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Abstract. We propose a homological approach to two conjectures descended from tisekerdRado Theorem,
one due to Chatal and the other to Frankl andifeédi. We apply the method to reprove, and in one case improve,
results of these authors related to their conjectures.
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1. Introduction

The purpose of this paper is to propose a homological approach to two problems descended
from the Erabs-Ko-Rado theorem [3], namely a conjecture of &av]1], and another of
Frankl and Eredi [4]. Our interest in these questions was prompted by [4], to which we
refer for a more thorough discussion (and from which we borrow most of our terminology).

In what follows F will be a collection ofk-element subsets of some finite sétof
cardinalityn. (Such a collection is often calleckagraph ork-uniform hypergraph.)

In our context al-simplexs a collectionF, ..., Fq,1 Of sets such that
d+1
(\F =2 (1)
i=1
but

NF:1l<i<d+1l i#]j}#0 foreachje[d+1].

(We use §] for {1, ...,s}.)

A simplex isspecialif |(;.; Kl = d+ 1—[J| forall J € [d + 1] with [J| > 2
(equivalently, if| Ui<j (FNF)|=d+1).

We writes(n, k, d) (resp.s*(n, k, d)) for the maximum size of afF < ([E]) containing
nod-simplex (resp. special-simplex).

Then the Erd$-Ko-Rado theorem (actually only the best-known case thereof) says that
s(in,k, 1) = (Ej) for everyn > 2k. Chvatal [1] proposed extending this to
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Conjecture 1.1 s(n, k, d) = (;_7) whenever d< k < A

(Note that ifk > dd—ﬂ then one cannot even have (1).)
Chvatal proved his conjecture fdc = d + 1. Frankl and Biedi [4] proved it for
every (fixed)k, d andn > ng(k, d), and showed that in this case one has equality only if
F ={F € (}) : x e F}, for somex € X.
Here we give (in Section 3) an alternate, homological proof ofa@éiis result. We do
not so far see how to push our approach to the general case, but hope it may eventually lead
to more complete results.

For special simplices Frankl andifédi [4] proved

Theorem1.2 Letk>d-+3ord = 2andn> ngk). If F C (>k<) contains no special
d-simplex then|F| < (1), with equality iff F = {F € () : x € F} for some xe X.

They conjectured that this is actually true whendwver d + 1, and inthe cask=d + 1
proposed the more precise

Conjecture 1.3 If n > 2k and F C (E) contains no specialk — 1)-simplex then
171 < (720)-

As far as we can see, the natural generalization also seems plausible:

Conjecture 1.4 Ifn>(d+ 1k —-d+ 1) andF C ()k<) contains no special d-simplex
then|F| < (}77)-

Our second result is a proof (again homological) of Conjecture 1.8 fo13.

Theorem 1.5 Ifn > 6, F C (), andF contains no special trianglehen| 7| < ("").

This cased = 2, k = 3) of Theorem 1.2 is proved in [4] provided> 75; so we do add
something here, though again we feel the approach is more interesting than the result.
For information on equality in Theorem 1.5 see the end of Section 4.

2. Homological background

Write (F) for the hereditary closure of: (F) ={AC X:3F e F, AC F}.

The (binary)chain complesbelonging toF € (}) is Ck(F) 2 G 4 .. where
C; is the set of all formak ,-sums ofi -sets in(F), and theboundary maps; : C; — Cj_;
are the linear maps defined by

AY=DZ:ZcCY.|1Z|=i-1} VYe(F). Y| =i

We will similarly write C(G) = C;(G) for anyG < (). For background see [5].
Now 9;_; & = O, so that, lettingZ; = kerd;, (thei-dimensionalcycleg, andB; =
Im 9; 1, (thei-dimensionaboundarie$, we haveB; C Z;.
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Itis often convenient to represemt: () — (,X,) by the incidence matrix(l,1 — 1) =
In(,1 — 1). (That is, the matrix indexed b{/) x (,*,) whose(A, B)-entry is o).
To apply this matrixxtof € C(9) (g again a subset ((f’l()) we interpretf in the natural

way as a vector iriz') with fo = 0if A ¢ G.) We write rkg for dim g, (C(G)), the rank
of the submatrix consisting of the rows bfl, | — 1) indexed byG.

