"“) =WH(P).

Equation (2.2) fom = ¢ now follows by substituting this and (2.4) into (2.5).
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Now suppose thah < ¢. By Proposition 1.1 applied t8‘™ and P‘™+1 we have

4 ¢
P D H o(P™) — @(—1) Hy_o(P™Y)
r=1 r=1

-1 -1

= DY HWHP™) — D W H (P
r=0 r=0
-1 B .
=P D H200 - P H-20x
r=0 xeP\(1} xeP\{i}
m(x)>m m(x)>=m+1
-1
=Pv | P 200
r=0 xeP\(1)
m(x)=m
m-—1
= PO WH m(P).
r=0
By (2.4), we thus have
m—1 4 B 14 5
PO HTWHmP) = P D' H2(P) = P (D" Hr_2(P)
r=0 r=m r=m+1
= (=D™Hm_2(P). O

As a consequence of Theorem 2.2, we obtain a formula for the Betti numbérsnof
terms of the Mbius function ofP. Let g (P) denote théth Betti number, dinH; (P), and
let « denote the Mbius function ofP.

Corollary 2.3 If P is semipure of length > 1 and has the vanishing homology property
then

Bn2(P) = (=)™ Y~ 1 %),
xeP\(1}
m(x)=m

for all m.

Proof: By taking dimensions of the representations in (2.2) we obtain
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m—1
Bna(P)=(=D™ | Y~ > (-1 20, x])
xeP\{i} r=0
m(x)=m

By the EuIer—PoingwformuIa, the inner sumis the reduced Euler characterism(kﬁ xD
which is simplyu (0, x). ]

We can weaken the condition thatis semipure in the hypothesis of Theorem 2.2 provi-
dedthatP is sequentially Cohen-Macaulay. To do this we define a variaint of)-Whitney
homology which coincides with the previous notion(ofm)-Whitney homology wherP
is semipure and sequentially Cohen-Macaulay.

Definition 2.4 Let P be a bounded poset of length> 1. Forr, m € Z, the variant
(r, m)-Whitney homology ofP is defined to be

WH.(P)= € H—20.%). (2.6)
xeP\{1}
ox,I)=m—r

EachW H’fm(P) is aG-invariant subspace of Whitney homology. Note tbraH(’{[(P)
is the trivial G-module andV H{jm(P) is (0) form < ¢.

Proposition 2.5 If P is semipure and sequentially Cohen-Macaulay then
WH(P) = WH m(P)
forallr, m.

Proof: It follows from the fact thaP is semipure and sequentially Cohen-Macaulay, that
each interval §, x], x € P\{i}, is pure and has homology equal to 0 in all dimensions
other thanZ(f), X) — 2. Henceyr = (0, x) for the nonvanishing terms of (2.6). The
condition¢(x, 1) = m—r is thus equivalent to the conditiai, x) + £(x, 1) = m. Since
m(x) = £(0,x) + £(x, 1), the summation range for the nonvanishing terms of (2.6) is
identical to that of Definition 2.1. O

We shall say that a bounded posets weakly semipuré for eachx € P either D, x]
or[x, 1] is pure.

Lemma 2.6 Let P be weakly semipure of length> 1 and letl < m < £. Then the
relation <, defined by x<, y if x < yin P and x y € c for some chain c of length
at least m is a partial order relation on the sdix € P | m(x) > m}. Moreover if P(™
denotes the posétx € P | m(x) > m}, <p) then

A(P™) = A(P)M=2, (2.7
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Remark Note that wherP is semipureP{™ is the induced subposet &f given in the
proof of Theorem 2.2,

Proof of Lemma 2.6 To show thatky, is a partial order relation, one needs only to check
transitivity. Suppos& <y < zin P; X, y € ¢; wherec; has length at leash andy, z € ¢,
wherec; has length at least. Takec; andc, to be maximal chains. We must find a chain
of length atleash such thak, z € ¢. We claim that the chain = (c;N[0, y])U(c2N[y, 1])

is such a chain. Clearly, z € c. If [0, y] is pure then

e©) = £(c N[0, y]) + £(c2 N[y, 1D
= 0(c2 N[0, y]) + £(ca N[y, 1)
= £(Cp).

Similarly, if [y, i] is puret(c) = ¢(cy). In either casé(c) > m. Hence the relation defined
on P{™ is indeed a partial order relation.

The construction of the chaingiven in the verification of transitivity can be used to
show that all maximal chains ¢#‘™ have length at leash. Hence (2.7) holds.

For P weakly semipure and € P™ let [0, x], denote the intervalz € P™ | 0 <,
Z <m X} in P,

Lemma 2.7 Let P be a weakly semipursequentially Cohen-Macaulay poset of length
£ > 1. Thenfor all xe P{™ wherel <m< ¢, andr € Z,

Hr—2([0, X]m) =

{ Hr_2(0,x) ifr >m—ex, 1)
2.8)

otherwise.

Proof: Equation (2.8) is easy to checkoif= 0; so assuma > 0. Observe thatd] x] is
weakly semipure. Hence, (2.7) can be appliedto]. Since D, X] also has the vanishing
homology property, Lemma 1.8 applied to the order complexXof] yields

Hr _o([0, x] ™40 =

{ Hr_20, %) ifr >m—e(x, 1)
otherwise.

The result now follows from the observation thét ¥]m = [0, x]™-¢*D). i

Theorem 2.8 Let P be a weakly semipure and sequentially Cohen-Macaulay G-poset of
length¢ > 1. Then for each mthe G-moduleH,_»(P) decomposes into a sum of virtual
G-modules as follows

m-—1

Hmn-2(P) = @ (=™ W H? (P).
r=0

Proof: ByLemmas 2.6 and 1.R{™ is sequentially Cohen-Macaulay for all € [¢].
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SinceP® is pure and sequentially Cohen-Macaulay, itis Cohen-Macaulay. Corollary 1.2
can therefore be applied @ yielding (2.5) as in the proof of Theorem 2.2. Sire& is
Cohen-MacaulayV H (P“) = W H?,(P‘?) for all r, £. We have by Lemma 2.7

WH,(PY) = € Hr—2(0.x]0)
xeP\{1}
ex, D=e—r
m(x)=¢

= P H-20x
xeP\{1}
ex,D)=e—r

= WH,(P).

