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Abstract. This paper gives a new formula for the plethysm of power-sum symmetric functions and Schur
symmetric functions with one part. The form of the main result is thatferb,

Pu(X) 0 Sa(®) = Y 0" Dsgyr) (%)
T

where the sum is over semistandard table@wf weighta®, w is a root of unity, and maj(T) is a major index
like statistic on semistandard tableaux.

An S-representation, denoteg?, is defined. In the special case when- b, S*-P is the Specht module
corresponding ta. It is shown that the character 6f-° on elements of cycle type is

3 o™k ™
e

where the sum is over semistandard tablegwt shape. and weigh&®. Moreover, the eigenvalues of the action
of an element of cycle typg acting onS*P are{o™ (™ : T}. This generalizes J. Stembridge’s result [11] on
the eigenvalues of elements of the symmetric group acting on the Specht modules.
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1. Introduction
1.1. Tableaux

A partition of n is a weakly decreasing sequerice- (A; > --- > A;) of positive integers
which sumtm. Both|i| =nandx - nis used to denote thatis a partition oin. The value
| is the number of parts df and is denoteti(A). Let[A] = {(i, j):1<i <I(A) and 1<
j < A} C Z? The set [] is the Ferrers diagramof A and is thought of as a collection
of boxes arranged using matrix coordinates. €bejugateof A is the partition” whose
Ferrers diagrami[] is the transpose of\].

A tableauof shapex andweight(or conteny & = («y, .. ., o) is a filling of the Ferrers
diagram ofx. with positive integers such thatppearsy; times. A tableau isemistandard
if its entries are weakly increasing from left to right in each row and strictly increasing down
each column. Inthis paper, the primary class of tableaux of interest is semistandard tableau
of weight ®.....b which is abbreviateth®. If A - ab, let $*2 be the set of semistandard
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tableaux of shape and weighto? and/*2 be the set of tableaux of shapeand weight
b2. Tableaux of weight1are calledstandard

If [v] € [A], let [x/v] denote theskew-shap@r]\[v]. A filling of [ »/v] with «; many
i's is askew-tableawf shaper /v and weightx. A semistandard skew-tableau is defined
similarly.

1.2. Symmetric functions

The symmetric function notation in this papers closely follows that of Chapter 1 in
Macdonald [9]. LetA" denote the ring of symmetric functions of homogeneous degree
n with rational coefficients in the variablggi, Xo, ...}. Let A = p,., A" be the ring of
symmetric functions. Two important bases/ofboth of which are indexed by partitions
are the Schur symmetric functiogs(x) and the power sum symmetric functiops(x).
A has a bilinear, symmetric, positive definite scalar product give(shys,) = 8, ..

When two Schur symmetric functions are multiplied together and expanded in terms o
Schur symmetric functions,

S.(X)S(X) = Y ¢ S(X),

A lpl+v]

the resulting multiplication coefficients}\w are nonnegative integers. These coefficients
are called.ittlewood-Richardson coefficientSee either Section 1.9 of [9] or Section 4.9
of [10] for details.

Let f(x) andg(x) be symmetric functions. Thalethysmof f (x) andg(x) is denoted
f(X) o g(x). Since plethysm results in this paper are proven via a result of A. Lascoux, B.
Leclerc, and J.-Y. Thibon [6], a definition of plethysm is omitted. The key results of [6] are
reviewed in Section 4. A definition of plethysm is given in Section 1.8 of [9]. Plethysm is
not symmetric. However, it does have the property of being algebraic in the first coordinate
A proof of this proposition is given in Section 1.8 of [9].

Proposition 1.1
(@) (f2(x) + f2(x)) 0 g(x) = (f1(X) 0 g(X)) + (f2(X) 0 g(x)).
(b) (f1(%) f2(X)) 0 g(X) = (f1(X) 0 g(x))(f2(X) o G(X)).

When taking the plethysm of two Schur symmetric functions,

(X os(xX)= Y a s(X

Al vl

the resultingplethysm Coefficients/ﬁq, are nonnegative. However, no good combinatorial
description of these numbers is known. The main result of this paper is a new formula fo
p.(X) o sa(X). Using Proposition 1.1, this gives a method for computirig) o sa(x) for

any symmetric functiorf (x).
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1.3. Characters of S

Let S, denote the symmetric group @nobjects. The conjugacy class of a permutation is
determined by its cycle type. Thus, the conjugacy class&} afe indexed by partitions
of n. Forx - n, letz, = []-,i"™n;i(x)! wheren; (1) equals the number of parts af
equal toi. The number of permutations B, with cycle typex isn!/z;.