Our approach is motivated by the observation that the canonical farfilies {F <
(>k() : F > x} are acyclic, that isZx(F) = (0), and that for any acyclid we have

|F| = dim C(F) = dim B_1(F) < dim Bk_1<<>k(>> = (E B D ?)

Thus we can always assume that the family in question does contain cycles—that is, subsets
G forwhichok (3 ¢ F) = 0—and we expect that this assumption should imply even better
bounds.

3. Proof of Chvatal's theorem

We assume = |X| > k + 2 and thatF € (|)<<) contains nak — 1)-simplex (henceforth
justsimpley, and must show

n—-1
. 3
Al < (k - 1) 3)
As noted above, we may suppagés not acyclic.

Claim 3.1 Each minimal cycle af is () for some Ye (,%,).

Proof: LetG be acycle ofF andF € G, and suppos@fl) ={As,..., Ad. SinceGisa

cycle, itcontains, for eadhe [K], someF; with FFNF = A;. Butsince{F4, ..., F}isnota
simplex, we must hav@)}_; F; = {x} for somex ¢ F, and ther(F, Fy, ..., R} = ("3¥))
is a cycle contained ig. m]

Suppose then that the cycles &f are (E) i € [s]. SinceF contains no simplex
we have

Claim 3.2 Foralli e [s]and Fe F, either FC Y; or [FNY;| < k— 2. In particular,
foreachl <i <j <s |YiNYjl<k-2

Let

P AGE = (ENDLE)

-0 =0

i=1



144 CSAKANY AND KAHN

ThenF' is acyclic and by Claim 3.2«C(F’) € C(E’) (i.e., no member o’ contains a
member ofE”), whence

|F| = dimC(F) = dimdC(F) < dimZ_1(E)

n
= |E'|-rkE = —|E"| —rk E. 4
|E"| —r (k_l) [E"] —r (4)
Thus (3) will follow from
n—1
kE/> _E// f”. 5
: _(k_z) B+ 17 (5)

Nowrk E’isalsotherank o’ in the binary matroidV given by the rows of (k—1, k—2).
(For instance, ik = 3 this is the ordinary polygon matroid of the gragh For matroid
background see [6].)

The dual of this matroidM*, is the matroid given by the columns bk, k — 1). By the
rank formula for dual matroids (with ground <€},

-1
(K'E” = |E”| —1KE +1KE' = |E"|— (: 2) FIKE,
so (5) is equivalent to
rk*E” > |F"| = (k+ 1)s. (6)

Proof of (6): Supposex € X belongs to precisely of Yi,...,Ys, sayx € ﬂitzlYi\
(Ur_t+1 Y. Then the columns of (k, k — 1) corresponding to

SRVHATVIAN

i=1 i=t+1

are independent, since their restriction to the rows indexefizby {x} : Z € E”} is a
diagonal matrix.
Thus (using Claim 3.2) iE” > tk + (s — t)(";l), which gives (6) provided

_k+Dk-2

= kk—1) ()

But the average number &f containing an element of is s(k + 1)/n, so we have (7)
provided

LS(k+1)J<(k+1)(k_2)
n - kkk-1

8)

whichistrue. (Infact, our assumption> k+2 gives (8) without the[*]” exceptin the triv-
ial casek < 2 and the caske = 3,n = 5,s = 1, for which the left-hand side of (8) is zero.)



A HOMOLOGICAL APPROACH 145

4. Proof of Theorem 1.5

We supposeF is as in Theorem 1.5 and, as above, may assfimentains cycles.

