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Abstract. The linear span of isomorphism classes of posftshas a Newtonian coalgebra structure. We
observe that thab-index is a Newtonian coalgebra map from the vector sffate the algebra of polynomials

in the noncommutative variabl@sandb. This enables us to obtain explicit formulas showing howdtiéndex

of the face lattice of a convex polytope changes when taking the pyramid and the prism of the polytope and th
corresponding operations on posets. As a corollary, we have new recursion formulas ddritidex of the
Boolean algebra and the cubical lattice. Moreover, these operations also have interpretations for certain classes
permutations, including simsun and signed simsun permutations. We prove an identity for the shelling componen
of the simplex. Lastly, we show how to compute #ifeindex of the Cartesian product of two posets given the
ab-indexes of each poset.
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1. Introduction

The cd-index is an efficient way to encode the fldgvector (equivalently the fladp-
vector) of an Eulerian poset. It gives an explicit basis for the generalized Dehn-Sommerville
equations, also known as the Bayer-Billera relations [1]. An important example of an
Eulerian poset is the face lattice of a convex polytope.

In this paper we study how tresl-index of the face lattice of a convex polytope changes
after applying each of the following geometric operations to the convex polytope itself:
taking the pyramid, taking the prism, truncating at a vertex, and pasting two polytopes
together at a common facet. All four of these operations act on the face lattice of the
polytope. The change in thal-index from the pasting operation follows from a result of
Stanley [20, Lemma 2.1]. Similarly, the change from truncating at a vertex follows from
the same result of Stanley and the pyramid and prism operations.

To understand how thed-index changes under the prism and pyramid operations, we
considerP, the linear span of isomorphism classes of graded posets. This vector space is ¢
algebra under the star produatf posets, first described by Stanley [20]. More importantly,

‘P has a coalgebra structure. The pair formed by the star predarad the coproduch do

not form a bialgebra, but instead a Newtonian coalgebra, a concept introduced by Joni ar
Rota [13]. The main observation we make is thatddendex is a Newtonian coalgebra
map from the vector spacspanned by all isomorphism classes of Eulerian posets to the
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algebraF of polynomials in the noncommutative variabtesndd. We thus obtain that the
prism operation corresponds to a certain derivafioon cd-polynomials, and the pyramid
operation corresponds to a second deriva@GrHence, given thed-index of a polytope,

we may easily compute ttegl-index of the prism and the pyramid of the polytope with the
help of these two derivations. Using these two derivations, we obtain new explicit recursior
formulas for thecd-index of the Boolean algebi, and the cubical lattic€,,.

There is a relation between thd-index of the Boolean algebi&, and certain classes of
permutations. For instance, thé-index of B, is a refined enumeration of Anelpermuta-
tions [17]. Similarly, it is also a refined enumeration of simsun permutations, first defined
by Simion and Sundaram [22, 23]. Another known example of a poset-permutations pai
is the cubical lattice and signed Amdpermutations [8, 17]. This motivates us to ask the
following question. Given an Eulerian poset is it possible to find a canonical class of
permutations which correspond to ttekindex of the poseP? We show that given a poset-
permutations paitP, T), we can construct a class of permutations corresponding to the
pyramid of P. A similar signed result holds for the prism Bf The simsun permutations
may be built up by repeated use of this correspondence. Also, we define signed simst
permutations, which correspond to the cubical latGge

In [20] Stanley studies the shelling components of a simplex anddteirdexes, given
by asum oﬁ)i”’s. Using our techniques, we obtain arecursion formulaifﬁers acorollary
to this recursion, we prove a version of Stanley’s conjecture [20, Conjecture 3.1] concerning
the correspondence between simsun permutations anﬂ‘ﬁae

In Section 9 we consider the problem of computingahéndex of the Cartesian product
of two posets knowing thab-indexes of each poset. This problem is solved by introducing
mixing operators. The theorem of this section is motivated by the case where each pos
has anR-labeling. As a corollary we obtain that for two convex polytopeandV we can
compute thab-index of their Cartesian product in terms of theb-indexes.

We thank Louis Billera and @or Hetyei for their helpful discussions, as well as the
referee for his valuable suggestions.

2. Newtonian coalgebras

Let k be a field of characteristic 0. L& be a vector space over the field k. A product
on the vector spac¥ is a linear mape:V ® V — V. The productu is associative if
no(pu®l =po(l® w). Similarly, a coproduct on the vector spaéds a linear map
A:V — V ® V. The coproduci is coassociative ifA ® 1) o A = (1® A) o A.

Definition 2.1 LetV be a vector space with an associative proguand a coassociative
coproductA. We call the tripletV, «, A) aNewtonian coalgebr# it satisfies the identity

Aop=1wo(A®D+n®1o(1x®A).

The Sweedler notation of a coproduttis to write A(X) = >, Xa) ® Xe); see [24, pp.
10-11]. Then the Newtonian condition may be written

AX-Y) =) %o ® (X2 - V) + ) (X Ya) ® Y-
X y
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Observe that this identity is a generalization of the product rule for a derivative. In fact, for
any element € V, the linear mapx+— D,(X) = >, X - v - X iS a derivative on the alge-
bra(V, w). Thatis,D,(X-y)=D,(X)-y+ X Dy(y),orDyou=uo(D,1+1® D,).

The definition of Newtonian coalgebra originated from Joni and Rota [13] under the
name infinitesimal coalgebra. Our definition is from [7]. The first in-depth study of a
Newtonian coalgebra was by Hirschhorn and Raphael [12], who studied the coalgebra o
k[x] where the coproduct is given by(x") = > ;_, 1 x' ® xI. In this section we will
introduce two important examples of Newtonian coalgebras, which we denotahyP.
These two examples appear in [7].

Let.A = k(a, b) be the polynomial algebra in the noncommutative variabksdb. Let
the product on4 be the ordinary multiplication. Define the coproducton a monomial
VU2 Up by

n
A(vy-v2---vn) = E V1 Vim1 @ Vg1 Un.
i=1

Itis easy to see that this is a Newtonian coalgebra. The Newtonian coaldébreaturally
graded, that is, we may writdl = P,.o.An, Where A, is spanned by monomials of
degreen. Then din(A,) = 2" and we haved; - Aj € Aitj andA(An) S Dy jon 1 A ®
Aj.

Lemma 2.2 Consider the coproduct as a linear mapA : Ay — @ j_n_1 A ® Aj.
The kernel ofA is one-dimensional and is spanned by the elent@ntb)".