HenceW H (P) = WH?,(P). Also by Lemma 2.7H,_»(P'“)) = H,_>(P). Therefore,
the result fom = ¢ again follows by substitution into (2.5).
Now suppose thah < £. By Proposition 1.1 applied t8‘™ and P™+1 we have

¢ ¢

DD Fr2(P™) — P (1) Fr_o(P™Y)
r=1 r=1

—

= DD WH (P™) — WH (PMD)), 2.9)

r

=

Il
o

By Lemma 2.7, the left side of (2.9) is
€B< 1) H_2(P) — EB( 1" Hy_2(P) = (=1)"Hm_2(P).
r=m+1

Lemma 2.7 is also used to evaluate the right side of (2.9). We have

WH (P™) — WH (P™)
= P H 200X - @ He200 XImin)

xeP\{i} xeP\{1}
m(x)>m m(x)>m+1
= P H200 - B H20
xeP\(1} xeP\(1}
m(x)>m m(x)>m+1
ex,1y=m—r 0, 1)=m+1—r
= P H00 o P H20x.
xeP\(1} xeP\({1}
m(x)=m m(x)>m+1

e(x,1)=m—r £(x,1)=m—r
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Sincem(x) — £(x, 1) = ¢(0, x),
Hr 20, %) =0 ifr > m(x) — £(x, 1). (2.10)

Hence we can repladgx, 1) > m—r with £(x, 1) = m —r in the range of summation of
the first sum. This yields

WHP™) —WHP™) = @ H_20.x).
xeP\(1)
m(x)>m
2(x,1)=m—r

Also by (2.10) we can eIiminauep(x) >min the~rangAe of summation sincenf(x) < m
thenm(x) — £(x, 1) < m—£(x,1) =r, forcing H; _»(0, x) to be 0. It follows that

WH (P™) — WH (P™1) = WH (P),

for 0 <r < ¢. By plugging this into the right side of (2.9) we obtain the result. a

3. Shellability of posets of partitions with restricted block size

In this section we establish shellability of certain subposets of the partition lattice obtained
by restricting block sizes. The set of positive integers will be denotel &yd the set of
nonnegative integers Y. For anyn < P, the lattice of partitions offf] = {1, 2, ..., n},
ordered by refinement, is denotedIfiy. Recall thafl, is pure and bounded with minimum
elemen®) = 1/2/ ... /n and maximum elemerit= 12, ..., n.

Given any sefl C P, where 1¢ T, letI1] be the induced subposet Of, consisting
of 0, 1 and all partitions ofri] whose block sizes are in. If 1 € T, then in order for our
results to hold we lef1] be the induced subposet as above with a new minimum element
0 attached below/2/ ... /n. We give two conditions off which together will be shown
to guarantee the shellability of; .

Definition 3.1 Letd € P. We shall say thal < Pisd-additiveifforallt;,tp,...,tj € T,
we havet; +t, +---+t; € Tifand only if j = 1 modd. We say thal is additive if it is
d-additive for somel.

Definition 3.2 We shall say that a nonempty subset Pis subtractiveifforalt;,t, € T,
th+to—minT €T,

Example 3.3 LetT = P. ThenT is 1-additive and subtractive. The poflﬁ\{@} is Iy
which is a well-known example of a pure shellable poset.

Example 3.4 Forfixed integek > 1, letT = {k,k+1,k+2,...}. ThenT is 1-additive
and subtractive. The poset! is called theat least k partition latticeand is denoted by
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TZX. Itis not pure in general and was shown to be shellable byr&j'and Wachs [7, Sec-
tion 7].

Example 3.5 Forfixed integed > 1, letT = {d, 2d, 3d, ...}. ThenT is 1-additive and
subtractive. The posél; is known as thel-divisible partition lattice It is pure and was
shown to be shellable by Wachs (cf. 17, 26).

Example 3.6 For fixed integersl > 1 andk > 1, letT = {kd, (k+ 1)d, (k+ 2)d, ...}
thenT is 1l-additive and subtractive. By settidg= 1 we get Example 3.4 and by setting
k = 1 we get Example 3.5.

Example 3.7 Forfixed integed > 1, letT ={1,d+1,2d+1,3d +1,...}. ThenT is
d-additive and subtractive. It is easy to see that this is the dvdgditive T that contains
1. The poset‘[l\{f)} is known as the 1 mod partition poset and is denoted herelb#d.
It is pure and was shown to be shellable bpmjer (see [10]).

The next example generalizes the previous examples.

Example 3.8 For fixed integerk > 1 andd > 1, letT = {(k+id |i =0,1,2,...}
and letdy = %. ThenT is dp-additive and subtractive. The posléI which we shall
denote byl‘Iﬁgd) is the main example of this paper. Whénr= 1, this example reduces to
Example 3.4 and1¥¥ is the at leask partition lattice. When 2 k < d, this example
reduces to th& mod d partition posetvhich further reduces to Examples 3.5 by setting
k = d. Whenk = 1, T%9\ {0} is the 1 modd partition posetl1}9 (note the subtle
difference in notation betweefi}¢ and1*®). Whend dividesk, this example reduces
to Example 3.6.

The next two examples of additive and subtraciivare not special cases of Example 3.8.

Example 3.9 For fixed integersl > 1 andk > 1, letT = {d, 2d, 3d, .. .}U{k, k+1, k+
2,...}. ThenT is 1-additive and subtractive.

Example 3.10 For fixed integerk > 1 andd > 1letT = {jk+id |i € N, j € P}.
ThenT is 1-additive and subtractive. K= 3 andd = 2 thenT = {3,5,6,7,8,...}. If
k =3 andd = 4thenT ={3,6,7,9,10, 11, .. .}.

The following Lemma is obvious.

Lemma 3.11 Let T be d-additive. Then for all x I‘II\{(A)}, the upper interva[x, i] of
I, is isomorphic tol‘[é’(?(), where kx) is the number of blocks of x. Consequenthe
dual of 1] is semipure.

A bounded poseP is said to beotally semimodulaif for all xq, Xo, y € P such that
Yy > X1, X2, wheneverx; andx, cover a common element, there existe P such that
Zz < y andz covers bothx; andx,. Note that a totally semimodular poset is necessarily
pure.

Lemma 3.12 (Bprner, see [10]) Foralln,d € P, IT}9 is totally semimodular.
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Recall that the notion of recursive atom ordering provides a combinatorial tool for es-
tablishing shellability of posets [7, Theorems 5.8 and 5.11]. In [7, Section 7], a recursive
atom ordering for the at leaktpartition lattice is given. We shall generalize this recursive
atom ordering to one fofl! whenT is d-additive and subtractive.

Lemma 3.13 Suppose all proper upper intervdls, i], X # 0 of a bounded poset P are
totally semimodular. Then an ordering,a, . . ., & of the atoms of P is a recursive atom
ordering if and only if

() foralli < j,ifaj,a; < ythenthereis ak< jand an element z covering auch
thatas <z <vy.