Claim4.1  Each minimal cycle of is either(3) for some Ye (};) or isomorphic to

{vab, vbc, ved, vda, abe acdj. 9
We call cycles of these two types 4- ana¥eles respectively.

Proof: LetG be a cycle ofF. As usual, thdink in G of W € X is Lg(W) = {F\W :
WCF egl.

If Lg(x) (x € X)is nonempty then it contains a cycle, &y, .. ., X} (actuallyLg(x) is
an Eulerian graph). Choosgec G, such that is maximal. SeF; = {x, X;, X1} (Subscripts
modulot) and let

Gi = {X, Xi+1, ¥i}  with yi € Lg({x;, XiraD\{X}.

(Note there must be such@.)

Suppose first thdat> 4. Then for eachwe must have; € {X;_1, X2}, Since otherwise
{Fi_1, Fiy1, Gi} is a special triangle. But then: {f > 5 and (say)yi = Xj.2, then
{F_1, Fii2, Gj} is a special triangle; while if = 4, it is easy to see that there arg with
Gi UGj = {Xq, ..., Xa}, and thenG;, Gj, Fy, ..., F4} is a 5-cycle ing.

Now supposd = 3. Then by the maximality of, G contains the cycle(g) with
Y = {X, X1, X2, X3}. O

In what follows, forkC € (), we taked K = (K) N (3). We also sef}) = E.
We will associate with each cyclgof F a setH = H(G) C X.

(a) If Gisab-cycle, thed (G) is just the vertex set @f. Note that in this case with labels
asin (9),

ITAH|#£2 YT eF (10)

and

(N (1)) <

Now suppose&; = (g) is a 4-cycle. Notice that iy, T, € F satisfy|Ti N Y| = 2 and
ITiNT; NY| =1, then necessarily1\Y = T\ Y (or we have a special triangle). We
therefore have one of the following.
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(b) There are at most two (opposite) edesy} of Y for which there exist§ e F with
T NY = {x, y}. Inthis case we takél (G) = Y.

(c) There exisv € X\Y anda,c,d € Y = {a, b, ¢, d} such that{v, a, ¢}, {v, a,d} € F.
In this case we takél = H(G) = Y U {v} and observe that the absence of special
triangles implies

TeF, ITNH|=2= TNH ={v,al}, (11)

(e ()t

Itis also easy to see that

T]:ﬂH 8.7:TﬂT
€ (3)2"(\{ b (2>

(i.e., at least two of the pairs froi are covered by triangles df other thanT).

>2 (12)

Let C be the collection of minimal cycles, aftd = {H(G) : G € C} = H4 U Hs, where
Hi={HeH:|HI =i}
From the preceding observations we have

[HNH| <2 foralldistinctH, H' € H. (13)

To see this note that we cannot haveT’ € F with [T N H| = |[T"NnH| = 2 and
IT NT'N H| = 1; on the other hand, iH N H'| = {X, vy, z}, thenH’ contains triangles
of F other thar{x, y, z} covering at least two of the pairs frofr, y, z}. (In (a), (b)—with
H’ in place ofH—there is at most one pair id’ not covered by at leaswvotriangles ofF
contained inH'. In (c) no two such pairs can lie in a common trianglefofthis takes care
of the cas€x, vy, z} € F), and there is at most one pair (namély b}) which may not lie
in any triangle ofF N (';) (this covers the cas, Y, z} & F).)
Now let

/! m , 4 //’
F'=F | l ( ) F =F\F
HeH

O\ a\®)

(whereH € H), and

E'=|JE'(H). E=iF.
HeH



A HOMOLOGICAL APPROACH 147

By the discussion in (a)—(c) and (13) we have, for all distid¢ctH’ € H,

|E"(H)| >

Fn (';)' E"(H)NE"(H) = ¢,

so that|E”| > |F”|.
It is thus enough to show

-1
|F] < (n 5 ) — |[E"=|E\E"| = (n—1). (14)