Proof: Letx be an element i, such thatA(x) = 0. Assume thak = " «, - w,
wherew ranges over all monomials id.

Letu € A4; andv € Aj, wherei 4+ j = n— 1. The only way to obtain the term® v in
a coproduct is by applying the coproduct to eithela- v oru-b-v. Hence consider the
coefficient ofu ® v in A(x) = 0. Then we obtain the identity,.a., + ayb., = 0. Since
this identity holds for alu andv, we get

oy = (_1)number ofb’'s inw oo,

which completes the proof. O

The linear mapA : Ay — @ j_n_1Ai ® Aj is not surjective fom > 2 because
dim(A(An) = 2" — Land diniP; ; j_p_1 A ® A)) =n- A L

We will now consider graded posdiswhose minimal element differs from its maximal
element. Hence the rank of such a poset is at least 1. (See [19] for terminology on posets
If two posets are isomorphic we say that they have the dgp®e We denote the type of a
posetP by P. Let P be the vector space over the field k spanned by all types of posets.

We define a coproduct on the vector spacby

AP)= Y [0.x]®[x 1],
xeP
O<x<1
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and extend this definition by linearity. Observe that this coproduct differs from the ordinary

coproduct that is defined on the reduced incidence Hopf algebra of posets; see [5, 13, 18
Let P andQ be two graded posets. We define thetar product R = P * Q, by letting

R be the se(P — {1}) U (Q — {0}) and defining the order relation dR by x <g V if

(i) x,y € Pandx <p vy, (i) x,y € Qandx <q Yy, or (iii) x € Pandy € Q. This

product was first mentioned in [20]. Observe that the rank of the g®seQ is given by

o(P) + p(Q) — 1. The product extends naturally to a product ¢h

Proposition 2.3 (Ehrenborg and Hetyei, [7]) The triplet(P, %, A) is a Newtonian coal-
gebra.

This Newtonian coalgebra has a natural gradifgs €, , Pn, WhereP, is the linear
span of types of graded posets of rank 1. Then we havé®,  P; € Piyj andA(P,) <
Dijon 1P OP;.

There are two other products on posets that we consider. First, thereG@attesian
productof posets, which we denote ®/x Q, defined a$(x, y) : x € P andy € Q}, with the
order relation given byx, y) <pxq (z, w) if and only if x <p zandy <g w. Secondly,
define thediamond producby P ¢ Q = (P — {0}) x (Q — {0}) U {0}. The diamond product
corresponds to the Cartesian product of convex polytopes, that¥s,x W) = L(V) ¢
L(W), whereV andW are two convex polytopes amt{V) denotes the face lattice ®f.
Both of these products on posets extend naturally to the linear $paaed we have that
Pi x Pj € Pitj+randP; o Pj € Pigj.

3. The cd-index of Eulerian posets

To each graded postwe will assign a noncommutative polynomial in the variatesd
b called theab-index. LetP be a graded poset of ramk+ 1. To every chairc = {0 <
X1 < --- < Xk < 1} of the poseP we associate weightwp(c) = w(c) = z; - - - Z,, Where
b et o),
'~ la—b otherwise
Observe that the chaif® < 1} receives the weighta — b)" and a maximal chain has

weightb". Note also that the degree of the weightc) is n. Define theab-indexof the
posetP to be the sum

W(P) =) w(),

c

wherec ranges over all chains= {6 <X << Xg < i} in the posetP.
By linearity we may extend the mab to a linear mapl : P — A.

Proposition 3.1 The linear map¥ : P — A is a Newtonian coalgebra map. That is
Vou=po(WewandAoW¥ = (¥ Q V¥)oA.



COPRODUCTS AND THEcd-INDEX 277

Proof: The first identity is equivalent t& (P x Q) = W(P) - ¥(Q), for two posetsP
andQ. This is due to Stanley; see [20, Lemma 1.1]. In terms of po#stssecond identity
says that

AWP) = Y w0, XD ® w(x, ). (3.1)
xeP
O<x<1

Observe that the coproduct of the weight of a chwia {0 < x1 < - -- < x¢ < 1} is given
by

k
A(©) =) wip ({0 < X1 <~ <X ) @ wp, 1y(1X < X4z <o+ < % < 1.
i=1

Equation (3.1) follows now by summing over all chamand regrouping the terms. O

Recall that a posé® is Eulerianif the Mobius functionu on any interval X, y] in P is
given byu(x, y) = (—=1)**Y. Let& be the subspace &f spanned by all types of Eulerian
posets. It is easy to see this closed under the produgtand the coproduch. Hence
£ forms a Newtonian subalgebraBf The subspacé is also closed under the Cartesian
product and the diamond product.

Fine observed that thab-index of an Eulerian poset may be written uniquely as a
polynomial in the noncommutative variables= a + b andd = ab + ba; see [2]. When
the ab-index can be written as a polynomial inandd, we call this polynomial thed-
index See Stanley [20] for an elementary proof of this fact.

For a poset oP of rankn + 1, the coefficient o&" in theab-index W (P) is always equal
to 1. Hence the coefficient @f in thecd-index of any Eulerian poset is always equal to 1.

Let F be the subalgebra oft spanned by the elementsandd. F is closed under
the coproductA, since A(c)=A(a+b)=11+1®1=2-181 and A(d)=A(ab
+bha)=a®1l+1®b+b®1+1®a=c®1+1®c. The Newtonian coalgebré in-
herits the grading frord. That is,F = @, Fn, WhereF, C A,. Since diniFo) =dim
(F)=1 and F,=c- Fh_1+d- Fn_» one has diniF,) = f,.1, where f, is the nth
Fibonacci number. (Recalf, is defined recursively byfo=0, f; =1, and f,= f,_;

+ fn—2-)

The important observation to make here is that the linear ¥nap® — A restricts to a
linear map from the Newtonian coalgel#o the Newtonian coalgebr&. Note that there
exist posets which are not Eulerian, but whakeindex may be expressed in termsaof
andd. For example, the posé& in Figure 1 is not Eulerian, bub (P) = ¢ +d € F.

Thedualposet of a pose® is the poseP* where the order relation is defined by<p- y
if and only if y <p X. This is an involution of posets which extends to an involution
on the linear spac®. The mapw is also an involution or€. Define an involution on
A, also denoted, by w(vy - v2-+-vp) = vn---v2 - v1, and extend it linearly to all of
A. This is also an involution otF. It is easy see thab commutes with the linear map
W, that is,w o W = W o w. Moreover, in our four Newtonian coalgebras F, P,
and &, we have the two relationsopu=pooco(@®®w) andAocw=(wQ w)ooc o A,
wheres (X ® y) =y ® X.
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Figure L A non-Eulerian posel with W(P) € F.