Let R" be the vector space of rational valued class functionS,offf f € R" andA + n,
f (L) is used to denote the value 6fon permutations of cycle type R" has a bilinear,
symmetric, positive definite scalar product given by

1 _ 1
(o= floge™ =) —Thgh).

*oeS Abn SA

In the above formula, the fact thatando ~! have the same cycle type is used. kot n,
denote the irreducible character®fcorresponding ta by x*. The sef{x”*: A F n}is an
orthonormal (with respect to the just defined scalar product) basiRTorAnother basis
for R"is given by{¢” : A - n} whereg* (1) = 8, ..

Let R = P,.o R". Define thecharacteristic map chR — A by ch:¢* — %p,\(g).
The next proposition list several facts about the characteristic map which are used in thi
paper. Using these results, the characteristic map converts symmetric function results in
results aboug,-characters and vice-versa. This is done without explicit mention. Proofs
are given in Section 1.7 of [9].

Proposition 1.2

(a) ch is a vector space isomorphism betweeand R.
(b) chis anisometryi.e., (f, g)r = (ch(f), ch(g))).
(c) ch(x*) = su(x).

The following proposition list some useful facts about symmetric functions and their
relationship withS,-characters. Proofs are given in Chapter | of [9].

Proposition 1.3

(a) S.(X) = ZMHM(XA(/L)/Z/L) Pu(l)-
(0) Pu(X) =3 50 X (W)S(X).

(©) (Pr(X), Pu(X)) = . 2.

2. Formulafor p,(x) o sa(x)

Definition Given a semistandard table@ui is adescenwith multiplicity kif there exists
k disjoint pairs{(xs, Y1), . .., (X, Yk)} of boxes in the Ferrers diagram ©fsuch that the
entry in eaclx; isi, the entry in eacly; isi + 1, y; is in a lower row tharx; for all j, and
there does not exist a setlof+ 1 pairs of boxes which satisfy these conditions. togtT)
denote the multiplicity of as a descent ifi.
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Example 1 LetT be the following semistandard tableau.

1111224
2 23 4 (1)
3 3 4 5

In this examplemy(T) = 2, my(T) = 3, m3(T) = 1, my(T) = 1. The positions of the
X;’s which contribute to descent statistic are underlined.

One method for selecting the;, y;) pairs which contribute ton; (T) is the following.

(i) Setj =0.
(i) Let x be the right-mosi which has not been previously considered.
(i) Let y be the right-mosit+ 1 which is to left of or directly below and has not already
been selected asyq.
(iv) If such ay exists, increment by one, letx; = x, lety; =y, and addx;, y;) to the
list of pairs.
(v) If there are any which have not been considered, goto step (ii). Otherwise, stop.

The statisticm; (T) equals the number of pairs found. This algorithm clearly generates
a list of (x;, y;) pairs which satisfy the definition of descent. In the above example, the
underlinedx; are the ones obtained by this algorithm. Step (ii) systematically goes through
thei’s from right to left. What happens if the order in which thgs are considered is
changed? Surprisingly, the size of the list(®f, y;) pairs does not depend on the order in
which thei are considered as possib{is so long as the choice for the correspondynig

the “greedy” choice of the right-most allowalile- 1 as in step (iii). In fact as a set, the
resultingi + 1's which make up theg/;’s do not depend on the order in which thg are
examined. Thus, to compuig, (T), thei’s may be consider in any order. This is proven
after the next example and plays a key role later in Lemma 3.1.

Example 2 Supposé = 3 and the relevant part df is

3 A 4
B 3k 4
44 43
The subscripts differentiate the various 3’s and 4’s and increase from right to left. Conside
the pairs of 3's and 4's where the 3 is in a higher row than the 4 (or equivalently the 3 is in
the same column or a column to right of the 4). The dots in the picture below indicate the
possible pairs.
4
4,
4,
44
A 3 3B 3
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The above algorithm for selecting;, y;) pairs is to work through the columns from left

to right, and in each column select the highest row which has not already been selecte
and contains a dot in that column. TNKes in the pictures below indicate the selections
for two possible ordering of columns. Notice that the rows containin ame the same

in both.

