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Abstract. The median stabilization degree (msd, for short) of a median algebra measures the largest possible
number of steps needed to generate a subalgebra with an arbitrary set of generators. We determine the value of
msdof a graphicn-cubeQn and we derive an estimation ofmsdfor the natural median operator ofRn which is
sharp up to one or two units. Interestingly,msdof Qn and ofRn grows like log1.5 n. Finally, we characterize
median algebras and median graphs ofmsd≤ 1 in terms of forbidden subspaces.
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1. Introduction

Median algebras arose in the study of distributive lattices and trees by Birkhoff and Kiss
[3], Sholander [7, 8], and others. We refer to Bandelt and Hedl´ıková [1] for a survey on
median algebras and to van de Vel [10] for the theory of median convexity.

A median algebra consists of a setM and amedian operatoron M , by which is meant a
symmetric functionm : M3→ M such that

m(a,a, b) = a and m(m(a, b, c), d, c) = m(a,m(b, c, d), c).

The last equality can be interpreted as an associative law. A totally ordered set has a natural
median operator, which assigns to each triple of points the middle one. On a product of two
median algebras(M1,m1) and(M2,m2) there is a median operatorm defined as follows.
Let a = (a1,a2), b = (b1, b2) andc = (c1, c2). Then

m(a, b, c) = (m1(a1, b1, c1),m2(a2, b2, c2)).

Medians arise in certain metric spaces as follows (cf. Verheul [12]). Let(X, ρ)be a metric
space and leta, b ∈ X. A point x ∈ X is in between a, b providedρ(a, x) + ρ(x, b) =
ρ(a, b). If for each triple of pointsa, b, c ∈ X there is a unique pointx ∈ X simultaneously
in betweena andb, b andc, c anda, then the assignment(a, b, c) 7→ x determines a median
operator onX. For instance, Banach spaces of typeL1 have this property. In particular,Rn
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with the “Manhattan” norm

‖(x1, . . . , xn)‖ =
n∑

i=1

|xi |

leads to a median operator which agrees with the median operator of then-fold product of
the totally ordered setR with itself.

A subsetA of a median algebraM is median stable(or, asubalgebra) providedm(A3) ⊆
A. It is known (cf. [1]) that each median algebra occurs as a median stable subset of a
distributive lattice under the median operator defined by

m(a, b, c) = (a ∧ b) ∨ (b∧ c) ∨ (c∧ a).

The median stabilization med(A) of a subsetA of a median algebra is the smallest
median stable set which includesA. In other words, it is the subalgebra generated byA. It
is recursively constructed as follows.

med(A) =
∞⋃

n=0

An, whereA0 = A andAn+1 = m
(
A3

n

)
. (∗)

The setAn represents thenth stage of the stabilization process. The stabilization of a
finite set is finite. Indeed, finitely generated free median algebras are finite. Themedian
stabilization degree, msd, of a median algebraM is defined by the following prescription.

msd(M) ≤ n iff ∀A ⊆ M : med(A) = An,

whereAn represents thenth stage of the stabilization process (as in (∗) above).
It is clear thatmsdof a subalgebra does not exceedmsdof the original algebra. In fact,

it can easily be shown thatmsd(M) ≤ n iff msd(X) ≤ n for each finite subalgebraX. In
this way, a potential combinatorial method obtains to decide whether a median algebra can
be embedded into some other median algebra. A result of Evans [5] can be interpreted as
follows. A median algebra hasmsdzero if and only if it is derived from a total order or
it is isomorphic to the graphic square. In this paper, we determine the value ofmsdof a
graphicn-cubeQn and we derive an estimation ofmsdfor the natural median operator of
Rn which is sharp up to one or two units. Interestingly,msdof Qn and ofRn grows like
log1.5 n. Finally, we characterize median algebras and median graphs ofmsd≤ 1 in terms
of forbidden subspaces and in terms of the exchange number.

