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Abstract. The median stabilization degreegd for short) of a median algebra measures the largest possible
number of steps needed to generate a subalgebra with an arbitrary set of generators. We determine the value of
msdof a graphicn-cubeQ, and we derive an estimation ofsdfor the natural median operator Bf which is

sharp up to one or two units. Interestingigsdof Q, and of R" grows like log s n. Finally, we characterize

median algebras and median graphsnsfi< 1 in terms of forbidden subspaces.
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1. Introduction

Median algebras arose in the study of distributive lattices and trees by Birkhoff and Kiss
[3], Sholander [7, 8], and others. We refer to Bandelt and Hesl& [1] for a survey on
median algebras and to van de Vel [10] for the theory of median convexity.

A median algebra consists of a $dtand amedian operatoon M, by which is meant a
symmetric functiorm : M3 — M such that

m(a,a,b) =a and m(m(a,b,c),d, c) = m(a, m(b,c,d), c).

The last equality can be interpreted as an associative law. A totally ordered set has a natural
median operator, which assigns to each triple of points the middle one. On a product of two
median algebragéM;, m;) and (M, m,) there is a median operator defined as follows.

Leta = (a1, a2), b = (by, by) andc = (¢4, ¢p). Then

m(a, b, ¢) = (my(ay, by, c), ma(ay, by, ¢2)).

Medians arise in certain metric spaces as follows (cf. Verheul [12])(Xet) be ametric
space and led, b € X. A pointx € X isin between ab providedp(a, x) + p(x,b) =
p(a, b). Iffor each triple of points, b, ¢c € X there is a unique point € X simultaneously
in betweera andb, b andc, c anda, then the assignmerd, b, ¢) — x determines a median
operator onX. For instance, Banach spaces of typehave this property. In particulaR"
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with the “Manhattan” norm

n

1O, xa) =) Il

i=1

leads to a median operator which agrees with the median operator roffthe product of
the totally ordered seR with itself.
A subsetA of a median algebri is median stabl¢or, asubalgebrprovidedm(A%) <
A. It is known (cf. [1]) that each median algebra occurs as a median stable subset of a
distributive lattice under the median operator defined by

m(a,b,c) =(@Ab)yvbac)v(caa).

The median stabilization me@) of a subsetA of a median algebra is the smallest
median stable set which includés In other words, it is the subalgebra generatedhbyt
is recursively constructed as follows.

med(A) = U An, whereAg = AandAn.1 = m(A3). (%)
n=0

The setA, represents thath stage of the stabilization process. The stabilization of a
finite set is finite. Indeed, finitely generated free median algebras are finitematian
stabilization degreemsd of a median algebr# is defined by the following prescription.

msd(M) <n iff YAC M:med(A) = A,

where A, represents thath stage of the stabilization process (asshdbove).
It is clear thatmsdof a subalgebra does not excaaddof the original algebra. In fact,
it can easily be shown thatsd(M) < n iff msd(X) < n for each finite subalgebr4. In
this way, a potential combinatorial method obtains to decide whether a median algebra can
be embedded into some other median algebra. A result of Evans [5] can be interpreted as
follows. A median algebra hawsdzero if and only if it is derived from a total order or
it is isomorphic to the graphic square. In this paper, we determine the valueddf a
graphicn-cubeQ,, and we derive an estimation ofsdfor the natural median operator of
R" which is sharp up to one or two units. Interestinghsdof Q, and of R" grows like
log, 5 n. Finally, we characterize median algebras and median graphsa# 1 in terms
of forbidden subspaces and in terms of the exchange number.

2. Median stabilization degree
2.1. Examples of median algebras and their msd
(1) The natural median of three points in a totally ordered set selects the point which is in

between the other two. Therefore, the median stabilization degree of a totally ordered
set is zero.
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More generally, @&reeis a (meet) semilattice such that any two points with a common
upper bound are comparable in the semilattice order. Both graphic trees and topological
trees are within the scope of this definition. If a tree has at least one ramification point,
then itsmsdequals 1. In fact, ramification points are medians of non-stable triples.

It follows from the results of [10, Chapter I, Section 4] that a tree witteRdpoints
embeds imlR™ for m > n only. Since trees haveisdat most onemsdof a median
algebra does not give accurate information on embeddability.