Proof:  Since the intervalsd], 1] are totally semimodular, every atom ordering a>jf,[i]
is recursive by [6, Theorem 5.1]. Hence the first condition in the definition of recursive
atom ordering given in [7, Definition 5.10] holds automatically. Since condition (*) is the
second condition in [7, Definition 5.10], the result holds. |

Let By, ..., Bp be the blocks of a partition ordered by increasing order of minimum
elements. Representby the p-tuplew, = (w1, ..., wp), wherew; is the word obtained
by listing the elements dB; increasingly. For example,

w, = (135 2679 48)

represents the partition = 135/2679/48 of [1g.

The tuplesw, can be ordered lexicographically, that is, both individual warglsand
tuples of wordsw,, are compared in lexicographic order. This induces a total order on any
subset off1, which we shall refer to as lexicographical order.

Theorem 3.14 Let T C PP be d-additive and subtractive. Then the lexicographical order
of the atoms of1] is a recursive atom ordering. Consequeritly is shellable.

Proof: We prove the result fon € T. Whenn ¢ T, the proof below requires slight
modification which we leave to the reader.
By Lemmas 3.11, 3.12, and 3.13 it suffices to verify the following:

(x%) if wy < w, andn’, 7 < « for two atomsz’ andx, then there exists an atom
and an element coveringr such thatw, < w, andt < 8 < «.

Letw = Bi/By/.../Bp andn’ = B;/B,/... /By, with blocks ordered by increasing
minimal elements. Assume thtis such that; # B; andB; = B/ fori < j. Since
Wy < wy, We must have thab; < w;, which leads to two cases.

Casel wjisaprefiximw;. Thatisw; isthe concatenation’u, of wordsw’ andu # #.
LetU = B;j\Bj and letB} , By, ..., Bj be the blocks ofr” which intersecU. Then

k
uclJsicc
i=1
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whereC is the block ofa that containgB;. If U = U, B then Bj = BjU U B,
which contradicts the fact that is an atom. Therefore C ( J;_; B .

Now choose an element € |t B7\U. Let By be the block ofr that contains
y. Clearlyg > j andB; U By € C. Now let 8 be a partition obtained from by
mergingB;, By and anyd — 1 other blocksBy,, By,, ..., Bn, , of w that are contained in
C. Clearly g coversr in TIT andB < «. It remains to create another atam< g such
thatw, < w,. This is done by first partitioning the blods; U By U ™=, By, of 8 into
B, Bj UBg\B, B,, ..., Bn,_,; whereB consists of the mifi smallest elements d&;. We
have|B; U By\ B| = |Bj| + |Bg| — minT which isinT sinceT is subtractive. Hence, the
partition constructed is ifl] . If this partition is not an atom dfi then further partitioning
of B; U By\ B will yield an atomz for whichw, < w,.

Case 2 wj is not a prefix ofwj. Letw] = xi%;... andwj = x1x..., and lett be
minimal such thak; # x{. Thenx{ < X sincew] < wj, andt > 2 by construction since
B = B/fori < j. LetBgy, g > j, be the block ofr that contains. ThenB; U By € C,
whereC is the block ofx that containd3;. Let 8 be a partition obtained from by merging
B; andBy andd — 1 other blocks contained . Then create an atom< g by partitioning
the new block off into Bj \ {x} U {x{}, Bg\ {X{} U {X} and thed — 1 other blocks. The
elementg andg clearly satisfy conditiorgx). O

Corollary 3.15 Let T C P be additive and subtractive. Then the dualhf is semipure
and sequentially Cohen-Macaulay.

Example 3.16 For fixedk > 1, letT = {1, k,k+ 1,k + 2,...}. ThenT is subtractive,

but not additive except whek = 2. Hence, we cannot apply Theorem 3.14 to fhis

The posetﬂl\{f)}, known as the&k-equal partition lattice, is not pure fér > 3 (it's not

even weakly semipure), but was shown to be shellable byrgf’and Wachs [7, Section

6]. Shellability is established by means of a lexicographical edge labeling, not a recursive
atom ordering. Thé&-equal partition lattice first arose in the work ofdBjier Lovdsz and

Yao [5] in connection with a computational complexity problem. Its homology was further
studied in papers by Bjfher and Loasz [4], Bprner and Welker [9], Bjfner and Wachs

[7], Sundaram and Wachs [23] and Sundaram and Welker [24].

Example 3.16 suggests that perhaps additivity can be dropped from the hypothesis of
Theorem 3.14. This, however, is not the case as Example 3.17 below shows. Example 3.18
shows that subtractivity cannot be dropped either. Hence, neither additivity nor subtractivity
alone is sufficient for shellability. Example 3.19 below shows that they are not necessary
either. These examples suggest that it may be possible to weaken the hypothesis of Theorem
3.14 so that it holds for Example 3.16. This would give a unified proof of shellability for
two important classes of examples (Examples 3.8 and 3.16).

Example 3.17 LetT =P—{2,3,5,6,9, 12}. Itis easy to check that is subtractive but
not additive. We claim thall] is not shellable (or sequentially Cohen-Macaulay) when
n = 16. Indeed, ifl1} were shellable (sequentially Cohen-Macaulay) then every interval
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would be shellable (sequentially Cohen-Macaulay). In particular the interyﬁi],[where
x=1,23,4/5,6,7,8/9,10,11,12/13 14, 15, 16,

would be shellable (sequentially Cohen-Macaulay). Buf] is isomorphictd‘[f’z"” \ {0}
which is not shellable or even sequentially Cohen-Macaulay because its order complex
consists of disconnected components which are not points.

Example 3.18 Now letT = P\ {1, 2, 4, 7} which is 1-additive but not subtractive since
54+5—3¢ T. This example is discussed in [3, Example 7.3] where it is shown that for
n = 15,T1] is not shellable.

Example 3.19 LetT = {2, 3} which is neither additive nor subtractive. The poBgtis
shellable for allh because it has length 2 whan= 4 and length 1 when = 2, 3.

We shall now explore some further properties of additive and subtractive sets that we will
need in the next section. First we set some standard notationA,lBtC N andj € N.
ThenA+ B denotesthe s¢a+b | ac A b e B}; jAdenotestheséfja | a € A}; A+ j
denotes the seh + {j}; for j > 1, At} denotes the seh + ... + A; and A" denotes the

D e

set{ J;., Atl. j times

Lemma 3.20 Let T € P have minimum element k. Then T is subtractive if and only if
THID = T 4 jk, (3.1)

forall j > 0.