2. Median stabilization degree

2.1. Examples of median algebras and their msd

(1) The natural median of three points in a totally ordered set selects the point which is in
between the other two. Therefore, the median stabilization degree of a totally ordered
set is zero.
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(2) More generally, atree is a (meet) semilattice such that any two points with a common
upper bound are comparable in the semilattice order. Both graphic trees and topological
trees are within the scope of this definition. If a tree has at least one ramification point,
then itsmsdequals 1. In fact, ramification points are medians of non-stable triples.

It follows from the results of [10, Chapter II, Section 4] that a tree with 2n endpoints
embeds inRm for m ≥ n only. Since trees havemsdat most one,msdof a median
algebra does not give accurate information on embeddability.

(3) In the graphic squareQ2, each subset is median stable. Hencemsd(Q2) = 0. Next,
msdof the graphic cubeQ3 equals 1. The simplest way to make this precise is via the
observation that a vertexv of Q3 is the median of three distinct points different fromv
iff these points are the neighbors ofv. For graphic cubes of higher dimension, accurate
information will be presented below.

A median graphis a connected graph of which the natural metric induces a median
operator in a way described in Section 1. There is a natural correspondence between
finite median graphs and finite median algebras. It turns out that graphic cubes are
the building blocks of median graphs; this allows to regard median graphs as cubical
complexes; cf. [10].

(4) Thesuperextensionλ(n)of a finiten-point set is the free median algebra onn generators.
Note that such algebras are finite. See Verbeek [11] for an explicit construction and
for numerical information. Eckhoff’s study [4] of the Radon number of the median
algebraRn can be used to produce explicit embeddings of superextensions intoRn.
The relationship of Eckhoff’s work with embeddings of superextensions is explained
in [9]. Figure 1 describes the superextensions of a three- and four-point set, embedded
in R2 andR3, respectively. Now,λ(3) is a tree with a ramification point, whence
msd(λ(3)) = 1. One can verify that the four generators ofλ(4) stabilize in two steps

Figure 1. λ(3) andλ(4) with extreme points as generators.
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only. As λ(4) embeds intoR3, we conclude from the product theorem below that
msd(λ(4)) = 2.

It is known thatλ(5) has 81 vertices. The corresponding median graph is a four-dimen-
sional cubical complex, of which a concise description is given by Bandelt and van de Vel
[2]. It can be verified that the set of five generators stabilizes in three steps, whencemsdis
at least 3. Sinceλ(5) can be embedded intoR5, the product theorem below yields thatmsd
of λ(5) is at most 4.

The ten-dimensional cubical complexλ(6) with 2,646 vertices can be embedded into
R10. The embedded positions of the generators were fed into a computer program which
indicated that the whole ofλ(6) obtains in three steps. However, the result below on graphic
cubes shows thatmsdof λ(6) is at least 5.

The superextensionλ(7) is fifteen-dimensional and can be embedded intoR18. We
do not know yet how many steps are needed to stabilize the seven-point generator set.
A straighforward stabilization algorithm has a complexity of magnitude #λ(7)3 and the
number of vertices ofλ(7) is more than 1,400,000. (The exact number has been computed
by Brouwer and Verbeek [11].) Finally,λ(8) has over 200,000,000,000 vertices; see Mills
and Mills [6]. The monograph [10] contains some further information on the corresponding
cubical complex.

The first result is a rather rough estimate ofmsdfor products of ordered sets.

Proposition 2.2 Let X1, . . . , Xn be totally ordered sets with the natural median. Then

msd

(
n∏

i=1

Xi

)
≤ n− 1.

Proof: Let X = ∏n
i=1 Xi . The result is valid forn = 1, and we proceed by induction.

Throughout, thei th coordinate of a pointx ∈ X is denoted byxi . Let F be a finite set inX
and letp ∈ med(F). The projection ofF onto

∏n−1
i=1 Xi × {pn} stabilizes in at mostn− 2

steps. This implies that there is a pointa in X which may differ fromp only in thenth
coordinate and can be obtained fromF in at mostn− 2 steps. Using the(n− 1)th factor
instead, we find a pointb in X which may differ fromp only in the(n− 1)th coordinate,
and which is obtained fromF in at mostn− 2 steps.