Let V be a convex polytope. Then the face latticeVgf £(V), is an Eulerian poset.
Hence we may compute tloel-index of £L(V), that is, W (£(V)). For the remainder of this
paper we will writew (V) instead of the more cumbersoni&L(V)). For a polytopeV,
thepolar (or dual) polytope is denoted by #; see [26]. We hav& (V) = L(V)*. Hence
directly we obtaint (L(V2)) = W (L(V))*, or in our shorthandp (V2) = W (V)*.

As two examples ofd-indexes of polytopes, thed-index of a polygorV is given by

(V) =c2+ (fg—2)-d, (3.2)
and thecd-index of a three-dimensional polytojeis given by
W(V)=c+ (fo—2)-dc+ (f, — 2) -cd, (3.3)

where fg denotes the number of vertices afidthe number of two-dimensional faces of
the polytope.

Recall that(a— b)? = (¢? — 2-d). Hence whem is even, the elemena(- b)" belongs
to F,. Given an element in 7, expand it in terms of andb. The coefficient o&" and
b" in x both equal the coefficient af' in x. Whenn is odd, the coefficients a" andb”
in (a — b)" differ, and hencéa — b)" does not belong td;,. Thus we have the following
result.

Corollary 3.2 Consider the linearmap : 7n — €, j_n_1 i ® Fj. Whenn s odgthe
linear mapA is injective. When n is evethe kernel of the linear maji is one-dimensional
and is spanned by the element — 2 - d)"/2.

Given an Eulerian pose®, how do we compute ited-index? If we instead consider
the larger problem of determining tleel-index of all of the intervals of the posét, the
coproduct suggests an algorithm for this computation.

Assume that we knou (¥ ( P)) for an Eulerian pose®. Recall the coefficient af* (P 1
in ¥(P)isequalto 1. LefF, be the linear span of atil-monomials of degree which con-
tain at least ond, that is, we have excluded the monond@l So dim(F}) = dim(F,) — 1.
By Corollary 3.2, the kernel ok does not belong to the linear spa€g hence the restricted
mapA : F, = ®i+j=n—1Fi ® Fj isinjective.
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1. setw <0

2. forr =0to|n/2] —1do

3. fors=0ton—2r —1do

4, setv < [C°R®] & (p)

5. if v is not divisible on the left by

6. then terminate sincg is not in A (F})
7. elseu «c1.v

8. setw < w+c3d-u

9. setp < p— A(cd - u)
10. if 8 (p) # 0
11. then terminate sincgis not in A(F;)

12. returnw)

Figure 2 An algorithm for computingh ~1(p), wherep belongs toA (F)).

In order to present a method to compute the inversa ofve need to introduce some
terminology and notation. We say thate-polynomialwv is divisible on the lefby c if
there exists @d-polynomialu such thaty = ¢ - u. If u exists, we will writeu = ¢ - v.
Forzin F,, defines; (z) to be all of the terms af that contain exactly number ofd’s. An
example iss1(c®+6-dc+4-cd) =6-dc+4-cd. Similarly, for pin @i} j—n_1F ® F;
defineé; (p) to be all of the terms op that contain exactly number ofd’s. In both cases
the linear mag, is a projection. Finally, we writef®] p for the sum of all monomials
such that the terro® ® v occurs inp. For example, fop=2-cd®c+3-c?@d—-d®d
we haves;(p)=2-cd®c+3-c?®dand °Q] p=3-d.

Proposition 3.3 The algorithm in Figure2 computes the inverse of the linear map:
Fh— @iyj=n-1Fi ® Fj. Thatis given p inA(F}), the algorithm computea —1(p).

The proof of this proposition is an induction argument on the gas). The induction
step from(r, s) to (r, s+ 1) is given by the lemma:

Lemma 3.4 At step(r, s) in the algorithm in Figure2, let z € F;, be the element such
that A(z) = p. Assume that the element z satisfies

(i) si(zz =0forall0<i <,

(i) [c!d-y]z=0forall 0< j <s and for allcd-monomials y such thateg,(y) =r — 1.
Then the element-z c3d - u satisfiegc®d - y](z— ¢3d - u) = 0 for all cd-monomials y such
thatdegy(y) =r — 1.

First observe that when the tern® y occurs inA(z), wherex andy are monomials,
then one of the following three cases holds: the t&rm- y occurs inz, the termx’ - d -y
occurs inzwith x = x’- ¢, or the termx -d - y’ occurs inzwithy =c- y'.

Consider the ternt® ® v in p. This term has exactly d’s and it is in the image of
a monomial with either orr + 1 d’s. The case witlr d’s is not possible by our first
assumption orz. If v contains a monomial that begins wittdasayd - x, then the term
c®® d - x can only occur imA (cS~1ddx), contradicting our second assumptionzmriHence
we conclude that is divisible on the left byc. The termc®* ® v=c®® c- u does occur in
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for all intervals k, y] of length 1
set¥([x,y]) <1
for all intervals k, y] of length 2
set¥([x,y]) «<c
fork =3top(P) do
for all intervals k, y] of lengthk
setW ([x, y]) < A,y W(IX, 2D © ¥([2. YD)

NogorMwNhE

Figure 3  An algorithm for computing thed-index of all intervals of an Eulerian posEt

A(c3d - u). Now consider the expressign— A(c’d - u), which is equal toA (z — c3d - u).
No monomial inz — ¢3d - u is of the formc®d - y. This completes the proof of the lemma.
The suggested algorithm to compute tltkindex of a poseP and all of its intervals is

presented in Figure 3.

4. The pyramid and the prism of a polytope

There are two well-known operations defined on convex polytopes: the pyramid and the
prism. From a convex polytopé, we may construct the pyramid &, Pyrn(V), and the
prism of V, Prism(V). Let B, be the Boolean algebra of rankthat is, the face lattice of

the simplex of dimension — 1. Also letC,, be the cubical lattice of rark+ 1, that is, the

face lattice of am-dimensional cube.

Proposition 4.1 Let V be a convex polytope. Then the face lattice of the pyramid of V
and the face lattice of the prism of VV are given by

LPyr(V)) =LNV) x By and L(PrismV)) = L(V) ¢ B,.
These two identities follow from observations of Kalai [Bection 2].
We define the two operations pyramid and prism on a pBdat PynP) = P x B; and
Prism(P) = P ¢ B,. Two natural questions occur now. Given tekindex W (V), are we

able to computal (Pyr(V)) andW (Prism(V)).