Proof: Equation (3.1) withj = 1 is simply a reformulation of subtractivity. Hence, we
need only prove that i is subtractive then (3.1) holds for gll> 0. We use induction on
j. The caseg = 0, 1 are trivial; so assume that> 2 and that (3.1) holds foy — 1. We
have

T T4 TH =T 4T+ (-Dk=T+k+( —-Dk=T+ jk. -

Corollary 3.21 Let T be subtractive with minimum element k. Then T is d-additive if
andonlyif(l) T+ jk C T forall j e Nsuchthatd| jand ) (T + jk)NT = ¢ forall
j € Nsuchthatd j.
Lemma 3.22 Let T be d-additive and subtractive. Then fora#dlPandr € N,
THIHD c TH (3.2)

Moreover the sets TT*2, ..., T+9 form a partition of T+ into d distinct blocks.
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Proof: Letk =minT. By Lemma 3.20 and Corollary 3.21,
THHD =T 4 i —14rd)k=T+rdk+@{ —DkS T+ —Dk =T+,

It follows from (3.2) thatT+ = U?:l T+i. So we need only show that the s&ts! are
pairwise disjoint. Supposec T+ N T+, where 1<i < j < d. Then by Lemma 3.20,
t+3d—Dk=n=1t"+(j — 1k, for somet,t’ € T. Consequentlyt =t" 4+ (j — i)k,
which byd-additivity implies thatd | (j —i). Since0< j —i <d — 1, we can conclude
thatj =1i. O

Lemma 3.23 Let T be d-additive and subtractive and letenT+), where j e [d]. If
x € I then k(x), the number of blocks of,satisfies

b(x) = j modd.

Proof: Sincex € 1T, we haven € T+, The result now follows from Lemma 3.22.
O

Lemma 3.24 LetT be d-additive and leta T*. Forall x HI\{(A)},
A b(x) —1
o B = ey = [ 292 .

Proof: The first equation follows from Lemma 3.11 and the second is easy to sese.

Theore_m 3.25 Let T be d-additive and subtractive with minimum element k and let
ne Tt where je [d]. Then

(1 ifj=1
') =maxr >0|n—rdk e T*!
(Ty) Xr = 0] < }+12 otherwise.

Proof: For¢(I1]) = 1, the resultis easy to see. So assumedtiaf) > 1. We shall use
the obvious fact that

¢(m1]) = maxe(x, 1) + 1.

=
xell)

For eachx € TIT, letr (x) = (b(x) — j)/d. By Lemma 3.23r(x) € N. It follows from
Lemma 3.24 that(x, 1) = r (x) for j = 1landé(x, D=rx+1 for j > 2. Hence,

1 ifj=1
¢(T17) = maxr (x) + ]

3.3
XeTT 2 otherwise. (33)
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Sincen is the sum ob(x) = r (x)d + j elements off, it follows thatn € T4+,
for anyx e I1}. Hence, by Lemma 3.2@, — r (x)dk € T*! for all x € I1T. Conversely,

foranyr > 0, such thah —rdk € T+ there is arx € TIT such that (x) = r. Namely, let
X be the partition withrd blocks of sizek and with remaining blocks having sizes whose
sum is equal tm — rdk € T*!. Consequently,

maxr (x) = maxr > 0| n—rdk e T}
xell}

Substituting this into (3.3) completes the proof. |
For T d-additive and subtractive with minimum eleméntdefine¢t : Tt — N by
¢r(n) =maxr >0|n—rdk e TH}, (3.4)
where | € [d] is such than € T*1. It follows from Lemma 3.22 that this map is well
defined.
Thetypeof a partitionx € IT,, denotedr.(x), is defined to be the integer partition iof
whose parts are the block sizesxoflf A is a partition ofn, we say|A| = n.

In the next result we express(x) (defined in Definition 2.1) in terms of the functigr
andi(x).

Lemma 3.26 Let T be d-additive and subtractiviet n € T+ and let xe I} have type
A=Ay <A <---<Aip). Then

p—1 ¢
m(x) = {T%HZ%(M)
i=1

Proof: We use the fact that
m(x) = £(0, x) + £(x, 1). (3.5)

To compute the first length, note that the half open inte(tﬁba)k] is isomorphic to the direct
product

9] A~
i>—<l (H;:\{O})
It therefore follows from Theorem 3.25 that

p p
0. =1+ () - D=1+ ¢r(a).
i=1

i=1

since each; € T. We also have by Lemma 3.24(x, 1) = [ 27]. By substituting these
expressions for the lengths into (3.5) we get the result. |



192 WACHS

For the set§ of Examples 3.8 and 3.6, we can give simple formulassfar
Lemma 3.27 LetkdePand T={k+id |i € N}. Thenforall je P,
TH = {jk+id |i € N}. (3.6)

Moreover each element e T* has a unique representation as kid, where i€ N and
j €[do]; and

$r(n) = pr(jk +id) = LIEJ

where g = —9 — and ky =

k
gedk,d) gedk,d) *

Proof: Equation (3.6) is an immediate consequence of Lemma 3.20.

SinceT isdp-additive and subtractive, by Lemmas 3.20 and 3.22, there is a upigueg]
such than — (j — 1)k € T. Clearly, there is a uniquesuch thah — (j — 1)k = k +id.
Hence eaclm € T* has a unique representation as stated.

By the definition ofpr given in (3.4), we have

ér(jk +id) =maxr | jk +id —rdok € T*1}.

By Lemma 3.20,jk 4 id — rdok € T+l if and only if jk +id —rdok — (j — Dk € T.
But jk +id —rdok — (j — 1)k = k+id —rdko = k+ (i —rko)d isin T if and only if
i —rko € N. Hencegr(jk +id) =maxXr |i —rko e N} = LIEJ' O

Corollary 3.28 Fork,d e P, let T = {kd, (k+ 1)d, (k+ 2)d, ...}. Then for all n> Kk,

n

grnd) = | ] -1
From anyd-additive and subtractive set, whete> 2, one can construct other additive
and subtractive sets as the following result indicates.

Proposition 3.29 Let T be d-additive and subtractive. TheriiTis (m)—additive
and subtractive for all je P, and Tt is 1-additive and subtractive.

Proof: The proof is a straight forward application of Lemma 3.20 and Corollary 3.21.
We leave the detalils to to the reader. O

Remark. One can see from (3.6) that T is of the form given in Example 3.8, i.e.,
T = {k+id |i e N}, then takingT *! gives no new examples. Indeed, the Bét is also
of the form given in Example 3.8. However, takifig does give a different example. Itis
precisely that of Example 3.10.
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4. Representation ofS, on WHer((HI)*)

A permutationo in the symmetric grougs,, acts on a partitiox € I1, by replacing the
elements of each block afby their images under. The induced subposgt! is invariant
under this action. HencH,! is anS,-poset. It follows that homology and, m)-Whitney
homology ofl'[I areS,-modules. We compute the character of &yemodule Hm(nﬁ),
whenT is additive and subtractive, by first computing a generating function for the Frobenius
characteristic of the,-moduleW H ,((T1T)*) and then applying Theorem 2.2.