We may assume thatpn−1 < bn−1 and pn < an. Consider the sets

Hi = {x ∈ X | xi > pi }

for i = n− 1, n. Clearly,Hn−1 ∪ Hn is a median stable set not containingp. Hence there
is a pointc ∈ F/(Hn−1∪ Hn). The median ofa, b, c is easily seen to bep, which therefore
obtains fromF in at mostn− 1 steps. 2

We now find that

msd(R) = 0; msd(R2) = 1; msd(R3) = 2.
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The first is clear, and the second follows from the previous proposition in combination with
the fact that there exist 3-point sets in the plane that are not median stable. The third one
follows from the proposition and the information onλ(4) presented earlier. We conclude
that 2≤ msd(R4) ≤ 3 and (by using the information onλ(5)) that 3≤ msd(R5) ≤ 4.

For each pointp of a median algebra, the following prescription determines the so-called
base-point partial order at p.

u ≤p v iff u = m(p, u, v).

The right-hand equality is usually interpreted asu beingbetween p andv. The set of points
betweena andb is called theinterval between a, b, and is denoted by concatenation,ab. A
subsetC of a median algebraM is convexprovidedab⊆ C whenevera, b ∈ C. In terms
of the median operator, this means thatm(C × C × M) ⊆ C.

Lemma 2.3 Let X be a median algebra and let S⊆ X. Then p∈ X is generated by S,
that is, p ∈ med(S), iff it is generated by the set

{x | x ≥p s for some s∈ S}.

In either situation, the same number of steps is required.

Proof: This is a direct consequence of the fact that, ifyi ≤p xi for i = 1, 2, 3, then
m(y1, y2, y3) ≤p m(x1, x2, x3). 2

Theorem 2.4 For n ≥ 4, the median stabilization degree of the graphic n-cube Qn satisfies

msd(Qn) ≥ 2+ log3/2 n/4.

In fact, let q0 = 2 and, recursively, qi+1 = b3qi /2c. Then msd(Qn) equals the least i such
that n≤ qi .

Proof: The members ofQn are regarded as subsets of a fixedn-set. The median of three
elementsA, B,C is then given by

m(A, B,C) := (A∩ B) ∪ (B ∩ C) ∪ (C ∩ A).

Consider the setS⊆ Qn consisting of all 2-sets. Note that singletons are generated in step
one. The empty set is then generated at latest in step two. Assume that after stepi , all
subsets of cardinalityk have been generated, and no set of cardinality>k is generated. If
#A, #B, #C ≤ k, then #m(A, B,C) ≤ 3k/2 by a simple counting argument. Hence, in
stepi + 1, we can only generate sets of cardinality≤3k/2. If n ≥ 3k/2, then evidently
each set of cardinality 3k/2 can be obtained as a median of three sets of cardinalityk. The
initial generation progress is illustrated by Table 1.

An inductive argument starting atk = 4 andi = 2 now shows that one cannot arrive at
the full n-set in stepi unlessn ≤ (3/2)i−2 · 4, which gives the desired formula.
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Table 1. Growth ofmsdfor Qk.

msd 0 1 2 3 4 5 6 7 8 9

k≤ 2 3 4 6 9 13 19 28 42 63

It is evident from the above argument that ifi is the least integer withn ≤ qi , then the
msd is at leasti . To see that this estimate is sharp, letS ⊆ Qn and p ∈ med(S). By
Lemma 2.3, we may replaceSby the set

{x | ∃s ∈ S : x ≥p s}.

Without loss of generality,p is represented by the fulln-set. If the (enlarged) collectionS
does not contain a certain 2-setr , then the entiren− 2-cube spanned byp andr is disjoint
with S. However,Qn minus a convex(n − 2)-subcube is median stable, soS would not
generatep, a contradiction. As the first part of the proof indicates, we need at mosti steps
to get from the 2-sets top. 2

The next result is a useful tool in determiningmsdof general spaces. Recall that a subset
C of a median algebraX isgatedprovided for eachx ∈ X there exists a (necessarily unique)
point π(x) ∈ C such thatπ(x) ∈ xc for all c ∈ C. This pointπ(x) is called thegate of
x in C, and the resulting functionπ : X → C is called thegate mapof C. Gated sets in
a median space are convex, and conversely, nonempty finite convex sets are always gated;
see [10] for general information.