SetEp = E\E'\ E”. As earlier (see (4)), acyclicity of” gives

|F'| < |E|—T1kE (15)
so (14) follows from

rkE' > n—1—|Eg|. (16)
Proof of (16): Fix H € H. Let

Zi={we X\H, [Ew, H)NdF| =i}

for3<i < |H| (whereE(w, H) = {{w, a} : a € H}). Also let
[H]
Z= U Zi.
i=3
We assert that iZ # ¢, then
tkE' > |Z|+maxi : Z; # 0} — 1. 17)
In view of the definition ofZ, (17) follows from
E(w,H)YNndaF cE forallweZ
(since ifw € Z; with t the maximum in (17), then adding ®(w, H) N 8F one edge
of E(w’, H) for eachw’ € Z\ {w} gives an independent subset®f whose size is the
right-hand side of (17)).
Proof: Letw € Z. We distinguish two cases.
Casel. H=/{a,b,c, d} e Ha.

If there existsT € F, suchthaiw € T and|T NH| = 2, sayT = {w, a, b}, then there is
noT € Fwithw € T"andT’ N H e {{c}, {d}} (since this would give a special triangle).
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The definition ofZ thus requiresT’” := {w,c,d} € F. Now T, T’ € F/, since if, say,
T € F’,thenthereisd8” € Fwithw € T” andT” N H = {c} or {d} (using (13) and
(12)), which we have just seen to be impossible.

Suppose on the other hand that there isThe F with w € T and|T N H| = 2. Then
for eachx € H with {w, x} € aF, there existdy € F withw € Ty andTy " H = {x}.
Moreover, the absence of special triangles implies Thgfw, x} = Ty\{w, y} = {z}, say,
wheneverTy, Ty are as just described. This giveg € F'; for if T, € H’ € H, then at
least one ofw, y}, {z, y} is contained in a triangle of N (';) other tharil, (see (12)), and
this with any othefTy (and the triangles i) gives a special simplex.

Case 2. H={v,a,b,c,d} € Hs (with labels as in Claim 4.1 or (c) as appropriate).

Herewe canonlyhave € T € Fand|TNH| =2if Hisasin (c) andl = {w, v, a}
(see (10)). But in this case we cannot have anyufb}, {w, ¢}, {w, d} in 8F without
creating a special triangle, so cannot have Z.

So asin Case 1, for eache H with {w, X} € 3F, there existdy € F withw € Ty and
T« N H = {x}. This again givedy € F’ via the argument of Case 1 applied with soyne
for which (Ty exists and)x, y} € E”(H) (noting that there is always at least one sygh

O

We can now complete the proof of (16). kore X\(ZUH), |E(w, H)NEp| > |H|—2,
and forw € Zj, |E(w, H)NEg] =|H| —ifor3 <i < |H]|. Thus we have in Case 1,

|Eol > 2(n—|Z| —4) + |Z3],
and in Case 2,
|Eol > 3(N— |Z]| = 5) + 2|Z3| + | Z4].

These in conjunction with (17) give (16) whenew&t~ (9, and also wheiZ = ¢ provided
n > 7. The remaining case = 6 is easily disposed of; for completeness: if there exists
H € Hsthen (10) and (11) show that there is at most one triangl€ bt contained irH,
and none if(}) € F; and if there existdd € Ha, thenZ = ¢ implies that| 7\ ()| < 2.
O

Regarding cases of equality in Theorem 1.5, we have the following result, whose proof,
omitted here, is given in [2].

Theorem 4.2 Suppose” C (%), || = (";'). andF contains no special triangle.

(@) Ifn > 8, thenF = {F € (}) : x € F} for some xe X.
(b) If n = 7, thenF is either as in(@) or is isomorphic tofF € (7)) : |F N {1, 2}] # 1.
(c) If n = 6, thenF is either as in(a) or is (}) for some Ye (3).
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