Let ((;)) denote the set of integer partitions wiphparts all chosen from the s€&t For

)»=()»1§)»2§"‘§)Lp)€((;))’Iet

p-1 :
m@)=[—E—W+1+§:¢ﬂMx (4.1)
i=1

wheregr is defined in (3.4), and let

Hor= @ HxD,

X A=A
whereH (x, 1) is the top homology of the intervak[1] in I}, .

Proposition 4.1 Suppose T is d-additive and@ T+, where j € [d]. Then for all
mePandre P (andr = Owhen j= 1), WH n((ITT)*) decomposes into a direct sum
of S,-modules as follows

WHn(@H = @ Hur,

re((p))
[x|=n
m(x)=m

where

~frd+2 ifj =1
P=le—nd+j if2<j<d

Proof: Foreaclhx e H_I [x, 1] has vanishing homology in all dimensions but dimension
¢(x, 1)—2. Hence, by Lemma3.2#, _»(x, 1) = 0ifr # [2X=11. Note that = [2X=1]
if and only if b(x) = rd +1 orb(x) = (r — 1)d +i wherei = 2,3,...,d. Since by
Lemma 3.23b(x) = j modd, we haver = [%1 if and onlyb(x) = p. Hence,
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Hr_»(x, 1) = 0if b(x) # p. It follows that
WHn((M})) = @ HxD.

xel‘Tﬁ
b(x)=p
m(x)=m

The result now follows from Lemma 3.26. O

We assume familiarity with the theory of symmetric functions and plethysm (cf. [16]).
For anyS,-moduleV, let chV denote the Frobenius characteristic\oin the variables
X1, X2, .. .. Leth, denote the homogeneous symmetric function of degia¢he variables
X1, X2, . ... IN[16], the plethysm of two symmetric functiorfsandg, whereg has nonneg-
ative integer coefficients, is computed by replacing the variabldswith the monomials
of g. For this substitution to make senge@ctually need not be symmetric. It can be any
formal power series with nonnegative integer coefficients. Hence, one can use the above
substitution to define the plethysm of symmetric functiomwith any formal power series
g having nonnegative integer coefficients and denote if fy). (Plethysm can be defined
for still more generag); see Section 6.)

We will need the following refinement and abstraction of results in [20]. For any partition
A= (A < A2 <--- < Ap)andvariableg,, z,, ... ., letz, denote the product;, z;, - - - z; ..
Theorem 4.2 Let T be d-additive and ge P. Then the generating function for the
characteristic of H t is given by

> chHy 1 z =chHTEY [Z hi zi}, (4.2)

Ae((;)) ieT

where the inner function of the plethysh; _ hiz is viewed as a formal power series in
both x, X5, ...and 7, 7, . . ..

The proof of Theorem 4.2 uses many of the ideas of the proofs of the specialized results
in [20]. The proof appears in the next section. Now, we apply the result to computing the
Frobenius characteristic of the homology representatiomof

Corollary 4.3 Let T be d-additive and subtractive. Thenfoe jd]andre P(orj =1
andr = 0),

> et H (1)) unvm=vf+lchﬂ<ntd>[2hi }
m>r ieT
neT+i

where p=rd +1ifj =land p=(¢ —-Dd+jif 2<j <d.

Proof: Setz = u'v?"® in (4.2). Then by (4.1)z, = u*y™®-"-1 The result now
follows from Proposition 4.1, Theorem 4.2 and the linearity of ch. O
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We finally arrive at our main result.

Theorem 4.4 Let T be d-additive and subtractive. Then

Z( 1)™chHpm_ 1( HT Z( v)" chH (IT ,d+1 [Zh u|U¢T(I):| (4.3)

mezZ r=0 ieT

neT

andfor j=23,...,d,

Z( 1)™chHm( HT Z( v)" chH (T rd+J [Zh U|U¢T(u)}
meZ r=0 ieT

neT+!
— ) hau?T®, (4.9

neT+i

Proof: By Corollary 3.15, the dual of1] is semipure and has the vanishing homology
property. It follows from Theorem 2.2 and the linearity of ch that

> (=DMchHim (M) u™ = > Z( 1)+ ehW H m((I17) ) U™, (4.5)
meZ meZ r=l
neT+i neT+i

Equation (4.3) now follows from Corollary 4.3.
d. Then (4.5) and Corollary 4.3 yield,

Nowletj =2, ...,
> (=DMchHny (M) U™ = — Y~ chW Hom((IT7)")u"o™
meZ meZ
neT+i neT+i
+ 3 (=o)L ehH (MY g, |:Zh u'v¢T<'>]
r>1 ieT

Equation (4.4) now follows from the fact that &N Hy (I1}) = hy if m = ¢(I1)) =
O

¢t (n) + 2 (by Lemma 3.25) and is O otherwise.

Corollary 4.5 Fixk>1landd> 1. Letk = gcd(k ) and ¢y = gcd(k 3 Then
Z(—l)mChHmfl(ngj_?)) k+idvm

mezZ
i>0

=) (—v)" chH (T3, ) [th g UKyl J] (4.6)

r>0 i>0
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andfor j=2,3,...,do,

> (=DMchHin(TTj ) ulHidym

mez
i>0
= (=v) chH(I Iy, |:th g ukHdy i) :| =Y Njksid ikt gl
r>0 i>0 i>0
4.7)
Proof: Use Lemma 3.27. O

Corollary 4.6 Ford > 1,

hy = Z( v)" chH (M4, |:Zh1+,d v } (4.8)

r>0 i>0

andfor j=2,3,...,d,

D hisig o' =) (—v) chH (T} ) [th v:| (4.9)

i>0 r=0 i>0

Proof: To obtain (4.8) and (4.9) s&t= 1 andu = 1 in (4.6) and (4.7), respecnvely, and
observe thaI‘I(Jrld is acyclic except whenj = 1 andi = 0, in which caseu'l1 )| = 2.
O

Remark By settingv = 1in(4.8) and (4.9) we obtain the original formulas of Calderbank,
Hanlon, and Robinson for the homology of the 1 ntbplartition poset [10]. In particular,

(4.8) says thad ", _o(—1)' chH (1‘[1+,d) is the plethystic inverse of ;.o hitia. At first
glance, it may appear that (4.8) and (4.9) are more general than the Calderbank-Hanlon-
Robinson formulas. However, itis easy to derive (4.8) and (4.9) directly from these formulas
(cf. Proposition 6.1).