Theconvex neighborhoodof a pointp in a finite median algebra is the convex hull ofp
together with all its neighbors.

Proposition 2.5 In a finite median graph G, the following assertions are equivalent for
each n<∞.
(1) msd(G) ≤ n.
(2) For each vertex the convex neighborhood has msd at most n.

Proof: The implication (1)⇒ (2) is trivial. Supposemsd(G) > n. Then there is a
set S ⊆ G and a pointq ∈ med(S) which is not obtained fromS in n or fewer steps.
Let U be the convex neighborhood ofq, and letπ : G → U be the gate map. Asπ
is median-preserving,q = π(q) is also generated byπ(S). Supposeq is obtained ink
steps fromπ(S). For each member ofπ(S) we fix one pre-image inS. This gives a set
S′ ⊆ Sand a bijectionπ : S′ → π(S). Consider a sequence ofk operations, leading from
π(S) to q. In each operation, we formally replace the involved members ofπ(S) by the
corresponding members ofS′. Then, at each stage of the process, the resulting point maps
to the corresponding point of the original process. In this way, the pre-image process ends
in a pointq′ of G with π(q′) = q. However, asU contains all neighbors ofq we have
q′ = q. Sinceq is obtained fromS in k steps, we conclude thatk > n andmsd(U ) > n.

2
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Table 2. Lower boundi and upper boundj of msd(Rn)

n i j

4 2 4

5, 6 3 5

7, 8, 9 4 6

10–13 5 7

14 6 7

15–19 6 8

20, 21 7 8

22–28 7 9

Note that, in fact,msd(G) ≤ n iff for eachq ∈ G, each subset of the convex neighborhood
of q generatesq in at mostn steps.

Corollary 2.6 Let Ln ⊆ Rn be the lattice{−1, 0, 1}n. Then msd(Rn) = msd(Ln).

Proof: We noted before thatmsdis determined by the behavior of finite sets. IfF ⊆ Rn

is finite, thenmed(F) is part of a finite lattice of type

F1× F2× · · · Fn,

whereFi is the projection ofF onto thei th axis. The convex neighborhood of a point in
Fi contains at most three points. The result now follows from Proposition 2.5. 2

Corollary 2.7 The median stabilization degree ofRn is in between two integers i, j ,
determined as follows: i is the smallest integer satisfying n≤ qi and j is the smallest
integer satisfying2n ≤ qj .

Proof: Qn is a subalgebra ofRn andLn can be embedded intoQ2n. 2

Table 2 may give an impression of the values and of the (un)sharpness of the estimates.1

Note that ifn = 4, 5 then the indicated value ofj can be improved with the aid of Propo-
sition 2.2.

Remark.

Sinceλ(4) is a free algebra on 4 generators stabilizing in two steps, it follows thatany
4-point set inany median algebra stabilizes in at most two steps. See Example 2.1 (4).
Therefore, in regard to Corollary 2.6, one has to consider all subsets of the latticeL4 with at
least 5 points in order to verify whethermsd(L4) = 3. Similarly,λ(6) is a free algebra on 6
generators stabilizing in three steps, whenceany6-point set inanymedian algebra stabilizes
in at most three steps. To verify whethermsd(L5) = 4 requires investigating all subsets of
L5 with at least 7 points. An upper bound for the cardinality of subsets will be presented
next. With no further information at hand, these tasks take far too much computer time.
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We need a few concepts from the theory of convex invariants; see [10], Chapter II. The
Carathódory number cof a convex structureX with convex hull operatorco is the smallest
numberk such that for each finite setF ⊆ X with #F > k,

co(F) =
⋃
x∈F

co(F/{x});

c = ∞ if no suchk exists. Theexchange number eof X is the smallest numberk such that
for each finite setF ⊆ X with #F > k and for eachp ∈ F ,

co(F/{p}) ⊆
⋃

x∈F,x 6=p

co(F/{x});

e= ∞ if no suchk exists. Informally, each “face” ofco(F) is covered by the other faces
if the number of points inF exceeds the exchange number ofX.