4 4

4 X 4, X

4 . X .. 4; X

4 - - X . 4, - - X
31 3 33 3 B 3 B 3P

Theorem 2.1 When selectingx;, y;) pairs by the above greedy algorithiine setof y's
selected does not depend on the order in which theie considered.

Proof: Suppose two orderings of this differ by a neighboring transposition. Since the
symmetric group is generated by neighboring transpositions, it suffices to prove that th
rows selected do not change under this transposition. Following the notation of Exam
ple 2, suppose columhsandk + 1 are transposed. Assume without loss of generality that
the number of dots in columk is greater than or equal to the number in colukur 1.

The rows selected while considering columns kte 1 are the same in both. Suppose

in columnk that rowy’ is selected and in columk + 1 row y” is selected. Since the
number of dots in columki is greater than the number of dots in colukg- 1, row y’

is higher than rowy”. When columnsk andk + 1 are transposed, there are two cases
based on whether or not there is dot in colukn 1 row y'. If there is a dot in this
position, then in the transposed case, in colkmn 1, row y’ is selected and in column

k, row y” is selected. If there is no dot in this position, then in the transposed case, in
columnk + 1, rowy” is selected and in colunin row y' is selected. In either case, rows
selected by columnk andk + 1 are the same. Thus, no differences occur in the later
selections. O

Definition Given a semistandard tabledy for j, k > 1, define the(j, j + k)-major
index denoted mgj;,(T), by

j+k—1
maj; ;. (T) = Z (i—j+Dm(T).

i=j

Define maj,j (T)tobeO.
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Example 3 Using (1) asT.

maj ,(T) =1-2 =2
maj 5(T) =1-2+2-3 =8
maj 4(T) =1-2+2-3+3-1 =11
majs(T)=1-24+2-3+3-14+4-1=15
majp, 5(T) = 1-3 = 3
majp, 4(T) = 1.3+2-1 =5
map 5(T) = 1.342-1+3.1= 8
mag 4(T) = 1-1 1
mag 5(T) = 1.1+2-1=3
maj, 5(T) = 1-1=1

WhenT is standard, maj,(T) is the usual major index of a standard tableau. As a slight
abuse of notation, let m@J ) denote maj,(T), wheren is the largest entry appearing T
even wherT is not standard. The statistic npﬂ@jkk(T) can be viewed as m@’) whereT’
is the semistandard skew-tableau formed by the enfies ., j + k} in T, but with each
entry reduced by — 1 so that the values which appearTihrun from 1 tok.

Definition Given a partitionu F b of lengthl, letr; = w1+ --- + pi. Setrg = 0. Given
a semistandard tableduwith entries less than or equallto Define

maj, (T) l maj;_y (T
o™ = []o]
i=1

wherew,, = e*/H,

Example 4 LetT be (1). The value ob™3:(T) is computed for every + 5.

In @™ (T)

(5) w® =1
4, 1) wilwg =—i
3,2 wgw% = —w%
G LY w8wle? =w}
2,21 w%w%w? =-1
2,1,1,1) w%wgwga)g =1

1,1,1,1,1) a)ga)ga)gwgwg =1

Some more examples are done in Appendix A. Now the main result can be stated.
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Theorem 2.2 Letu - b, then

P 0% =Y "D spum ().
SSTT
wt(T)=aP

Example 5 Using the values found in Appendix A,

P11 ©S2 = S6 + 255,1) + 3542 +Su11) + 533 + 25321 + S2.2.2)-
P21 ©S2 = Se) +S4.2 — S4,1.1) — S3,3) T S2.2.2);
PE °S2 = Se — S5n +S41y +S33 — S321 +S222-

The “(x)"s have been omitted.
Corollary 2.3 Letu b, then

(Pu(X) 0 Sa(X), Si(X)) = Z ™™
SSTT
sh(T)=x,wt(T)=a®

A similar but different formula forp, (Xx) o sa(X) is given in [2]. Their work is also
reproduced in Example 8 of Section 1.8 of [9].