Corollary 4.7 Fork > 1,

> (=DMchHp o (TTF*) u™™ = (-1 chl:l(l'Ir)[Zhi uivt'kl]. (4.10)

meZ r>1 i>k
n>k

Proof: Setd = 1in (4.6) or use Corollary 3.28. O

Remark By settingu = v = 1in (4.6) (resp., (4.10)) we obtain Sundaram'’s formula
[21] for the alternating sum of homology of ttlkemodd partition poset (resp., at ledst
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partition lattice). By also setting = d in Corollary 4.5, we obtain the original formula of

Calderbank, Hanlon and Robinson [10] for the homology ofitttivisible partition lattice.
One can obtain formulas for the Betti numberdHf by extracting the square free terms

in the coefficient oi"v™ in (4.3) and (4.4). In doing so, we obtain the following formula

for the Betti numbers whefi is 1-additive and subtractive. (A combinatorial description

of these Betti numbers as well as a computation of the restriction of the actin@8,,_;

is given in [18].)

Corollary 4.8 Let §(n,r, m) be the number of r block partitions x HI such that
m(x) = m. If T isl-additive and subtractive anda T then

Bn-a(T13) = D _(=D™"(r — 1)! Sr(n, r, m).

r>1

5. Woreath product modules

In this section we present a general resultSgprmodules and plethysm from which Theo-
rem 4.2 follows immediately. First, we need to review some basic definitions and results
from the representation theory of the symmetric group.

For partitionsv andu such thatu € v, s,,,, denotes the Schur function of shapé
andS”/* denotes the Specht module of shapg. Recall that c8/* =, ,.

Proposition 5.1 (cf. [16]) Letv be a nonempty integer partition and let, f > 1, be a

formal power series with nonnegative integer coefficients such that thd Sufnexists as
a formal power seriege.g, if the monomial sets of the &re pairwise disjoint Then

s,[Zfi} = > ll[sm/m,l[fi].

i>1 P=poCp1 C..Cpuj=v i=1
j=1
Proposition 5.2 (cf. [13]) Letv  p and let(my, m,, ..., m;) be a sequence of non-

negative mtegers whose sum is p. Then the restriction &Syﬂlmodule S to the Young
subgroupx!_, Sy, decomposes into a direct sum of outer tensor producgfnodules

as follows

t
Slesn @ ® Qi1

P=poCp1C...Cup=v i=1
[1i = pi—a|=m

It is well-known (cf. [16]) that the plethysm of the Frobenius characteristic of an
Sm-module with the Frobenius characteristic of §tmodule is the Frobenius charac-
teristic of the induction of a certain wreath product module. We shall closely follow the
exposition given in [22] (see also [13]) in describing this wreath product module.

Given a finite setA = {a; < a < --- < ap}, let S be the set of permutations of the
setA. We shall view a permutation iiy as a word whose letters come from If o € S,
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then leto” denote the WOrdy, (1)8,(2) - - - 8- We shall view an element of the Young
subgroupSy x Snh—k Of Sy as the concatenatianx 8 of wordse: € S andg € Siyy1,...n}-
Thewreath producbf S, andS,, denoted byS[Sr], is defined to be the normalizer of
the Young subgroup, x --- x Sy in Smn. Eacho € Sp[Sn], corresponds bijectively to
— ———

mtimes

an(m + 1)-tuple (a1, oz, ..., am; ) such thatyy € S, andt € Sy,. The correspondence
is given by

(@1, ...,0m; T) < 0 = af(’l()l’ *---*af(fr:q";),
whereA; = [in]\[(i — 1)n]. From now on we shall identify with (a1, a2, ..., om; 7).

The following proposition is easy to check (cf. multiplication rule given in [22] or [13]).

Proposition 5.3 The map(ai, a2, ...,am; T) — T IS @a homomorphism fron¥m,[Sh]
ontoSy,.

Now letV be anSy-module andW be anS,-module. Then the wreath product gf
with W, denotedv [W], is the inner tensor product of tw,[S,]-modules:

VW] = Wem g V/,
whereW®n is the vector spac/®™ with S,[S,] action given by
(o1, ..., o0m D(W1Q -+ @ W) = A1Wr-11) @ -+ + @ AmWr-1(m), (5.1)

andV isthe pullback of the representation®f onV to Sm[Sn] through the homomorphism
given in Proposition 5.3. That i/ is the representation &,[Sn] on V defined by

(a1, ...,am; T)v = TV.

Note that we are using the same sym&ofor both inner tensor product and outer tensor
product.

Proposition 5.4 ([16]) LetV be anS,-module and W a$,-module. Then

ch(V ® W)To™"; = chV chw

and
chV[W]TSmESn] = chV[chw].

Our aim now is to present an abstraction and refinement of results of Sundaram [20]
dealing with certain specific representations of direct products of wreath producig. Let
be anSp-module and letV; be anS;-module for each = 1, 2, .. .. Also leti be a partition
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with p parts and letm; (1) denote the multiplicity of in A. We form ax; Sm,)[Sil-
module

® Vvi®mi ) ® V)\ ,

where®; W™ ™ is the outer tensor product of tk, ¢, [Si]-modulesw®™* | defined
asin (5.1), and/; is the pullback of\/¢‘i‘i’smm to X Sm,»y[Si] through the product of the
canonical homomorphisn&y, ;,)[Si] — Sm ) given in Proposition 5.3.

Theorem 5.5 LetV be anSy,-module and let \Wbe ans;-module for eachi= 1, 2, . . ..
Then for any TC P,

Z)ch((g)vwgﬁ(” ® vx)rk 7, = chv[Zchvvi zi].

re ((;) ! Xi Smy i [Si] ieT

Proof: We can assume that is irreducible since restrictions, pullbacks, inductions, and
ch are linear, inner tensor products are bilinear, and plethysm is linear in the outer function.
So assume that is the irreducibleS,-module S’ wherev - p. Lett be the maximum

part ofA. By Proposition 5.2, we have
t P t —_~ t o
W e v -QWT e @ @siT
i=1 i=1 #=poC...Cur=v i=1
[ | =1 pi—al=mi (2)

- (® W e Q@ Sﬁ)
n i=1 i=1
—HRQWT o s
nooi=1
t
— @@ gh/H W,
nooi=1

Taking Frobenius characteristic of the induced representation yields

Sial Sial
Ch(®V\/i®mi(}‘) ® V;)]A = Ch@ <® Sui/lti1[vvi]>A[A
=1 W i

X Smi i [Si] X Smj o [Si]

pele)|

x Smy[Sil
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By transitivity of induction and Proposition 5.4, we have