Both numbersc, e are closely related:c = e− 1 in casec ≥ 3 (cf. [10], Chapter II,
Section 1.9). Trees with a ramification point and totally ordered sets with at least three
points havec = 2, whereas all trees and all ordered sets with more than one point have
e = 2. In fact, median algebras of exchange number≤2 are precisely the trees. The
exchange number of a median graph is one larger than the dimension of the corresponding
cubical complex.

Theorem 2.8 Let M be a non-empty median algebra with a finite exchange number e and
Carathódory number c.
(1) If a point of M is generated by a set S⊆ M , then it is generated by a subset of S with

at most(e− 1) · c+ 1 points.
(2) msd(M) ≤ 1+ dlog2 ce +msd(Qe−1).

Proof: Let S⊆ M be finite, and letp ∈ med(S). We will estimate the number of steps
needed to generatep from S. Without loss of generality, we may assumeM = med(S).
To begin with, fix a point 0∈ Sand consider the corresponding base-point order≤0:

x ≤0 y iff m(0, x, y) = x, iff x ∈ 0y.

The partially ordered set(M,≤0) is amedian semilattice, that is: a (meet) semilattice in
which every principal ideal is a distributive lattice and any three elements have an upper
bound whenever each pair is bounded above (cf. [1]). Moreover, the assumption on the
exchange number ofM implies that each sublattice ofM has breadthe− 1. Note that
e= 1 iff M is a one-point set, in which case the theorem is valid. We assume thate> 1.
According to [10], Chapter I, Section 6.34, a pointq ∈ M is in med(S) iff there exist finite
setsF1, . . . , Fk ⊆ Swith

k⋂
i=1

co(Fi ) = {q}.



MEDIAN STABILIZATION DEGREE 123

It is not difficult to deduce that

q =
(∧

F1

)
∨ · · · ∨

(∧
Fk

)
.

By definition, we may assume that #Fi ≤ c for eachi . As the interval 0q is of breadth
e− 1, we may assume thatk ≤ e− 1. In particular,q is generated by the set

k⋃
i=1

Fi ∪ {0},

establishing (1). The meet of two points inM can be obtained as a median of these points
with 0. Hence it takes at mostdlog2 · cemany steps to generate an arbitrary meet of members
of S.

Let I ⊆ M be the set of alljoin-irreducible elements: a ∈ I iff a = x∨ y impliesa = x
or a = y. Each join-irreducible element obtains as a meet of elements inS. Let T consist
of all joins of pairs inI . SinceM is finite, each element inM is a join of join-irreducible
elements. Moreover, for every join-irreducible elementa ≤ x∨ y we havea ≤ x or a ≤ y.

If t ∈ T thenM/ ↑ (t) is a subalgebra by the following argument. Supposet = a∨ b ≤
m(x, y, z), wherea, b ∈ I . The median ofx, y, z can be obtained in lattice terms as

m(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (z∧ x).

Then, asa, b are join-irreducible, one ofx, y, z is a common upper bound ofa, b and hence
it also boundst from above.