3. Charge and Kostka polynomials

In this section, the charge of a semistandard tableau is defined and is related to the maj
index. Most of the definitions in this section are taken from Chapter 2 of [1] which is

an excellent reference on this material. It should be noted that these definitions are th
“reverse” of those given in Section 111.6 of [9]. However, they give the same value for the

charge of a semistandard tableau.

Definition LetT be a semistandard tableau or semistandard skew-tableawdrtief
T, denotedw(T), is the sequence of integers gotten by reading the entrigdroim left to
right in each row starting with the bottom row and moving up.

Example 6 LetT be (1). Thenw(T) = 334522341111224.

Definition Let T be a semistandard tableau or semistandard skew-tableau of weight 1
Assign anindexto each number im(T) as follows: the number 1 is given index 0, and
if i has index, theni 4 1 is given index orr + 1 depending on whethér+ 1 is to the

left or right, respectively, of in w(T). Thechargeof T, denoted €T), is the sum of these
indices.
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Example 7 LetT be

1 2 6 7 12
3 5 8 9
4 10 11

Then

w(T)= 4 10 11 3 5 8 9 1 2 6 7 12
1 5 6 12 4501347

The index of each number has been written below it. Th(B)e=1+5+6+ 1+ 2+
44+54+04+1+3+4+7=239.

Notice that the’s for whichi occurs to the right of + 1 in w(T) are the descents df.
Thus, mafT) is the sum of thé's such that is to the right of +1 inw(T). The definition of
the major index can be extended to arbitrary wards weight P by setting majw) to be the
sum oftha’s such that isto therightof +1inw. Likewise, the definition of charge can be
extended to arbitrary words of weighttly the obvious generalization of the above definition
of charge. So, for a standard tablebuc(T) = c(w(T)) and majT) = maj(w(T)).

Proposition 3.1 Letw be a word of weight®. Then

: b . .
c(w) = maj(w) + > if bis even (modb)
maj(w) if bis odd
Proof: LetD = {i:i isto the right ofi + 1}. So, majw) =Y ;_i. Wheni € D, i and
i + 1 are assigned the same index when calculating .cWheni ¢ D, the index given to

i + 1 is one greater than that givenito Thus, wheri ¢ D, the index of everyj > i is
incremented by one and contributes- i to the charge ofv.

C(w):Zb—i

i#D
b—1
=Y (b--) (b~
i=1 ieD
bb—-1 .
= ( 5 )—|D|b+maj(w)
-1
- b(bz )+ maj(w)(modb)
Whenb is even®®-2 = & (modb). Whenb is odd, %2 = 0 (modb). O

The definition of charge is extended to semistandard tableau and semistandard ske\
tableau of arbitrary weight by decomposing (T) into several standard words, . . ., w,,
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and defining the charge @f be the sum of the charges of thg's. Let w(T) be a word

with weight . To construct subword;, readw(T) from right to left. Select the first 1
which occurs, then select the first 2 which occurs to the left of the previously selected 1
and so on. If at any stage there ising 1 to the left ofi, then circle around to the right
and search for + 1 again readingv(T) from right to left. Continue until amn is reached

for whichi + 1 does not appear iwm(T). The wordw; is formed by taking the selected
numbers in the order in which they appeamiGT). To constructw,, remove the selected
numbers which formw; from w(T) and repeat the above process. Each subseaudat
obtained by removing the numbers which makewjp; from what remains ofv(T) and
repeating the selection process. The weighbois 1.

Definition Let T be a semistandard tableau or semistandard skew-tableau of weight
Letws, ..., w,, be the decomposition af(T). Thechargeof T is defined to be @v1) +
e C(wyy).

Example 8 LetT be

1 2 3
3 4 4

w N -
AN P

w(T) = 3422344111237 = 3241,w, = 2413,w3 = 4312, ¢T) =1+ 2+ 3 =6.

Definition Let|x| = |u|. TheKostka polynomialdenoteK; ,(q), is given by

Kip@= > .

SSTT
SNT)=x,Wt(T)=x

This is not the usual definition of the Kostka polynomial. The fact that this is equivalent
to the usual definition is a deep result of A. Lascoux and MuSriberger [8].