Sm X Smi i Si
Ch<® 9“/”1[V\/i])] — Ch<®gti//l«il[v\/i]>‘[ ]‘
i x Sy 1 [Si] i * Sy o [Si] 1 x Sy o
Smj (i Sl
= ch(@(Sf*'/“'l[vvi]ﬁ )I
i Smiw[S1/ 1 x Smy i

=TT chsmapwid) 1%,

I
= [ IsusmilchWi].
i

Sinces,, /., ,[chWiz] = s, /., [chWi] 2" we now have

~ Sial
> ch<®vvi®mi(” ® VA)I z

re(() ‘ xiSm 0[]

= 2 > l—[ Sui/ui-a[ ChWEZ]. (5.2)

ae((T)) PSS .=y i
((p)) [ | =i —a[=mi (1)

Sinces,,;,, , =Sy = 1ifi ¢ T, we can rewrite the right-hand side of (5.2) as

Z Z 1_[ Sui /s | ChWE Z4 ]

rel (T PCpoC...Cuj=v |
((")) i | =i —2l=mmy, (1)

= Z n Sui/uios | ChWE 24 ],

#CpoC...Cuj=v i

whereT = {t; <t < ---} andj is such that; is the maximum part of (i.e. tj =t). By
Proposition 5.1, the right hand side is precisgl{y ;.; chWiz]. O

Our final goal is to use Theorem 5.5 to prove Theorem 4.2. To accomplish this, we
first need to choose a canonical set partition of typefor each integer partition
A = (A < ---<ip) F n,. The canonical set partition of typg denotedx;, is de-
fined to be the partition with blockB,, . .., Bp, whereB; = [Z'jzlkj]\[z'j‘:ﬁkj] for all
i =2,..., p. Note thatx, is the partition whose stabilizer ig; Sm, ) [Si]-

The following result is extracted from [20, proof of Theorem 1.4].

Proposition 5.6 Let T be d-additive and < ((L)). Then the intervalx;, 1] in l'I‘TM is
an x;Sm [ S]-poset. Moreover, the following; Sm, o) [Si]-module isomorphism holds
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H(x,, 1) = ® (1s)em® Q) H(mgY),. (5.3)
|

wherelg, is the trivial S;-module.

A

Proof:  Sincex;Sm ) [S] is the stabilizer ofx,, it follows that [x,, 1] is a x;Sm [ S]-
poset.

To verify (5.3), we need a simple observation. Afand Q are twoG-posets andf :
P — Q is a poset isomorphism that commutes with the actio®dhen we say thaf
is a G-poset isomorphism. AS-poset isomorphism fronf? to Q induces aG-module
isomorphism fromH, (P) to H; (Q) for eachr .

Since); (1s)®M® isthe trivial x; Sm, ) [Si]-module, (5.3) is equivalent to the S, 1)
[Si]-module isomorphism

Hx. 1) = HTEY,.

This isomorphism follows from the above observation and the fact thak S, ;,)[Si]-
poset K;, i] is isomorphic tol'I%;d under the pullback action of; Sy, () [Si]. Indeed, the
isomorphism that replaces eaBhwith i in each partitiony > x, clearly commutes with
the action ofx; Sm ) [Si]- O

Proof of Theorem 4.2: Since

Sial

Xiom; () Loi

the result is an immediate consequence of Theorem 5.5, Proposition 5.6 and the fact that
hi = chls. O

6. Related results

In this section we derive some identities involving the characteristic of the homélegy
modules off1] as easy consequences of the formulas in Section 4. These identities turn
out to be precisely the identities that one gets by applying Theorem 2.8 (which involves the
variant form of(r, m)-Whitney homology) td1;|. We also discuss the connection between
the homology off1! and subspace arrangements. We use the formulas of Section 4 to
compute the representation 8f on the cohomology of the complement of complexified
subspace arrangements whose intersection lattice is of thelfgrm

Let g be a formal power series with integer coefficients andyfetandg~ be formal
power series with nonnegative coefficients suchghatg™ — g~. If v is any partition then
the plethysm of the Schur functiay with g is given by

slal = Y (-D"s,[g]s,ulg'].

ACucv
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whereu’ denotes conjugate shapewaf Now, if f is any symmetric function, the plethysm
of f with gis obtained by expressinfyin terms of Schur functions and extending linearly.

Proposition 6.1 Ford > 1,
h1=2)ui hitig [ZJ(—v)f chl:l(l'lifrd):|. (6.1)
i> r>
andfor j=2,3,...,d,
23( v)' chH (T 4) X;U h,+.d[2;( v)" chH (IT Wd)} (6.2)
= i> =

Proof: We show that (6.1) and (6.2) are equivalent to the following formulas of
Calderbank, Hanlon and Robinson,

hi=>" hyig [Z( 1" chH (T 1+rd)} (6.3)
i>0 r>0
andforj =23,...,d,
D (=1 chH(IT}5e) = hJ+Id[Z( 1" chH (11 1+,d)} (6.4)
r>0 i>0 r>0
If we equate terms of like degree on both sides of (6.3) and (6.4) we get

hiw =Z h1tid |:Z( 1" whtre ChH( 1+rd)j|

i>0 r>0

andforj =23,...,d,

D (=0T w Y chH (T ) =) h,+.d[2( 1)" w'? chH (1 Hrd)}
r>0 i>0 r>0

By pulling w? through the plethysm the right hand side of both equations becomes
Z wj+id hj+id [Z(_l)r wrd ChH( 1+rd)}
i>0 r=0

for j =1,2,...,d. Now divide both sides bw! and replacev? by v to obtain (6.1) and
(6.2). O
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Theorem 6.2 Let T be d-additive and subtractive. Then

D v higsa | Y chHp o (M) u" (=)™ | = > hyuy?r™ (6.5)
i>0 meZ neT
neT

andforj=2,3,...,d,

(—v)" chH (T hi ul p?T®
Z rd+J Z

r>0 ieT

=> v higyj | D chHm_y (TT]) u" (=)™ (6.6)
i>0 meZ
neT

> chHn(T7) u"(—)™ = v higyj | Y chHp 1 (TI7) u"(—)"

meZ i>0 meZ
neT+i neT
— Y hauM?r®, (6.7)
neT+i

Proof:  To prove (6.5) take the plethysm Bf,_, v' hi1iq with both sides of (4.3). Equa-
tion (6.5) then follows from associativity and (6.1).

To prove (6.6) take the plethysm OF,_,v' hj,iq with both sides of (4.3). Equa-
tion (6.6) follows from associativity and (6.2).

To prove (6.7) substitute (6.6) into (4.4). ]

Remark By lettingT = {k+id|i € N} and settingu = v = 1, Egs. (6.5) and (6.7)
reduce to Egs. (4.5) and (4.6) of [21].