In the graphic squar®,, each subset is median stable. Hentsl(Q,) = 0. Next,
msdof the graphic cub&s; equals 1. The simplest way to make this precise is via the
observation that a vertaxof Q3 is the median of three distinct points different fram

iff these points are the neighborswfFor graphic cubes of higher dimension, accurate
information will be presented below.

A median graphis a connected graph of which the natural metric induces a median
operator in a way described in Section 1. There is a natural correspondence between
finite median graphs and finite median algebras. It turns out that graphic cubes are
the building blocks of median graphs; this allows to regard median graphs as cubical
complexes; cf. [10].

Thesuperextensiok(n) of a finiten-point setis the free median algebrarogenerators.

Note that such algebras are finite. See Verbeek [11] for an explicit construction and
for numerical information. Eckhoff’s study [4] of the Radon number of the median
algebraR" can be used to produce explicit embeddings of superextension®nto

The relationship of Eckhoff's work with embeddings of superextensions is explained
in [9]. Figure 1 describes the superextensions of a three- and four-point set, embedded
in R? and R3, respectively. Nowa(3) is a tree with a ramification point, whence
msd(1(3)) = 1. One can verify that the four generators\¢f) stabilize in two steps

s 1

4

"l\)

Figure L A(3) andA(4) with extreme points as generators.
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only. As A(4) embeds intdR®, we conclude from the product theorem below that
msd(A(4)) = 2.

It is known thati.(5) has 81 vertices. The corresponding median graph is a four-dimen-
sional cubical complex, of which a concise description is given by Bandelt and van de Vel
[2]. It can be verified that the set of five generators stabilizes in three steps, whedise
at least 3. Since(5) can be embedded ini®®, the product theorem below yields thmasd
of A(5) is at most 4.

The ten-dimensional cubical compléx6) with 2,646 vertices can be embedded into
R1°. The embedded positions of the generators were fed into a computer program which
indicated that the whole @f(6) obtains in three steps. However, the result below on graphic
cubes shows thahsdof A(6) is at least 5.

The superextensioi(7) is fifteen-dimensional and can be embedded Rt6. We
do not know yet how many steps are needed to stabilize the seven-point generator set.
A straighforward stabilization algorithm has a complexity of magnitudléZ¥ and the
number of vertices of(7) is more than 1,400,000. (The exact number has been computed
by Brouwer and Verbeek [11].) Finally(8) has over 200,000,000,000 vertices; see Mills
and Mills [6]. The monograph [10] contains some further information on the corresponding
cubical complex.

The first result is a rather rough estimatawddfor products of ordered sets.

Proposition 2.2 Let Xy, ..., X, be totally ordered sets with the natural median. Then

msd(n Xi) <n-1
i=1

Proof: Let X = []_; Xi. The result is valid fon = 1, and we proceed by induction.
Throughout, théth coordinate of a point € X is denoted by;. Let F be a finite set irX
and letp € medF). The projection o onto]‘[{‘;ll Xi x {pn} stabilizes in at mogt — 2
steps. This implies that there is a pomin X which may differ fromp only in thenth
coordinate and can be obtained frétrin at mostn — 2 steps. Using thén — 1)th factor
instead, we find a poirti in X which may differ fromp only in the(n — 1)th coordinate,
and which is obtained frorf in at mostn — 2 steps.

We may assume thad,_1 < b,_; andp, < a,. Consider the sets

Hi={xeX|x > p}
fori =n—1,n. Clearly,H,_1 U Hy is a median stable set not containipgHence there
is a pointc € F/(Hn—1U Hy,). The median o&, b, cis easily seen to bp, which therefore
obtains fromF in at mostn — 1 steps. ]

We now find that

msd(R) =0; msd(R?) =1; msdR®) = 2.
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The first is clear, and the second follows from the previous proposition in combination with
the fact that there exist 3-point sets in the plane that are not median stable. The third one
follows from the proposition and the information @) presented earlier. We conclude
that 2< msd(R*) < 3 and (by using the information or(5)) that 3< msd(R®) < 4.

For each poinp of a median algebra, the following prescription determines the so-called
base-point partial order at p

u<pv iff u=m(p,u,v).

The right-hand equality is usually interpreteddseingbetween p and. The set of points
betweera andb is called thénterval between gb, and is denoted by concatenatiai, A
subsetC of a median algebr# is convexprovidedab € C whenever, b € C. In terms
of the median operator, this means thdC x C x M) C C.