Lemma3.2 LetT be asemistandard tableau or semistandard skew-tableau of wéight a
then

b
_ i — ifbi i
o(T) = maj(T) + > if b is even and ais odd

mayj(T) otherwise (modb).
Proof: Letws, ..., w, be the decomposition ab(T). Eachw; is a word of weight L

Letk; be the number ofv;’s in whichi is to right ofi + 1. If i is to right ofi + 1inwj,

theni 4+ 1is in alower row thanisin T. Eachi appears in one and only ong. Thus, the

wj’s provide an ordering on thés. The method for selectingt 1 in each word is exactly

the “greedy” method described in step (ii) of the algorithm given in Section 2. Thus by
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Theorem 2.1k = m;(T). So, mafT) = maj(wi) + - - - + maj(w,). By Proposition 3.1,

. b , b L
{ <maj(w1) + —> + -+ <maj(wa) + §> if bis even,

maj(T) = 2
maj(wy) + - - - + maj(wa) if aisodd, (MdP)
: b .. .
_ ) majw) + ai if bis even,
maj(w) if aisodd, (Modb)
. b .. .
_ ) majw) + > if bis even and is odd,
maj(w) otherwise (modb) O
Corollary 3.3 Leti - ab. Then
Kialwp) = (-2 S opa®,
sl"(T):S)LS,\-/rvtT(T)zab
Proof: BylLemma 3.1,
i b
wg(T) _ a);]aj(THz if b is even ana is odd,
wp™™  otherwise
—op™™ if bis even and is odd,
op™  otherwise
= (= 1)(b71)a wgwaj(T)
Thus,K; s (p) = Y7 of ) = (=1)b-Day D, O

Definition Let|u| + |v] = |A]. Theskew-Kostka polynomialenotedK, . . (), is given
by

.
K (@) = > a9
SSSTT
sh(T)=/v,wt(T)=p

Since Lemma 3.2 holds for semistandard skew-tableaux as well as semistandard tableat
the obvious analog of Corollary 3.3 withreplaced by /v also holds. The next result
gives the relationship between skew-Kostka polynomials and Kostka polynomials. A proof
of this is given in Chapter 2 of [1].

Theorem 3.4 Let|u| + |v| = |A|. Then

K@ = Y b Ky (@)

nklul
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Corollary 3.5 Let|r| — |v| = ab. Then

Z wgnaj(T) _ Z Cﬁ,n Z w?aKT)

SSSTT ntab SSTT

sh(T)=A/v,wit(T)=aP sh(T)=n,wt(T)=aP
Proof:
maj(T) b—1 c(T)
Z wy = (=1)-ba Z wy
SSSTT SSSTT
sh(T)=A/v,wt(T)=aP sh(T)=A/v,wt(T)=aP

= (=1)PD3K; a0 (wp)
= (—1)b-Da Z ¢, Kp.ao (@)

nkab

= Z Cy Z wgaj(T)

nkab SSTT
Sh(T)=n,wt(T)=a"

4. Modified Hall-Littlewood functions

This section contains a result of Lascoux, Leclerc, and Thibon [6] which ties the plethysm
of power-sum symmetric functions and Schur symmetric functions to Kostka polynomials
evaluated at roots of unity.

Definition  Let|u| = |v]. Greers polynomial X} (q), is given by

X (@) = Y (0K

ATy

Definition Themodified Hall-Littlewood functionQ! (x; q) is given by
(QL(x; @), P (X)) = X, (@).
Theorem 4.1 [6]

QLo (X; wp) = (—=1)®™Dpy(x) 0 sa(X).
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5. Proof of the main result

Proof of Theorem 2.2: Proof by induction on the number of partsof First suppose
has one part. Sa = (b). Letn = abanda + n.

(Pb © Sa(X), S1.(X))
= (—=1)®PHQL (X, wp), S.(X)) (Theorem 41)

= (=D® P23 (Qp (X, @v), (X" (1)/Z,) Pu(X))  (Proposition 13(a)

pukEn

= (DY ()M (1)/2,) X3 (wn)
uEn

= (=D "t (10 /24) Y X" (1)K a ()
puEn nkEn

=D 2N K, 2 () (Z x*(mx"(u)/zu)
nEn pkn

:82.17
= (=1)® 2K, a0 (p)
- > op ™ (Corollary 33)