Equations (6.5) and (6.7) are precisely what we get when we apply TheoremI2/8 to
To see this we need the following result.

Lemma 6.3 Forfixedr>1land T C P,

> chHn_1 (0. ) u" (=)™ = hr | Y chHp 1 (7 )u" (=)™ | , (6.8)
meZ meZ

neT+ neT
XM \{0}

b(x)=r

where l{x) is the number of blocks of x.
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Sketch of Proof: Let By, By, ..., B be the blocks o € HI\{O} and letGy be the
stabilizer ofx in S,. Then theGy-poset ), x] is Gy-isomorphic to the reduced product
Oy u ><ir:1(1'ITi \{O}), Wherel'ITBi is the poset of partitions of the sBf with block sizes in
T. In[25, Theorem 1.1 (ii)], a description of the representation of a wreath praiiiu@}
on the homology of a reduced productiafopies of aG-poset is given. By applying this
reduced product result, one can derive (6.8) similarly to the way in which Corollary 4.3 was
derived. O
Remark By settingu = v = 1, Eq. (6.8) reduces to Theorem 4.1 of [21].

We shall now describe the steps involved in deriving (6.5) from Theorem 2.8. First
rewrite (6.5) as

Z chHm_1 (M) u"(—=0)™ = = > "v' higys Z chHim_1(T17) u" (=)™

meZ i>1 meZ
neT neT
+ ) hauh?T®, (6.9)
neT

By Lemma 6.3 we have far> 1,

v igsa | Y chHp 1 (T) U (=)™ | = (=)' chW Hj ;1 (TT)u" (=)™,

meZ m>i

neT neT
(6.10)
Next observe that
D hau?T™ = 3" chw HY, (17 )u"™ . (6.11)
neT meZ
neT

From Theorem 2.8 we have

>~ chFn 1 (M) (—0)™ = Y~ (D) chw Hip (T )u"o™
meZ r.mez
net neT

By plugging (6.10) and (6.11) into this equation we obtain (6.9). Equation (6.7) is obtained
in a similar manner using the fact that for 0,

v higej | D0 chHp (M) u" (=)™ | = > (=D chWH ;5 o (TT7)u(—v)™ 2,
meZ m>i+1
neT neT+i

which also can be proved using Lemma 6.3.
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When T is 1-additive, 1 takes on the added significance of being the intersection
lattice of a subspace arrangement. The connection between subspace arrangements and
restricted block size partition posets was first considered in work@frBy, et al. [5] on
a complexity theory problem. It has been further studied in [4, 9, 15, 24]. For a survey of
recent developments in the theory of subspace arrangements see [2].

For eachr € I, let¢,, be the linear subspace @f consisting of all pointgxs, xo, . . .,

Xn) suchthak; = x; whenever andj are inthe same block af. Then any 1-additive sét,

where 1¢ T, determines the complexified subspace arrangem(,%lpt— (€, |7 e l'IT\O}

whose lattice of intersections I} . LetV,"; be the unior J,., . ¢ of the arrangement

and IetMgCT be the complemerf[f” Vh.7. By the Goresky MaCPherson formula [12], an
immediate consequence of the shellabllltyﬂﬂ whenT is 1-additive and subtractive, is

that the mann‘old\/lﬁfT has free integral cohomology. Another consequence, which follows
from the a result of Ziegler aridivaljevic [27]is that the linkv,"; N S"1, whereS"t is the

unit sphere irC", has the homotopy type of a wedge of spheres. These two consequences
are true for the real arrangements as well.

An equivariant version of the Goresky-MacPherson formula due to Sundaram and Welker
[24] enables one to compute the action&f on the cohomology oMﬁET. ForT =
{d,2d, ...} andT = {1,k, k + 1, ...}, formulas for theS,-cohomology module are given
in [24]. For general 1-additiv& we have the following result.

Theorem 6.4 Let T bel-additive withl ¢ T. Then

> chH™(Mgr) u (=)™ ™ =" v h, | > chHp 1 (T} )u" (=)™

meZ r>1 meZ
neT neT

Proof: By the equivariant Goresky-MacPherson formula for complexified arrangements
[24, Corollary 2.8], we have th§,-module isomorphism,

HO ™ (Mir) = € Hm2n00-1(0, %).

XeTIT\{0)

By Lemma 6.3, we have

> chHm 2100 u" (=)™ = v*h, | Y chHp_o (T} )u"(—0)™

meZ meZ
neT neT
xeMf\{0)
b(x)=r
Hence the result follows by summing over all m|

If we combine this result with Theorem 4.4 we get the following corollary.
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Corollary 6.5 Let T bel-additive and subtractive with ¢ T. Then

D chH™(MI ) U (=)™ = "h, [Z(—v)j+1ChH(Hj) |:Z h, uiv"’T(‘)H.
mez r>1 j>1 ieT
neT

Corollary 6.6 Let T bel-additive and subtractive with ¢ T. Then

ZchH (M&7) u"(—v)®—m-1 Z( V)" "chH"(BF) |:Zh u' “’T(')}

meZ r>0 ieT
neT n>1

where B is the complement of the complexified braid hyperplane arrangerteate that
cohomology of B is not reduced.

Proof: The result follows from Lehrer and Solomon’s formula for the cohomolSgy
module of the complement of the complexified braid arrangement [14, Theorem 4.5] (see
[20, Theorem 1.8] for the symmetric function formulation and a direct computation of the
Whitney homology representation of the partition lattice), associativity of plethysm and
Corollary 6.5. O

In [24] significant consequences of the computation of the cohomafagyodule of
the complement of the-divisible arrangement and tleequal arrangement are given. We
leave the task of generalizing such consequences, for gehgi@h future paper.

A striking consequence of the plethystic formula for ¢hdivisible partition lattice is ob-
tained by restricting the representatiortto ;. Namely, Calderbank, Hanlon and Robinson
prove a conjecture of Stanley that the restricted representation is isomorphic to a skew rep-
resentation of a certain skew hook shape. In [26] bases for homology and cohomology of
the d-divisible partition lattice are constructed and used to give a combinatorial proof of
this result. Sanders and Wachs [18] generalize this restlfltavhenT is 1-additive and
subtractive also by constructing bases for homology and cohomology. They decompose the
restriction toS,,_1 into a direct sum of skew hook representations.

There are also important connections between problems in computational complexity
and Betti numbers ofI! whenT is 1-additive. In particular, it is shown in [4] that the
Betti numbers of 1! determine lower bounds on the computational complexity of certain
problems arising in computer science. These connections were initiated in [5] and further
developed in [4, 15]. The results obtained in this paper could conceivably be useful in
improving the lower bounds given in [15].
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