Lemma 2.3 Let X be a median algebra and letS X. Then pe X is generated by ,S
thatis p € med(S), iff it is generated by the set

{x | x>ps forsome s S}.
In either situationthe same number of steps is required.

Proof: This is a direct consequence of the fact thatyif<, x fori = 1,2, 3, then
M(Y1, Y2, ¥3) <p M(Xy, X2, X3). g

Theorem 2.4 Forn > 4,the median stabilization degree of the graphic n-cuhes&isfies

msdQn) > 2+ logz, n/4.

In fact, let o = 2 and, recursively, 41 = [3q;/2]. Then msdQ,) equals the least i such
thatn<gq.

Proof: The members 0@, are regarded as subsets of a fixeget. The median of three
elementsA, B, C is then given by

m(A,B,C):=(ANB)UBNCYU(CNA).

Consider the seb C Qp, consisting of all 2-sets. Note that singletons are generated in step
one. The empty set is then generated at latest in step two. Assume that afteradtep
subsets of cardinalitik have been generated, and no set of cardinalkyis generated. If
#A, #B, #C < Kk, then #n(A, B, C) < 3k/2 by a simple counting argument. Hence, in
stepi + 1, we can only generate sets of cardinaktgk/2. If n > 3k/2, then evidently
each set of cardinalityky2 can be obtained as a median of three sets of cardirkalithe
initial generation progress is illustrated by Table 1.

An inductive argument starting &t= 4 andi = 2 now shows that one cannot arrive at
the full n-set in step unlessn < (3/2)' 2 - 4, which gives the desired formula.
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Table 1 Growth ofmsdfor Q.

msd0 1234 5 6 7 8 9
k< 2 346 9 13 19 28 42 63

It is evident from the above argument that if the least integer with < q;, then the
msdis at leasti. To see that this estimate is sharp, € Q, and p € med(S). By
Lemma 2.3, we may replacgby the set

{X|3dse S:x>ps}

Without loss of generalityp is represented by the futl-set. If the (enlarged) collectio®
does not contain a certain 2-sethen the entire — 2-cube spanned by andr is disjoint
with S. However,Q,, minus a convexn — 2)-subcube is median stable, Savould not
generatep, a contradiction. As the first part of the proof indicates, we need at instsps
to get from the 2-sets tp. ]

The next result is a useful tool in determinimgdof general spaces. Recall that a subset
C of amedian algebr¥X is gatedprovided for eaclx € X there exists a (necessarily unique)
point 7 (x) € C such thatr(x) € xcfor all c € C. This pointrz (x) is called thegate of
x in C, and the resulting function : X — C is called thegate mapof C. Gated sets in
a median space are convex, and conversely, nonempty finite convex sets are always gated;
see [10] for general information.

The convex neighborhoodf a pointp in a finite median algebra is the convex hullpf
together with all its neighbors.

Proposition 2.5 In a finite median graph Gthe following assertions are equivalent for
each n< oo.

(1) msd(G) < n.

(2) For each vertex the convex neighborhood has msd at most n.

Proof: The implication (1)= (2) is trivial. Supposansd(G) > n. Then there is a
setS C G and a pointg € med(S) which is not obtained frons in n or fewer steps.
Let U be the convex neighborhood gf and letr : G — U be the gate map. As
is median-preserving] = 7(q) is also generated by(S). Suppose is obtained ink
steps fromr (S). For each member of (S) we fix one pre-image ir8. This gives a set
S C Sand a bijectionr : S — 7 (S). Consider a sequence lobperations, leading from
7(S) to g. In each operation, we formally replace the involved members(& by the
corresponding members &f. Then, at each stage of the process, the resulting point maps
to the corresponding point of the original process. In this way, the pre-image process ends
in a pointq’ of G with 7(q’) = q. However, a3J contains all neighbors aj we have
g’ = g. Sinceq is obtained fronSin k steps, we conclude thit> n andmsdU) > n.

|
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Table 2 Lower bound and upper boung of msd(R")

n

4

56
7,8,9
10-13
14
15-19
20,21
22-28

NN o 9 g~ wWN
© ©® o N gy o u b

Note that, in factmsd G) < niffforeachq € G, each subset of the convex neighborhood
of g generates in at mostn steps.