SSTT
sh(T)=x,wt(T)=aP

Since the Schur functions are a basis for the symmetric functions, this shows that

maj,, (T)
PosaX) = Y. @ s
SSTT
wt(T)=aP

which is the base case for the induction.
Letl = I(u). Let u* be the partition(iy, ..., w—1). By the induction hypothesis, the
theorem holds fop,-(x) o sa(X) and p, (X) o Sa(X).

p;/.(l) o Sa(ﬁ)
= (P (X) © Sa(X)) (Py (X) © Sa(X))

jx (T Maj, (T2)
= XY "™ Yo o s,
SSTT, SSTT
wi(Tp)=ab-m) wi(Tz)=a'
o (T T
= Z Z @™ (W MM 57 (X) Sspry) (X)

SSTT SSTT,
wi(Ty)=a®—#) wi(Tz)=a*
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(Pu(X) 0 %a(X), S3)

_ maj,« (Ty) , maj(Ty) ~r
- Z Z @ e Csh(Ty),sh(Ty)
SSTTh1 SSTT,

wi(Tp)=ab-1) wit(Tz)=a*l

= Z Z Z Z @Mk (T wlrzaj(Tz) Cl);,r]

va(b—w) naw SSTTy SSTT,
Wt(Ty)=ab=—#) sh(Ty)=v Wi(Tz)=a",sh(T2)=n

— Z Z M8 (T Z “),Taj(T3)
= |

vab—mw) SSTTy SSSTT3
wi(Ty)=a®—#) sh(Ty)=v wt(Tg)=a’l ,sh(Tg)=A/v
— M (Ta)

SSTTs
wi(Tg)=a®,sh(Ty)=1

In the last step, the following bijectiop betweenu,{(Ty, T3) :sh(Ty) = v, wt(Ty) =
ab~" sh(T3) = A/, Wt(Ts) = a*} and {T4:sh(Ts) = A, wt(T,) = aP}. Construct
¢(Ty, T3) by incrementing every entry ofs by b —  and placingT; inside T;. For
example,

1\ 1 1 2 3
, 1 2 =2 3 4

This is clearly a bijection. Furthermore, it has the property that

Qmaju* (T wlTlaJ'(Tz) — Qmaiuw(TlﬁTs)‘

Again since the Schur symmetric functions form a basis, this computation gives the desire
result. O

Leta = (a1, ..., o) be a composition o which when sorted ig.. Definew™(™ in
the analogous manner. Then since nothing in the above proof depended on the fact that
is a partition, we have

|
[[re®Wosx)= > om®,
i=1

SSTT
sh(T)=x,wt(T)=aP

Sincep; (x)’s commute and plethysm is algebraic in the first coordinate, the following result
is proven.
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Corollary 5.1 Leta = (a1, ...,o) be a composition of b which when sorted is the
partition x. Then
P (X) 0%(X) = Z Qmaja(T).
SSTT

sh(T)=x,wt(T)=aP

6. Definition of SMP

By looking at the charts in Appendix A, one quickly guesses that for a fixedab,
¥ (n) = > o™

SSTT
sh(T)=x,wt(T)=a

is a character 08,. This section defines the representat®r® whose character ig ().
In the next section, the even stronger result thatthd: (™ asT varies are the eigenvalues
of an element of cycle type acting onS* is proven.

Let » - n = ab. The definition of theS,-representatiorS*° closely follows that
of the Specht modules. The Specht modules are a concrete construction of the irreducib
representations &, Whena = 1 (sox - b), S-Pis the Specht module corresponding.to
James’ monograph [4] and Sagan’s book [10] are a good sources on the Specht modules

There are two group actions o#*® which are needed to defir@. The first is the
action of S, by permuting the values of the entries. This action is denoted by .

Example 9

2131 3 212

1295 5 1 3

The second is the action &, by permuting positions. This action is denoteddoy T.
For a given tableal, let Ry denote the subgroup &, which set-wise fixes the rows of
T, and letCy denote the subgroup @&, which set-wise fixes the columns @f. If the
shape ofT is A, and}’ is the conjugate partition of, thenRy ¥ S, x S, x--- x S, and
CT :Sﬁ X SJZ X o X S“il

Example 10

2 1 31
o % o€ Ry

3 2

213112 31213113172
|13 2 "3 2 "2 3 '3 2
2 1 3 1
T % T €Cy

3 2

2 131313122 313231
13 2 "2 2 "3 1 2 1
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It should be noted that these two actions commute. Thatigg * T) =0 * (7w - T).
Definition Let W*P be the complex vector space with bagiz-®,
Since$, acts onW*P, WAP is a §,-(permutation) representation.