We conclude that↑(t)meetsSfor eacht ∈ T , and hence the entire setT can be generated
from S in at most one extra step. As the breadth of the lattice 0p is the same with respect
to its meet or its join, we obtain a minimal set

J = { j1, . . . , jm} ⊆ I

of m ≤ e− 1 points such thatp = ∨
J. Let e1, . . . ,em ∈ {0, 1}m be the standard unit

vectors. The irreducibility ofJ implies that the correspondenceei 7→ ji (i = 1, . . . ,m)
extends in a canonical way to a lattice isomorphism of{0, 1}n with the interval joining∧

J and
∨

J. This interval includes the setT , whencep is generated fromT in at most
msd(Qe−1) additional steps. 2

The estimation of the number of points needed to generate a particular point seems to be
sharp in low dimensions. We do not know whether it is sharp in general. Comparing the
lower bound of Theorem 2.8(2) with the estimates of Table 2 one has the impression that
the correction term

1+ dlog2 ce

onmsd(Qe−1) is somewhat too large.
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2.10. Examples

(1) We havec(Ln) = n if n ≥ 2 ande(Ln) = n+ 1 for all n. Hence inL4 and inL5 one
needs to consider subsets of at most 17 and 26 points, respectively, in order to compute
msd. Alternatively, one can use Lemma 2.3: if a setS generates a pointp, then the
minima of(S, ≤p) generatep too. In case ofLn, this seems to lead to larger estimates.
Part (2) of the previous result yieldsmsd(L4) ≤ 4 andmsd(L5) ≤ 6, which are a bit
too large.

(2) λ(7) is a fifteen-dimensional cubical complex withe= 16 andc = 15, and which can
be embedded inR18. Estimating via Theorem 2.8, we findmsd(λ(7)) ≤ 11. Estimating
via Table 2 yields 6≤ msd(λ(7)) ≤ 8.

3. Spaces of lowmsd

In this section, we determine all median spaces ofmsdequal to 0, 1. The characterization
of zeromsdis actually a reformulation of a result of Evans [5].

Theorem 3.1[5] A median algebra has msd zero iff either it is embeddable in a totally
ordered set(as a subalgebra), or it is a graphic square.

3.1. Simplex graphs

In order to characterize general median algebras ofmsdequal to 1, we first concentrate on
the special class of so-called simplex graphs. (cf. Bandelt and van de Vel [2]). We recall
that thesimplex graphF̂ of a graphF consists of all simplices (complete subgraphs) of
F , where two simplicesσ1, σ2 form an edge iff their symmetric difference has at most one
point. These graphs have been classified as the median graphsG with a “central” vertex
v, such that all maximal graphic cubes inG containv. In a true simplex graph, the empty
simplex is such a central vertex. Figure 2 presents the simplex graphs of cycles having
length 3, 4, or 5, respectively.

Figure 2. Three simplex graphs.
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Lemma 3.2 Let G be a median graph and p∈ G. Then the convex neighborhood of p
equals the union of all cubes of G which contain p. In particular, this neighborhood is a
simplex graph.

Proof: If Q ⊆ G is a cube containingp and of dimension>1, thenQ is the convex hull
of all neighbors ofp in Q. This implies that the union of all cubes atp is included in the
convex neighborhood.

Suppose that some pointq in the convex neighborhood ofp is in no cube withp. We
assumeq is closest top with this property. Pick the last pointr 6= q on a geodesic fromp
to q. Now p, r ∈ Q for some cubeQ of G. Note that the intervalpr is a cubeQ′. Choose
a half-spaceH (i.e., a convex set with a convex complement) containingq but disjoint with
Q. As q is in the hull of all proper neighbors ofp, there is an edgeps with s ∈ H . It
follows that the mutual gate mappingsQ′ = pr → qsandqs→ pr mapp andr to s and
q respectively, and vice versa. Therefore, these sets are mutual nearest point sets which are
one edge away. By virtue of the “amalgamation theorem” [9], it follows thatpr ∪ qs is
another cube, a contradiction. 2

Proposition 3.3 Let G be the simplex graph of a finite graph F. Then msd(G) ≤ 1 iff
F = C3, or F has no subgraph of type C3 or C5.

Proof: First, observe thatmsd(Ĉ3) = 1. If F properly includes aC3, thenG admits an
induced median subgraph consisting of a 3-cube and with an additional edge pending one
of the cube’s vertices. Figure 3 describes the stages 0, 1, 2 of a stabilizing process in this
subgraph, showing thatmsd(G) ≥ 2. If F has an inducedC5 thenmsd(G) ≥ msd(Ĉ5) = 2
(the five corner points of̂C5 generate Ø at the second step). This shows that ifmsd(G) ≤ 1,
thenG is as described.