Proposition 4.2 Let P be a graded poset. Then

‘P(ny(P))=%[‘P(P)~C+C-‘P(P)+ 3 wqﬁ,x])-d-w([x,i])}

xeP
O0<x<1
w(PrismP)) = W(P)-c+ Y w(0.x])-d- w(x,1].
xeP
O<x<1

Proof: The proof of the second identity will follow as a special case of Proposition 4.3.
The firstidentity follows by a careful chain argument. Consider a ahiaif® x B;. We have
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c= {00 = (X0, Yo) < (X1, Y1) < --- < (X, Vi) = (1, 1)}. Leti be the smallest index
such thaty; = 1. Letx = ;. Hencewe havgy = --- = y;_; = 0andy, = --- = yj = 1.
Moreover, we havei_1 < X;, and the two chaine; = {f) =Xg < X1 < - < Xji_1 <X}
in [0, x] andc, = {X < Xj41 < --- < X = 1} in [x, 1].

Three cases occur:

1. 0 < x < 1. Then the elemenix, 0) may or may not be in the chain Letc denote
the chainc — {(x, f))}, that is, the chain without the elemeix, ﬁ). Similarly, letc”
denote the chainU {(x, 0)}, that is, the chain with the elemept, 0). Observe that the
element(x, 1) belongs to both the chairsandc”, so the weight of these chains at rank
p(X) + 1isb. Hence we have

w(c) = Wip,x] (c)-(@a—b)-b- w[xi](cz)’
w(c’) = Wig,x] (€)-b-b- Wiy 4 (C2),
w(c) +w() = Wiax(C) - a- b- wiy 4;(C2).

2. x = 1. Then the elemen(l. 0) may or may not be in the chain Letc’ be the chain
c—{(1,0)} and letc” be the chairt U {(1, 0)}. Then

w(c) = wp(cy) - (@—h),
w(c”) = wp(cy) - b,
w(c) +w(c”) = wp(cy) - a

3. x = 0. Then the elemen®, 1) lies in the chairc, and the weight of the chainis
w(C) = b- wp(Cy).
Summing over all chaingin P x B;, we obtain

WP xB)=b WP +W(P)-a+ Y w(0.x])-a-b-w(x.1). (4.1

xeP
O<x<1
Applying Eqg. (4.1) to the pose®* gives
W(P* x B =b W(P)+W(P)-a+ » W(x. 1" a-b-w(0. x]".
xeP
O<x<1

Now applying the involutionw, we obtain

W(PxB)=W(P)-b+a WP+ Y w(0x)-b-a-¥(x1). (4.2

xeP
O<x<1

Adding Egs. (4.1) and (4.2) gives the desired result. m|
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SinceC,;1 = PrismC,), Proposition 4.2 gives a recursion formula for ttekindex
of the cubical latticeC,,. This recursion was first developed by Purtill [17]. The second
part of Proposition 4.2 may be generalized in the following manner. A.dte a graded
poset of rank 2 which has atoms (which are also coatoms). Note tigt= B,. Let
& =a+(r —1-bandd, =ab+ (r — 1) -ba.

Proposition 4.3 Let P be a graded poset. Then

WPPoA)=WP) &+ Y w(0.x]-d - w(x 1]).
AxePA
O<x<1
Proof: Denote thea atoms inA; by 1,...,r. Consider a chaig in P ¢ A.. We have
c={0< (X, y1) < < (X Y = (1, 1)}. Leti be the smallest index such that= 1.
Two cases occur, each having two subcases.

1. Assume thay;_; exists (thatisj > 1) suchthat Ky, <r — 1. Letx = x_1 > 0.
The elementx, 1) may or may not be in the chain. Letbe the chairt — {(X, 1)} and
letc” be the chairt U {(x, 1)}. Moreover, let; be the chaif0 < x; < -+ < Xj_p < X}
andc, the chain{x < Xi11 < --- < X1 < 1}. The first subcase is when< 1. Then
the sum of the weights of the chaidsandc” is given by

w(C) +w(C") = wy (C) - b-a-wy, 5,(C2).
The second subcasexs= 1. Then the weight of the chain is
w(C) = wp(Cy) - b.

Observe in both subcases that thererarel choices fory; _;.

2. Assume that eithér= 1 (soy;_; does notexist) oy; 1 =r. Letx = x > 0. Letc be
the chainc — {(x, r)} and letc” be the chairt U {(x, r)}. Moreover, letc; be the chain
{0 <X <+ < X_1 < x} andc, the chain{x < Xj41 < -+ < Xk_1 < 1}. In the first
subcase wher < 1, we obtain that the sum of the weights of the chainandc” is
given by

w(c) +w(c") = Wi, (C1) - @+ b - wyy 37(C2).

For the second subcase wheg- 1, we similarly get that the sum of the weights of the
chainsc’ andc” is

w(c) +w(c”) =wp(cy) - a
Now summing over all chainsin P ¢ A;, we obtain
YPoA)=YP)-(a+(r—1)-b)
+ > w(0.x])- @+ (r — 1) ba) - w(x, 1.

_xeP O
O<x<1
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Define a linear operatdd : A — A by

D(w) = Zw(l) -d- W2)-

Recall thatD is a derivation. We could have defin@ldirectly as a derivation oxl such
thatD(a) = D(b) = ab + ba=d. Note thatD is also a derivation ot sinceD(c)=2-d
andD(d) = cd + dc.

Combining Proposition 4.2 with the fact thatis a Newtonian coalgebra map, we obtain:

Theorem 4.4 Let P be a graded poset. Then
1
V(Pyr(P)) = E[W(P) “Cc+c-W(P)+ DY (P)],

W (Prism(P)) = W(P) - c+ D(¥(P)).

Similarly, let V be a convex polytope. Then
1
Y (Pyr(V)) = E[‘I’(V) “C+c-Y(V)+ DMV,

W (PrismV)) = ¥(V) - c+ D(¥(V)).

In Theorem 5.2 we will improve the formula for the pyramid.
Theorem 4.4 gives a new recursion formula for tdueindex of the cubical lattic€,,.

Directly we have

W(Chi1) = W(Cp) - ¢+ D(W(Cp)).
This is a different recursion formula than Purtill obtained in [17]. .