Definition GivenT € WP, define the elemergt in W*P by

er = Z Z(sgnr)(or)*T.

O'ERT TECT

Let S-P be the subspace ®/*° generated byer : T € WP},

Theorem 6.1 S*P is a subrepresentation of ¥ with dimensionS*°|. Furthermore
{er: T e S*P}is a basis for &P.

As mentioned before, whem= 1, S*? is the Specht module correspondingitoSince
the proof of this Theorem follows the Specht module case so closely, the proof is omitted
See Chapter 4 of [4] or Section 2.3 of [10] for details. két® be the character d&-P.
Whena = 1 (sox F b), x»P = x*. The next result, in conjunction with Corollary 2.3,
shows thaSP is the desireds,-representation. A proof is given in [3].

Theorem 6.2 [3] Leti - n=ab andu + b. Theny*P(n) = (Pu(X) 0 %a(X), ).

7. Eigenvalues oS

The next result is the basic tool used to determine the eigenvalues of a group element actir
on a representation. A proof is given in [11].

Proposition 7.1 Let V be a representation of G of dimension n with charagter Let
g € G be an element of order njwg, ..., &} are the eigenvalues of g acting on V if and
only if

Ot A o = xv (99
forall 0 < k <m.

Lemma 7.2 Leti =abandd b. If z; and¢, are both primitive dh roots of unity then
Kx,ab(é'l) = Kk,ab(fz)-

A proof of this is given in [6].
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Corollary 7.3 Let|A/v| = n=ab and d|b. If ¢; and ¢, are both primitive dh roots of
unity, then

» £ » AT,

SSSTT SSSTT
S(T)=2/v,wt(T)=ab Sh(T)=a/v,wi(T)=al

Proof: This follows from Lemma 7.2 and the skew version of Corollary 3.3 referred to
in the comments after the definition of skew-Kostka polynomials. |

Lemma7.4 Let|A/v|=n=abanddb. Then
a)g maj(T)

SSSTT
sh(T)=x/v,wt(T)=aP

d
_ maj(T)
= 2 I 2 o @
v=noCn1C--Cng=A i=1 SSSTT
i /ni—1l=a(b/d) sh(T)=n; /ni_1,Wt(T)=a®/®

Proof: Let T be a semistandard skew-tableau of shape and weighta®. Let n; be
the shape formed by the entries Dfwith values in{1, ...,i(b/d)}. Decomposd into
a sequence af semistandard skew-tablea(ik, . .., Tq) by letting T; be the entries of
in positionsy; /ni_1 reduced byi — 1)(b/d) so that the values run from 1 toyd. For
example, lefl be

witha =3,b =4, andd = 2. Then

1 2
=112 T
2

1
1 2 2

This gives a bijection between the terms appearing on the two sid@s.dt is clear that
under this bijection
dmaj(T) maj(T;)
Wy = H wb/dj
i

which shows that term for term the two sideg®f are equal. O

Theorem 7.5 Leti - n = ab andu - b. Takeo € § of cycle typeu. Then the
eigenvalues of acting on $° are {3 : T e S*b},
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Proof: Leto be a permutation of type. Pickk. The cycle type obX is the partition
which contains geek, wi) parts equal tg; /gedk, wi) for1 < i < I(u). Callthis partition
ty. Letdi = gedk, wi).

By Theorem 6.2 and Corollary 2.3,

xR = > oM™,

SSTT
sh(T)=Awt(T)=aP

Yoo (@M

SSTT
sh(T)=Awt(T)=aP

D1 | B S

P=voC--Cy=A i= SSSTT )
v /vi— 1\;@ Sh(T)=vi /vi_awWt(T)=a*i

n x e

P=voC--Cy=x i=1 SSSTT _
|vi /vi_1|=pi Sh(T)=vi /vi_awWt(T)=a*

dj -

— maj(T)