Corollary 2.6 Let L, € R" be the latticeg{—1, 0, 1}". Then msdR") = msd(L,).

Proof: We noted before thahsdis determined by the behavior of finite setsFIfc R"
is finite, thenmed(F) is part of a finite lattice of type

F]_X FzX-nFn,

whereF; is the projection ofF onto theith axis. The convex neighborhood of a point in
Fi contains at most three points. The result now follows from Proposition 2.5. O

Corollary 2.7 The median stabilization degree Bf' is in between two integers j,
determined as followsi is the smallest integer satisfying s ¢ and j is the smallest
integer satisfyin@n < q;.

Proof: Q,is asubalgebra dk" andL, can be embedded int@,n. O

Table 2 may give an impression of the values and of the (un)sharpness of the estimates.
Note that ifn = 4, 5 then the indicated value gfcan be improved with the aid of Propo-
sition 2.2.

Remark.

SinceA(4) is a free algebra on 4 generators stabilizing in two steps, it followsathwat
4-point set inany median algebra stabilizes in at most two steps. See Example 2.1 (4).
Therefore, in regard to Corollary 2.6, one has to consider all subsets of the lattidth at

least 5 points in order to verify whethersd(L4) = 3. Similarly,1(6) is a free algebra on 6
generators stabilizing in three steps, wheseg6-point set iranymedian algebra stabilizes

in at most three steps. To verify whethmsd(Ls) = 4 requires investigating all subsets of

Ls with at least 7 points. An upper bound for the cardinality of subsets will be presented
next. With no further information at hand, these tasks take far too much computer time.
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We need a few concepts from the theory of convex invariants; see [10], Chapter II. The
Carathbdory number ©f a convex structur& with convex hull operatocois the smallest
numberk such that for each finite sét € X with #F > Kk,

co(F) = co(F/{x);

xeF

¢ = oo if no suchk exists. Theexchange numbera X is the smallest numbdrsuch that
for each finite seE € X with #F > k and for eachp € F,

coF/{ph < |J co(F/{xh:

xeF,x#p

e = oo if no suchk exists. Informally, each “face” afo(F) is covered by the other faces
if the number of points ifF exceeds the exchange numbexof

Both numberg, e are closely relatedc = e — 1 in casec > 3 (cf. [10], Chapter II,
Section 1.9). Trees with a ramification point and totally ordered sets with at least three
points havec = 2, whereas all trees and all ordered sets with more than one point have
e = 2. In fact, median algebras of exchange numbk@rare precisely the trees. The
exchange number of a median graph is one larger than the dimension of the corresponding
cubical complex.

Theorem 2.8 Let M be a non-empty median algebra with a finite exchange number e and
Carathbdory number c.
(1) If a point of M is generated by a setS M, then it is generated by a subset of S with
at most(e — 1) - ¢+ 1 points.
(2) msd(M) < 1+ [log, c] + msd(Qe-1).

Proof: LetS C M be finite, and lep € med(S). We will estimate the number of steps
needed to generaigfrom S. Without loss of generality, we may assutie= med(S).
To begin with, fix a point ¢ Sand consider the corresponding base-point order

X <oy iff m@,x,y)=x, iff x € Oy.

The partially ordered s&iM, <) is amedian semilatticethat is: a (meet) semilattice in
which every principal ideal is a distributive lattice and any three elements have an upper
bound whenever each pair is bounded above (cf. [1]). Moreover, the assumption on the
exchange number dfl implies that each sublattice &fl has breadtte — 1. Note that

e = 1iff M is a one-point set, in which case the theorem is valid. We assume thdt
According to [10], Chapter I, Section 6.34, a paine M is in med(S) iff there exist finite
setsFy, ..., Fx € Swith

k
[co(F) = {a}.

i=1
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It is not difficult to deduce that

a=(AFR)v-v(AR).

By definition, we may assume thaE#< c for eachi. As the interval  is of breadth
e — 1, we may assume thit< e — 1. In particularq is generated by the set

k
UF v (o,
i=1

establishing (1). The meet of two pointslih can be obtained as a median of these points
with 0. Hence ittakes atmoRbg, - C] many steps to generate an arbitrary meet of members
of S.