Similar to Theorem 4.4, define a derivati@ on A by D, (a) = D, (b) = d;. Then by

Proposition 4.3 we obtain that
Corollary 4.5 Let P be a graded poset. Then

V(PoA)=V(P) & + D (¥(P)).
Proposition 4.3 and Corollary 4.5 generalize the recursion for-tteindex given in [8].
Example 4.6 Let the convex polytop¥ be a 3-cube with a vertex cut off. The polytope
V has 10 vertices and 7 facets. By Eq. (3.3),¢déndex of V is ¥ (V) = ¢ + (10— 2)
dc+ (7 — 2)cd=c® 4 8dc+ 5cd. We have

A +8dc+5cd) =7-?®1+15-c®c+10-1®@c+16-d®1+10-1®d,
D(c® + 8dc + 5cd) = 7-c?d +15- cdc+ 10- dc? + 26- d?.
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Hence thecd-index of the prism ol is equal to
W(PrismV)) = ¢* +7-c?d + 20- cdc+ 18- dc? + 26 d2.

There is another operation on polytopes, namelytipgramid Bipyr(V). It is well-
known that BipytV) = Prism(V2)2. Since the involutiorw — w* commutes with the
derivationD, that is,D(w*) = D(w)*, we obtain:

Corollary 4.7 For a polytope V

W (Bipyr(V)) = ¢ W(V) + D(¥(V)).

5. The derivation G

On the algebrad define two derivation& andG’ by letting

G(a) = ba, G'(a) =ab,
G(b) = ab, G'(b) =ba,

and extending andG' to allab-polynomials by linearity and the product rule of derivations.
SinceD(a) = G(a) + G'(a) andD(b) = G(b) + G'(b), we obtain thaD (w) = G(w) +
G'(w) for all ab-polynomialsw. Thatis,D = G + G'.

Observe thaG(c) = G(a+ b) =ba+ab=dandG(d) = G(a)-b+a- G(b) + G(b) -
a+b-G(a) = bab+ aab+ aba+ bba=cd. A similar computation give&’(c) = d and
G’(d) = dc. HenceG andG’ restrict to be derivations of.

Lemmab5.1 Forall ab-monomialsw, the identityw - ¢ + G(w) = ¢- w + G’(w) holds.

Proof: The proof is by induction on the length af. The base case is the three cases
w =1 w=a andw = b. Whenw = 1, both sides are equal ® Whenw = a, we
havethab-c+ G(a) = a-(a+b)+ba=(a+b)-a+ab=c-a+ G'(a). Asimilar
computation holds whew = b.

For the induction step, considerwherew has length at least 2. We can write=u - v,
whereu # w andv # w. By the induction hypothesis, we obtain

u-c+Gu=c-u+Gu and v-c+G@w) =c-v+G' ).

Multiplying the first equality on the right with, the second equality on the left withand
then adding the two equations gives

u-ccv+GU)-v+u-v-c+u-Gw)=c-u-v+G W) -v+u-c-v+u-G ().
By cancelling the ternu- ¢ -v and rewriting the equation using the product rule, we obtain
u-v-c+GUu-v)=c-u-v+G'(u-v),

which is the desired equality. ]
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Theorem 5.2 Let P be a graded poset. Then
V(Pyr(P)) = W(P) - c+ G(¥(P)).
Similarly, let V be a convex polytope. Then
W (Pyr(V)) = ¥ (V) -c+ G(¥(V)).

Proof: Since¥(P) € A, we knowG (¥ (P)) andG’ (¥ (P)) are well-defined. Thus by
Theorem 4.4 we have

2-W(PxBy) =¥(P)-c+c-¥(P)+ DW(P))
= (W(P)-c+ G(¥(P)) + (c- W (P) + G'(¥(P))).

But by Lemma 5.1 the two terms are equal. Thus we hay® x B;) = W(P)-c+
GW(P) =c-¥(P)+GWNP)). ]

This theorem gives us a new recursion formula forgdeéndex of the Boolean algebra
B, different from the one Purtill obtained in [17]. Itis

V(Bni1) = W(Bn) - ¢+ G(¥(Bn)).

Webster [25] has found similar recursion formulas for the Boolean algebra and the cubice
lattice.

Example 5.3 LetV be the polytope in Example 4.6, witli-indexc® + 8dc + 5cd. We
have

G(c® + 8dc+5¢cd) = 6-¢d + 9 - cdc+ dc? + 13- d%.
Hence thecd-index of the pyramid oV is given by

W(Pyr(V)) =c*+6-c°d + 14-cdc+ 9- dc® + 13- d?.

6. Other operations on polytopes

Let W be ann-dimensional convex polytope with vertex Letu be a vector such that
WnN{x eR":u-x > c} = {v}. The vertex figure/ of W at the vertexv is defined as

the polytopeV = WN {x € R" : u-x = ¢ — ¢}, for small enougls > 0. We define the

truncated polytopéf\/ as the polytop&V N {x € R" : u-x < ¢ — €}. The combinatorial

structure ofV andW only depends oiV andv, and not ony, ¢, ore.
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Proposition 6.1 Let W be a convex polytope and iebe a vertex of W. Assume that the
vertex figure ab is the polytope V. L&tV be the polytope W with the vertegut off. Then
the difference in thed-index ofW and W is given by

(W) — W(W) = D(w) — G(w) = G'(w),
wherew = ¥ (V).

Sketch of proof: Stanley showed in [20, Lemma 2.1] that when we make local changes
in a polytope the difference in thal-indexes only depends on what happens locally. Thus
it is enough to consider the case whah= Pyr(V) with vertexv. The vertex figure at
visV, andW is the prism ofV, PrismV). Hence the difference in thed-indexes is
(w-c+ D(w)) — (w - c+ G(w)), and the result follows. O

Example 6.2 LetW be afour-dimensional convex polytope such that at the verigxas
the vertex figure/, whereV is the three-dimensional polytope mentioned in Examples 4.6
and 5.3. Hence

W(W) — W(W) = D(c® + 8dc + 5¢d) — G(c® + 8dc + 5¢d)
=c’d+6-cdc+9-dc® + 13- d?.

Another operation on polytopes is pasting two polytopes along a common facet. We ma:
still speak about the face lattice and ttteindex of the union, even though the union may
not be a convex polytope.