= 2 H > I 2 el
J=voC--Cy=A i= Vi—1=1i,0CCnig =Vi j=1 SSSTT

[vi /vi—1l= u\ i, /i, j—1l=alui /di) sh(T)=ni,j /mi.j-1
Wt(T):a(“‘ /di)

o

I
_ maj(T)
= 2 I ) CHY
P=n10C-Cnra, i=1]j=1 SSSTT
= —_ shT)=ni,j/mij-1
120G Cig =2 M(T):I;wﬁdl‘)
maj,. (T
= Y, " TOsm
SSTT
shT)=Awt(T)=a°

= X)hb(/i*)
So, by Proposition 7.1, the result is proven. |

Whena F b, Theorem 7.5 reduces to the result of J. Stembridge [11] on the eigenvalue:
of the action of permutations on the irreducible representations of the symmetric group.

Appendix A: Extended Example

Example 11 The charts below give™ (™ for all 1 3 and all semistandard tableaux
T of weight 2. The charts are organized based on the shagfel . The column sums are
the character valueg*-3.
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A= (6)
A=(51
A= (42
A=(411)
A =(33)

T ™a1n@ o™y ™M
112 2 3 3 1 1 1
1 1 1
T M1y oM™ »mMa M
112 2 3 2
3 1 1 3
; 1 2 3 3 1 1 o3
2 0 -1
T Qm@' 1™ Qma' (M Qma' @M
; ; 22 1 1 w3
112 3
2 3 1 -1 1
2 2
3 1 0
T gmaj(L“J(T) Qm@zMT) Qmmmﬁ)
112 3
2 1 -1 1
3
1 -1 1
T Qmai(l,l.l) (™) Qmﬁﬁz‘l) (T) gmai@)(-r)
112
2 3 3 1 -1 1
1 -1 1

DORAN
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A=@321
T ™1™ ™™ ™6 (T)
11 2
23 1 -1 w2
3
113
2 2 1 1 w3
3
2 0 -1
A=1(2,22)
T M1y oM™ ™M™
11
2 2 1 1 1
3 3
1 1 1
Acknowledgments

I would like to thank R. Stanley for some discussions and for pointing out Gay’s paper to
me. J. Stembridge’s Maple packa§E for doing symmetric function computations was
used extensively in the research leading up to this paper. In particular, | would not have
discovered Theorem 2.2 without the use of this package. | appreciate J.-Y. Thibon pointin
out the results in [6] which greatly simplified the proof of Theorem 2.2. Lastly, | would
like to thank the anonymous referee for numerous suggestions and corrections. The refer
also pointed out that the statistic (i) of this paper is related to the statisti€T) in [7]

when wiT) = b2. | was not able to use this to simplify the paper.

References

1.

2.

3.

L. Butler, “Subgroup lattices and symmetric functioid@moirs of the Amer. Math. Sd839(1994), Amer.
Math. Soc., Providence, RI.

Y. Chen, A. Garsia, and J. Remmel, “Algorithms for plethys@dntemporary Mathematic34 (1984),
109-153.

D. Gay, “Characters of the Weyl group 8f)Jn) on zero weight spaces and centralizers of permutation
representationsRocky Moun. J. Mat6 (1976), 449-455.

. G. JamesThe Representation Theory of the Symmetric Group, Lecture Notes in Mathe®@&i&pringer-

Verlag, Berlin/Heidelberg/New York, 1978.

. G.James and A. Kerbéfhe Representation Theory of the Symmetric Group, Encyclopedia of Mathematics

Vol. 16, Addison-Wesley, Reading, MA, 1981.

. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Green polynomials and Hall-Littlewood functions at roots of

unity,” European J. Combinatorick5 (1994), 173-180.

. A. Lascoux, B. Leclerc, and J.-Y. Thibon, “Crystal graphs grahalogues of weight multiplicities for the

root systemA,,,” Letters Math. Phys35 (1995), 359-374.



272 DORAN

8. A.Lascoux and M. SaltZzenberger, “Sur une conjecture de H.O. FoulkésR. Acad. Sci. Pari286A (1978),
323-324.
9. I. Macdonald, Symmetric Functions and Hall Polynomial2nd edition, Clarendon Press, Oxford,
1995.
10. B. SaganThe Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions
Wadsworth & Brooks/Cole, Pacific Grove, CA, 1991.
11. J. Stembridge, “On the eigenvalues of representations of reflection groups and wreath préaiticisiVath.
140(1989), 353-395.