Let| € M be the set of aljoin-irreducible elementsa € | iff a = x v yimpliesa = x
ora = y. Each join-irreducible element obtains as a meet of elemergsliet T consist
of all joins of pairs inl. SinceM is finite, each element iM is a join of join-irreducible
elements. Moreover, for every join-irreducible elem&nrt X vy we havea < xora <.

If t € TthenM/ 4 (t) is a subalgebra by the following argument. Supposea v b <
m(X, Y, z), wherea, b € |. The median ok, y, z can be obtained in lattice terms as

MX,Y,2) = (XAY)V(YAZ)V(ZAX).

Then, as, b are join-irreducible, one of, y, zis a common upper bound af b and hence
it also boundg from above.

We conclude that (t) meetsSfor eacht € T, and hence the entire Secan be generated
from Sin at most one extra step. As the breadth of the lattipgsthe same with respect
to its meet or its join, we obtain a minimal set

J:{Jl,alm}§|

of m < e — 1 points such thap = \/J. Letey,..., ey € {0, 1}" be the standard unit
vectors. The irreducibility of) implies that the correspondenee— j; (i = 1,...,m)
extends in a canonical way to a lattice isomorphism{®fL}" with the interval joining
AJ and\/J. This interval includes the s@t, whencep is generated fronT in at most
msd(Qe_1) additional steps. ]

The estimation of the number of points needed to generate a particular point seems to be
sharp in low dimensions. We do not know whether it is sharp in general. Comparing the
lower bound of Theorem 2.8(2) with the estimates of Table 2 one has the impression that
the correction term

1+ [log,c]

onmsd(Qe_1) is somewhat too large.
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2.10. Examples

(1) We havec(L,) = nif n > 2 ande(L,) = n+ 1 for alln. Hence inL4 and inLs one
needs to consider subsets of at most 17 and 26 points, respectively, in order to compute
msd Alternatively, one can use Lemma 2.3: if a Sgenerates a poirp, then the
minima of (S, <p) generatep too. In case ot ,, this seems to lead to larger estimates.
Part (2) of the previous result yieldssd(L4) < 4 andmsd(Ls) < 6, which are a bit
too large.

(2) A(7) is a fifteen-dimensional cubical complex with= 16 andc = 15, and which can
be embedded iR'8. Estimating via Theorem 2.8, we fimasd(1 (7)) < 11. Estimating
via Table 2 yields 6z msd(1(7)) < 8.

3. Spaces of lowmsd

In this section, we determine all median spacessflequal to Q1. The characterization
of zeromsdis actually a reformulation of a result of Evans [5].

Theorem 3.1[5] A median algebra has msd zero iff either it is embeddable in a totally
ordered sefas a subalgebrp or it is a graphic square.

3.1. Simplex graphs

In order to characterize general median algebransafequal to 1, we first concentrate on

the special class of so-called simplex graphs. (cf. Bandelt and van de Vel [2]). We recall
that thesimplex graphF of a graphF consists of all simplices (complete subgraphs) of

F, where two simplices, o> form an edge iff their symmetric difference has at most one
point. These graphs have been classified as the median géapiith a “central” vertex

v, such that all maximal graphic cubes@containv. In a true simplex graph, the empty
simplex is such a central vertex. Figure 2 presents the simplex graphs of cycles having
length 3, 4, or 5, respectively.

a° .
Q3=C3 Cq Cs

Figure 2 Three simplex graphs.



MEDIAN STABILIZATION DEGREE 125

Lemma 3.2 Let G be a median graph and ¢ G. Then the convex neighborhood of p
equals the union of all cubes of G which contain p. In particuthis neighborhood is a
simplex graph.

Proof: If Q C G is a cube containing and of dimension-1, thenQ is the convex hull
of all neighbors ofp in Q. This implies that the union of all cubes giis included in the
convex neighborhood.

Suppose that some poigtin the convex neighborhood gf is in no cube withp. We
assume is closest top with this property. Pick the last point~ g on a geodesic fronp
tog. Now p,r € Q for some cub& of G. Note that the intervapr is a cubeQ’. Choose
a half-spaceH (i.e., a convex set with a convex complement) contaiwjibat disjoint with
Q. As g is in the hull of all proper neighbors gf, there is an edgpswiths € H. It
follows that the mutual gate mappin@ = pr — gqsandgs — pr mapp andr tosand
g respectively, and vice versa. Therefore, these sets are mutual nearest point sets which are
one edge away. By virtue of the “amalgamation theorem” [9], it follows tvat gs is
another cube, a contradiction. a

Proposition 3.3 Let G be the simplex graph of a finite graph F. Then &g < 1 iff
F = C3, or F has no subgraph of types@r Cs.