Lemma 6.3 (Stanley) Let V and W be two polytopes which intersect in a facethiat
is, VN'W = F. Then thecd-index of the union \U W is given by

WV UW) =W (V)+W(W) —¥(F)-c

Proof: Let P be the face lattice of the facét. We rewrite the identity a¥ (V U W) +
W (Px*By) = W (V)+ W (W). Label the faceF in the face lattice o¥/ by Fy and similarly
label F in the face lattice oV by F. Moreover, label the two coatoms i « B, by
Fv andFy. The lemma follows by noting that each chain that occurs in these four posets
contributes either one term or two terms to both sides of the identity. |

As a corollary we obtain:

Corollary 6.4 Let V be a polytope and let F be a facet of V. LetPyr(F) denote the
polytope which is formed by making a pyramid over the facet F. Then

WV UPyYr(F)) = ¥ (V) + G(¥(F)).
The Minkowski sunof two subsetX andY of R" is defined as

X+Y={x+yeR":xe X, yeY}L
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Notably, the Minkowski sum of two convex polytopes is another convex polytope. For a
vectorx we denote the s¢h - x : 0 < A < 1} by [0, X]. We say that the nonzero vector
lies in general positiorwith respect to the convex polytopéif for eachu € R" the line
{L-x+ueR": A e R} intersects the boundary of the polytogen at most two points.

Proposition 6.5 Let V be an n-dimensional convex polytope aradnonzero vector that

lies in general position with respect to the polytope V. Let H be a hyperplane orthogonal
to the vectorx and letProj(V) be the orthogonal projection of V onto the hyperplane H.
Observe thaProj(V) is an(n — 1)-dimensional convex polytope. Then thieindex of the
Minkowski sum of V anfD, x] is given by

WV +[0, x]) = ¥(V) + DWW (ProjV))).

In order to prove this proposition, we need to consider a larger class of geometric object
than convex polytopes, namely regular cell complexes. See [19, Section 3.8] for mor:
information about regular cell complexes. Note that the face lattice of a regular cell comple»
is an Eulerian poset.

Proof of Proposition 6.5: For each faceE; of the polytopeV choose a normal vector
u;j. Since the vectox lies in general position, we have thatu; # O for all indexed . Let
S* be the union of all facet§; such thaix-u; > 0, and letS~ be the union of all facets
F suchthak-u; < 0. BothSt andS~ are homeomorphic to am — 1)-dimensional ball
and their boundaries agree, thatdgS"t) = 9(S").

Leto C V be a closedn — 1)-dimensional cell such that(c) = 9(S") and for each
u € R"theline{A-x+u € R": 1 € R} intersects in at most one point. Observe that
forms a regular cell complex and its face lattice is isomorphic to the face lattice ¢¥Broj
Moreover,o + [0, X] is also a regular cell complex whose face lattice is isomorphic to the
face lattice of PrisrgProj(V)).

We may now divide the polytopé into two pieced/ ™ andV ~ suchthal = V+*tuUuVv-,
c=VTNV~, 9Vt =St Uc,andd(V-) =S Uo.

We can now decompose the Minkowski st [0, X] into three pieces. Namely,

V+[0,Xx]=V U +[0,XDU VT +X).

Moreover, we have thaf N (o + [0, X]) =0 and(oc + [0, X]) N (VT +X) = o+ x. We
can now compute the desired-index by rearranging these pieces. We obtain

YNVH[OX) =YV )+V(0o +[0,XD+PNVT+X)—¥(o)-C—W (o +X)-C
=UNV)+WNVH) —W(o)- c+ W (PrismProj(V))) — w(ProjV))-c
=W (V) + D (ProjV))). =]

7. On simsun permutations

Let Sbe a set such th&U {0} is a linearly ordered set.
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Definition 7.1 An augmented permutation of lengthn on Sis a listr = (0 =
S0, S1, ..., Sh), Wheresy, . .., s, aren distinct elements from the s&t

The descent set of the augmented permutatias the setD(z) = {i : S_1 > §}.
Observe the descent setmofis a subset off] = {1, ..., n}. We say thatr has no double
descents if there is no indéxsuch thas > 5,1 > S.2. Thevariation of a permutationr
is given byU (7)) = Up(,), Whereus is theab-monomialu; - - - u, such thau; = aifi € S
andu; =bifi € S

Let R,(S) be the set of augmented permutations on theSset lengthn so that any
such permutation begins with an ascent and has no double descents. RyeSebe the
singleton set containing the permutati@. For an augmented permutatianin R,(S),
we define theeduced variatiorof 7, which we denote by (r), by replacing eachb in
U (7r) with d and then replacing each remainimby ac. For a subset of R,(S) we define
V(T) =2 ex V().

We now ask the following question. Given an Eulerian pd3edf rankn+1, is it
possible to find in a canonical manner a linearly ordere@®seid a subsef of R,(S) such
thatw (P) = V(T)? Examples of such posets and permutation sets are the Boolean algebr
and Andg permutations, and the cubical lattice and signed Anqrmutations. See [8,
17]. For more refined identities using such a poset-permutation set correspondence, see
11, 20].

We will now define three operations on permutations. These will give us a partial answe
to our question.

For a permutatiomr = (0, s1,...,S,) and an element, we define theeoncatenation
w-X=1(0,s,...,5, X). We extend this notion for a clagsof permutations byl - x =
{m-x:m e T}. LetM be an element larger than all the elements in the linear @dg0}.
For T a subset oR,(S) we have thall - M C R,;1(SU {M}). Moreover, we have that
V(T -M)=V(T)-c

We will now define the insert operation. Lt be as just defined and letbe an element
smaller than all the elements BU {0}. ForT € Ry (S) andx € {m, M}, we define
Inser{T, x) to be the set of all augmented permutatig®ssy, ..., S, X, S+1, - - - » Sn) Such
that

1. Os,....,5) €T,

2. 0,81,.-+,8,%X,S41,---,5) € R (SU {x}),
3. if x is the maximal elemen¥l theni # n, and
4. if x is the minimal element theni # 0.

That is, we inserk into the permutationi0, s, ..., Sy) € T such that no double descents
occur and we do not allow the maximal element at the end nor the minimal element a
the beginning of the permutation. Observe that we have Iisekt) U Inser(T, m) C
Ro+1(SU{M, m}).

Lemma 7.2 For T CR,(S the two identities Vinser(T,M))=G(V(T)) and
V(Inser(T, m)) = G'(V(T)) hold.
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Theorem 7.3 Let P be an Eulerian poset of rankinl. Let SU {0} be a linearly ordered
set and let T be a subset of,RS) such that¥'(P) = V(T). Introduce a new maximal
element M and a minimal element m to the set{®}. Then the following identities hald

Y (Pyr(P)) =V (Inser(T, M)UT - M),
Y (Prism(P)) = V(Inser{T, M) U Inser{T,m)UT - M).