Henceforth, we assume thatF has no inducedC3 nor C5 but msd(G) ≥ 2. In regard to
Proposition 2.5 and Lemma 3.2, there is a simplex graphF̂ ⊆ G and a setS⊆ F̂ such that
the central vertex Ø of̂F is generated in two steps. We assume thatF, Sare minimal with
these properties. If an edge ofF is not inS, then the simplex graph ofF minus this edge is

Figure 3. msdof a 3-cube plus edge.
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a median subalgebra ofG includingS, so we may as well drop it fromF . Supposev ∈ F
is a vertex of degree one anduv is the only edge atv. ThenF̂ is an amalgamation along Ø,
u of a square and the simplex graph ofF/{v}. If the singleton{v} is not in S, necessarily
the doubleton{u, v} belongs toS. When substituting this by the singleton{u}, its gate in
the simplex graph ofF/{v}, then the generation pattern will not change. Summarizing, we
may assume thatS includes all edges and endpoints ofF .

A first conclusion is thatF has at most two components, for otherwiseS has three
doubletons constituting pairwise non-adjacent edges ofF , and the median of such a triple
is Ø. If F is not connected, then none of the two components can have two disjoint edges
(same reason as above). AsF is triangle-free, each component must be a star. But if there
are three or more endpoints altogether, then Ø obtains as their median. SoF consists of
two isolated vertices, andScannot generate Ø unless Ø∈ S!

The conclusion so far is thatF is connected. If the diameter ofF is at least three, then
consider a geodesicv1, v2, v3, v4 of length three. The first pointv1 is either an endpoint of
F , or there is an edgee1 at this point not incident with any other vertex of the geodesic.
Similarly, the fourth vertexv4 is an endpoint, or is incident with an edgee4 not incident
with any other vertex of the geodesic. Note that if bothe1 ande4 emerge, then they are not
incident sincev1 andv4 are at distance three. In any case, we get three points ofS with
median Ø, namely,{v2, v3} (the middle edge of the given geodesic inF), eitherv1 or the
edgee1, and eitherv4 or the edgee4.

So F is a connected graph of diameter 2 and withoutC3,C5. Then F is a complete
bipartite graphKm,n (say: m ≤ n). If m ≥ 3, there exist three pairwise disjoint edges, and
Ø obtains from them in one step. Supposem = 2 andn ≥ 3. Observe that the set of all
edges, together with the two points of one color, yield a median stable set ofF̂ . As Shas to
generate Ø, some vertexv of the second color must occur. Asn ≥ 3, it is possible to find
two disjoint edges, not incident withv. The median of this triple is Ø, however.

This leaves us with two types:K2,2 = C4, and the starsK1,n. In case ofC4, the
corresponding simplex graph is{−1, 0, 1}2 which hasmsdequal to one. In case of aK1,n,
note thatn ≥ 3 gives us three endpoints which are inS and generate Ø at once. The case
n = 1 being a triviality, we consider the two-pathK1,2. ThenSeither contains all vertices
(and generates Ø in one step) or it contains Ø. 2

It is shown in [10] that the exchange number (see Section 2) of a median graph is at least
n+ 1 iff the graph has an induced cube of dimensionn. The “cube-free” condition of the
previous argument can therefore be expressed by the inequalitye≤ 3. Combining Lemma
3.2 with Propositions 2.5 and 3.3, we arrive at the following results.

Theorem 3.4 A median algebra has msd at most1 iff either it is Q3, or its exchange
number satisfies e≤ 3 and it does not contain̂C5 as a subalgebra.

Theorem 3.5 A median graph has msd at most1 iff either it is Q3, or its exchange number
satisfies e≤ 3 and neither Q3 nor Ĉ5 occur as convex subgraphs.

It would be desirable to have similar characterizations in the case of largermsd.
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Notes

1. The second author has been able to determinemsd(Ln). Consult this journal.
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