Proof: First, observe thansd(Cz) = 1. If F properly includes &3, thenG admits an
induced median subgraph consisting of a 3-cube and with an additional edge pending one
of the cube’s vertices. Figure 3 describes the stagésof a stabilizing process in this
subgraph, showing thatsd(G) > 2. If F has aninduce@s thenmsd(G) > msd(Cs) = 2
(the five corner points ofs generate @ at the second step). This shows thas#(G) < 1,
thenG is as described.

Henceforth, we assume thithas no induce€3; nor Cs butmsd(G) > 2. In regard to
Proposition 2.5 and Lemma 3.2, there is a simplex giaph G and a se € F such that
the central vertex @ of is generated in two steps. We assume thab are minimal with
these properties. If an edgeBfis not inS, then the simplex graph & minus this edge is

e

Figure 3 msdof a 3-cube plus edge.
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a median subalgebra & including S, so we may as well drop it frork. Suppose € F

is a vertex of degree one and is the only edge at. ThenF is an amalgamation along @,

u of a square and the simplex graphff{v}. If the singleton{v} is not in S, necessarily
the doubletor{u, v} belongs toS. When substituting this by the singletdny, its gate in

the simplex graph oF /{v}, then the generation pattern will not change. Summarizing, we
may assume th& includes all edges and endpointskof

A first conclusion is that- has at most two components, for otherwSdas three
doubletons constituting pairwise non-adjacent edgds,@nd the median of such a triple
is @. If F is not connected, then none of the two components can have two disjoint edges
(same reason as above). Bds triangle-free, each component must be a star. But if there
are three or more endpoints altogether, then @ obtains as their medidh.cQusists of
two isolated vertices, anfl cannot generate @ unless<ZS!

The conclusion so far is th&t is connected. If the diameter &F is at least three, then
consider a geodesig, vy, v3, v4 Of length three. The first point; is either an endpoint of
F, or there is an edge, at this point not incident with any other vertex of the geodesic.
Similarly, the fourth vertexy, is an endpoint, or is incident with an edgenot incident
with any other vertex of the geodesic. Note that if betlande, emerge, then they are not
incident sincev; andv, are at distance three. In any case, we get three poinBswith
median @, namelyv,, v3} (the middle edge of the given geodesicHi), eitherv; or the
edgees, and eithemw, or the edge,.

So F is a connected graph of diameter 2 and with@ytCs. ThenF is a complete
bipartite graphK,, , (say: m < n). If m > 3, there exist three pairwise disjoint edges, and
@ obtains from them in one step. Suppose= 2 andn > 3. Observe that the set of all
edges, together with the two points of one color, yield a median stable BetAs Shas to
generate &, some vertexof the second color must occur. As> 3, it is possible to find
two disjoint edges, not incident with The median of this triple is @, however.

This leaves us with two typesK,, = C,4, and the starK;,. In case ofC,, the
corresponding simplex graph{is-1, 0, 1}2 which hasmsdequal to one. In case ofl&, ,,
note thatn > 3 gives us three endpoints which areSmnd generate & at once. The case
n = 1 being a triviality, we consider the two-palty ». ThenS either contains all vertices
(and generates @ in one step) or it contains @. O

Itis shown in [10] that the exchange number (see Section 2) of a median graph is at least
n + 1 iff the graph has an induced cube of dimensiorThe “cube-free” condition of the
previous argument can therefore be expressed by the inegaiaiy. Combining Lemma
3.2 with Propositions 2.5 and 3.3, we arrive at the following results.

Theorem 3.4 A median algebra has msd at mdstff either it is Qs, or its exchange
number satisfies & 3 and it does not contais as a subalgebra.

Theorem 3.5 A median graph has msd at mdsff either itis Qs, or its exchange number
satisfies e< 3 and neither Q nor Cs occur as convex subgraphs.

It would be desirable to have similar characterizations in the case of lagger
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Notes

1. The second author has been able to determisd{ L ,). Consult this journal.
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