Simion and Sundaram defined a class of permutations called simsun permutations; s
[22, p. 267] and [23]. We will now see how simsun permutations are closely related with
the operations InsdfT, n) andT - n on permutations.

A simsun permutation of lengthn is an augmented permutatian= (0, s;, ..., )
on the sef{l, ..., n} of lengthn such that for all 0< k < n if we remove thek entries
n,n—1...,n—k+ 1fromthe permutatior, the resulting permutation does not have

any double descents. L&} denote the set of all simsun permutations of lengtliVe have
thatS, € Ra({1, ..., n}).
Similarly, we may define aigned simsun permutation of lengthn as an augmented

permutation of lengtim on the se{—n, ..., —1, 1, ..., n} such that exactly one of the ele-
ments+i and—i occurs in the permutation and for alkOk < n if we remove thek entries
+n, +(n—1),..., £(n—k+1) from the permutatiorr, the resulting permutation belongs
to Ri_k({—(n—k),...,—=1,1, ..., n—k}). Thisimplies that the resulting permutation has

no double descents. LSE denote the set of all signed simsun permutations of length
Recall thatS,_; - n denotes the set of all permutatiomsn S, so thatr(n) = n. We
make the similar convention f&< , - n.

Corollary 7.4 The sets of all simsun permutations and all signed simsun permutations
satisfy the following recursions

Sh =Inser(S,_1,N) USy_1- N,
SE = Inser(SE ,n) Ulnser(Sz ,, —n)USE , - n.

Thus thecd-indexes of the Boolean algebra and the cubical lattice are given by

Y (Bni1) = V(Sh),
W(Cn) = V(Sy).

8. The shelling components of the simplex

Stanley [20] studies the shelling components of the simplex in order to obtain a formula for
thecd-index of a simplicial Eulerian poset. NamelyHfis a simplicial Eulerian poset of rank

n+ 1 with h-vector(hy, ..., hy) then thecd-index of P is given by (P) = ir‘;ol hj - <i>i”.

By using the techniques we have developed, we now stud@d#p@lynomialsé{‘.
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Recall thatB, is the Boolean algebra, that is, all the subset§lof. ., n} ordered by
inclusion. Letc; be the coatonl, ..., n} —{n+1—i}. Similarly, fori # j letc; ; be the
element{l,...,n} —{n+1—i,n4+1— j}, thatis,c ; is the intersection of the two sets
¢ andc;. Define the poseB ; for 1 <i <n—1by

Bni = 2. clu{il....n}.
j=1

That is, B ; consists of the maximal elemeft, ..., n} and all the elements below the
coatomscy, . .., G. Since the elements x, where 1< j <i andi + 1 <k < n, are only
covered by one element By ;, we know thatB/ ; is not an Eulerian poset. However, we
can obtain an Eulerian poset by adding an elemeit the following manner. LeB,;

be the poseB;; U {y}, where the coatory covers all elements;x with 1 < j <i and
i+1 <k <n. The poseBy; is Eulerian. Observe th&, ; = B_1 % B, andB, n_1 = B.

Stanley define®! by the relation

W(Bpi) = dft+ -+ ML

That is,®) = W(Bni11) = W(By) -c,andfor1<i <n—1, ®" = W(Bp1i1) —
W (Bnii).
We now state the main result of this section.

Theorem 8.1 The following recursion holds fob! : G(¢") = &1

Proof: We claim that the following identity is true:
V(B x By) + W (Bn* Bp) = W(Bni1it1) + W(Bni * By). (8.1)

We may viewB’ . x B; as a subposet @&, by viewing B; as the poset of, {n + 1}}.

n,l

HenceB,; x By is the poseB; ; x By with two extra elements of ranks— 1 andn. Label
both of these elements by. Moreover, label the two coatoms in the two posBis« B,
andBy,; x By by {1, ..., n} andy. Itis now straightforward to prove Eq. (8.1) since there
is a rank-preserving bijection between the chains on the right-hand side and the left-han
side. Except for the chains labeled @ {1}, {1, 2}, ..., {1, 2,..., n+ 1}), the bijection
is given by reading off the labels of a chain. For the case when a chain is labeled witt
@, {1},{1,2},...,{1,2,...,n+ 1}), observe that each of the four posets has one such
chain. This is the only chain that contributes two terms to each side of Eq. (8.1).

Recall thatW (Byi) = 'j;% i)?‘l. Thus by Theorem 5.2 we havi(B,; x B;) =

i d ™ c+ Gy é?—lg. AlsOW (By+By) = W(Bn) - W(By) = W(By) - = P
Similarly, ¥(Bni1i+1) = Z'j:() d>’j‘ = oy + Z'j:1 d)’j‘ andW¥ (B * By) = W(B,;)-c=
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(Zij;% érj‘*l) - €. Hence when we expand the identity (8.1), we have
i—1 i—1 i i—1
xn—1 xn—1 N _ AN In yn—1
(ZOCDJ- )-c+G<ZOc1>j )+q>o_q>0+2;q>j +<Zoq>j )-c.
1= i= j= j=

By cancelling terms we ha@(d)* +- - - 4+ &1 = &7 + ... + ", which is equivalent
to the conclusion of the theorem. |

Stanley conjectured [20, Conjecture 3.1] that the reduced variation of certain classe
of permutations is equal t&vi”. This conjecture was proved by Hetyei in [11]. We now
present a slightly modified result of this kind. It follows easily by Theorem 8.1 and the
techniques of Section 7. L&}, k be the set of simsun permutations of lengnding with
the elemenk.

Corollary 8.2 The reduced variation of the s8 i is given by MSn k) = éﬂfk.

This result follows from induction on and noting thasS, x = Inser{Sp-_1, N) andSpn =
Sn,]_ -N.

9. The mixing operators

Given two posets and Q, assume that we know (P) and ¥ (Q). Are we then able
to compute¥ (P x Q) from W (P) andW¥(Q)? The answer is yes, and it may be seen
by using the quasi-symmetric function of a poset see [5]. It is shown in [5] that
knowing W (P) is equivalent to knowing the quasi-symmetric functibP). Also the
identity F(P x Q) = F(P) - F(Q) holds. In fact, it is proved thdt is a Hopf algebra
homomorphism. Hence we may compttéP x Q) from ¥ (P) and¥ (Q).

