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Counting Unbranched Subgraphs
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Abstract. Given an arbitrary finite graph, the polynomi@lz) = >, Z@F associates a weightfaF to
each unbranched subgraphof length cardr. We show that all the zeros @ have negative real part.
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A graph(V, E, v) consists of a finite seé¥ of vertices, a finite seE of edges, and a map
v of E to the two-element subsets ¥f If a € E andv(a) = {j, k}, we say that the edge
a joins the verticeg, k. (We impose that # k, but allow different edges to join the same
two vertices. We assume that each vertég in v(a) for somea € E).

For our purposes subgraphof (V, E, v) will be a graph(V, F, ¢) whereF c E and
¢ = v| F. We shall now fix(V, E, v), and say thaF is a subgraph oE if F C E (this
defines(V, F, ¢) uniquely). We define the subdétof unbranchedsubgraphs o by

U={FCE:(¥j)cardae F:v(@ >} <2
Proposition 1 The polynomial

Qu(Z) — Z anrcF

FelU

has all its zeros iz : Rez < —2/n(n — 1)2} where n> 2 is the largest number of edges
ending in any vertex j.

The proof is given below. This result is related to a well-known theorem of Heilman and
Lieb [2] on counting dimer subgraphs (for which cgade F : v(a) > j} < 1).

Let us consider an edgeas a closed line segment containing the endpgirtse v(a).
Also identify a subgrapl- C E with the union of its edges. Thef is the union of its
connected components, andrfe U, these are homeomorphic to a line segment or to a
circle. We callb(F) the number of components homeomorphic to a line segment, therefore

2b(F) =cardj e V :v(a@) > j for exactly onea € F}



158 RUELLE

Let us define

QZ/{(Z9 t) — Z anrd:tb(F)’

Fel
We see that
Qu(z, 1) = Qu(2.

Proposition 2 Ift isreal >2 — 2/n, then Q,(z, t) has all its zerogwith respect to yon
the negative real axis.

The proof is given below. Fadr > 2, this is a special case a theorem of Wagner [6] as
pointed out by the referee (takg,(y) = 1+ sy+ y?/2 for each vertex in Theorem 3.2
of [6]).

We shall use the following two lemmas.

Lemma 1l Let A B be closed subsets of the complex plé@pevhich do not contair®.
Suppose that the complex polynomial

a+ B2+ v+ 6712,

can vanish only whemz A or z, € B. Then
a+6z

can vanish only whene —AB.

This is the key step in an extension (see Ruelle [5]) of the Lee-Yang circle theorem [3].
Note that in applications of the lemma, the coefficient$, y, § are usually polynomials
in variablesz; (different fromz, z,, z).

Lemma 2 Let Q(z) be a polynomial of degree n with complex coefficients and
P(zi, ..., z,) the only polynomial which is symmetric in its argumerag degreel in
each and such that

Pz ...,2 = Q2.

If the roots of Q are all contained in a closed circularregion&hdz ¢ M, ..., z, ¢ M,
then Pz, ..., z,) # 0).

This is Grace’s theorem, see Polya and $7dj V, Exercise 145.

Proof of Proposition 1: If a € E, andv(a) = {], k}, we introduce complex variables
Zaj, Zak. For eachj € V, let p; be the polynomial iz = (zyj),)>j such that

PIZD) =14 2+ ) Za2
a a#b
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(where we assume(@) > j, v(b) > j). Putting allzy; equal toz, we obtain a polynomial

ni(nj — 1
qj(z)=1+njz+7’( ’2 ) 2
wheren; > 0is the number of edges endingjinDefine;f) = —1whenn; = 1or2,and
-n; . —n2
0 _ nj +,/2nj —nJ

é‘i nj(nj —1)

if nj > 2. The zeros ofj;, considered as a polynomial of degnepare;j[“, andoo if

n; > 2. They are therefore contained in the closed circular regions (half-planes)
MY = (z:Rde (2 ¢")] <)
HY = {z: R’ (z— V)] < 0}

for0 < 6 < 7/4. By Lemma 2, we have thys;(Z) # 0 if z; ¢ He“i) foralla e E

such thatj € v(a).

If a polynomial is separately of first order in two variablgsz, i.e., it is of the form

o+ Bz1+yz+ 6212

the Asano contractioifil] consists in replacing it by the first-order polynomial

o+6z

in one variablez, as in Lemma 1. As already noted, the coefficients, y, § may depend
on variableg; different fromzy, z,, z. LetnowZ = (z3)ace and

Puz) =) [z

Feld acF
If we take the producﬂjev P; (Z1) and perform the Asano contraction
a + BZaj + VY Zak + 023jZak —> o + 582,

for all a € E we obtainP,(Z). Using Lemma 1 iteratively, once for each edge E, we
see thus thaP,(Z) has no zeros when for eaahe E

72 € C\(-HLHY)
wherev(a) = {j, k} and

()0 _ . %) ®
Hol Hot = {uv:iue HpY v e HY )
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We have

C\(~ HyY He(lj?) D C\(—HpxHy)
where Hy. is the IargestH(,(jE) (obtained by replacingi; by n = max; n;). Note that
C\(—Hg+Hy2) is the interior of a parabola passing through? and with axis passing
through 0 and making an angie?6 with the positive real axis. Whet6 varies between
—7m/4 andn /4, the parabola sweeps the regiorzRe —Rez? = —2/n(n — 1)2. Since
Qu(2) is obtained fromP, (Z) by putting allz, equal toz, this proves Proposition 1. O

Proof of Proposition 2: We proceed as for Proposition 1, defining here

PIZT)=1+48) Zaj+ Y Zaj2),
a

a#b
ni(ni —1
qj(z.t) = 14 njsz+ %zz.
If s > /2 —2/nj, the roots ofg; are real negative, and the same type of argument used
for theorem 1 shows that all the zeros@f(z, s°) are real and negative. O
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