In terms of theab-index, this quasi-symmetric function method is not explicit. We will
now devise an explicit method. We begin to define the mixing operator betthe set

| ={r,s,n):r,se{l,2,,n>2n=r +s+ 1mod 3.
This set will be the index set of the mixing operator. For a coassociative copraduct
V — V ® V, we define the map*:V — V& by Alis the identity map 1 andk*! =
(A¥®1) o A. Observe than? = A. The Sweedler notation [24, pp. 10-11] for the linear
mapAX is

A =) X)) ® - ® Xk-
X

We call each factok;, an x-piece. We will use this notation on the two coalgehrhs
andP.
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Definition 9.1 Letu andv be in A and(r, s,n) € |. Themixing operator Ms(u, v, n),
is defined by the following recursion:

Mi2(U,v,2) =Uu-a-v,
MZ.l(U, v, 2) =v-b- u,
Ml’s(u, v,n+1) = ZU(]_) -a- MZ,S(U(Z)’ v, n),
u

Mos(u,v,n+1) = Z V) - b. Ml,s(u, V), n).

As an example, by the coassociativity of the coproduct we have

M]_,J_(U, v,5) = Z Z Uy -a- v - b- U -a- v - b- Ug).
v

u

Observe thah is the number of pieces in each summandvifs(u, v, n). Whenr =1
each summand begins witlugpiece, while whemn = 2 the summands begin withvapiece.
Similarly, s = 1 says that each summand ends withiece.

In general to comput®ly 1 (u, v, n) we applyAX to u, wherek = %1 Observe than
is odd in this case. Similarly appk*—* to v. We obtain

Ak(U) = Z Uy ® - ® Uk and Akil(v) = Z vy ® - ® Vk—1)-
u v

We then combine th@- and v-pieces alternatingly such that there is afetween an
adjacenu-piece and-piece (reading left to right), otherwise there is between. Lastly,
we sum over all possible ways to spliandv by the coproduct. There are similar rules for
Ml’g(u, v, n), Mz’l(u, v, n), aﬂszﬁg(U, v, ﬂ).

Theorem 9.2 Let P and Q be two posets. Then

WP xQ = Y Ms(W(P),¥(Q),n.

(r,s,n)el

Equations (4.1) and (4.2) in the proof of Proposition 4.2 are special cases of this theorem
If w e Fy then A*2(w) = 0. HenceM, s(u, v, n) = 0 if % > degu) + 2 or
Lg”s > degv) + 2. Hence the sum in Theorem 9.2 has a finite number of nonzero
terms, so it is well-defined.
In order to motivate Theorem 9.2, we will first prove it in the case when the posets
P and Q have R-labelings. We will assume that the reader is familiar witabelings.
Otherwise, see [8] or [19, Section 3.13].
An edge-labeling. of a finite posefP is a map which assigns to each edge in the Hasse
diagram ofP an element from a total linear order.yitoversx in P then we denote the label
on this edge by.(x, y). If c = {0 = X < X1 < --- < X,(py = 1} is a chain then we write
the labeling of the chaiato be the lisk.(C) = (A(Xo, X1), A(X1, X2), - . ., A(Xo(P)—1, Xo(P)))-
An R-labelinga is an edge-labeling such that in every interval there is a uniqgue maximal
chain where the labels are weakly increasing.
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For a maximal chait = {0 = xo < x; < --- < X,y = 1) we define thedescent
monomialof the chainc to beu(c) = uy---u,p)—1, whereu; = a if A(xi_1, Xi) <
A(Xi, Xi+1), andu; = b otherwise. The following lemma follows directly from a result of
Bjorner and Stanley [4, Theorem 2.7].

Lemma 9.3 Let P be a graded poset of rankip 1. If A is an R-labeling of P then the
ab-index of P is equal to

w(P) =) u(),

where the sum is over all maximal chains c.

Assume that the pose® and Q have R-labelings. Then the pos& x Q has anR-
labeling given as follows. Each edge in the poBet Q either comes from an edge i
or an edge iMQ. Hence label the edge betweeq z) and(y, z) by the labelp (X, y) and
label the edge betwedRr, z) and(x, w) by the labelo(z, w). Moreover, let all the labels
of the posetP be smaller than the labels of the po§gt

A maximal chainc in the posetP x Q corresponds to two maximal chains, oneRn
and one inQ. Hence the labels of the chainare the labels of the corresponding chains
in P andQ. If a label is from the pose, we call it aP-label. Similarly, a label fronQ
is called aQ-label. If c begins with aP-label then we classify this as= 1, otherwise
asr = 2. Similarly, if c ends with aP-label then we classify this as= 1, otherwise as
s = 2. Moreover, when reading the labels of the chain order, group theéP-labels and
the Q-labels into runs. Leth be the number of such runs. We say that the maximal ahain
has the typér, s, n). Observe thafr,s,n) € I.

Let us consider the case whéms, n) = (1, 1, 5). This means that the labeling of the
chainc looks like

)"(C) = (Xl’ s )\'Ia Vi, ..., Vk, )"I-‘r]n ey )"ja Vk+1s -« v,O(Q)’ )"j+19 B )"p(P))7

where (A1, ..., Ayp)) is the labeling of a maximal chaice in P and (v1, ..., vyq)) IS
the labeling of a maximal chaity in Q. Observe alsothat¥ i < j < p(P) — 1 and
1<k=p(Q -1

Assume thati(Cp) = U = Uy ---Uypy—1 andu(Cg) = v = v1---V,-1. Then the
weight of the maximal chain is given by

U(C):ul"‘Uifl'a'vl"'kal‘b'ui+1'"Ujfl'a'UkJrl"'Up(Q)—l

'b'uj+l"'up(P)7l-

Observe that the variables, u;, andvy are not in the expression faKc). This is because
when we compute(c), we do not need to compare the labeWith A1, the label; with
Aj+1, and the labely with v,1. Moreover, thea's and theb’s occur in the expression for
u(c) since at those places we compare a label from the gogéth a label fromQ. There
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will be anaif the P-label occurs before th@-label in the list since th@-labels are smaller
than theQ-labels. Similarly, there will be b if the Q-label occurs before thE-label.
Recall that we have

3
A(U) = Z Up U1 @ Uig1- - Uj_1 @ Ujp1- - - Uppy—1,
1<i<j=p(P)-1
A(v) = Z U1 Vke1 ® Ukl -+ - Vp(Q)—1-
1<k=p(Q)—-1

Hence if we sunu(c) over all maximal chaine such that restricted taP is cp, c restricted
to Q is cq, andc has the typdr, s, n) = (1, 1, 5), we obtain

Zu(c): Z Z Ul"'ui—l'a'Ul"'vk—l'b'ui+l"'uj—1
c 1<i<j=<p(P)-1 1<k=p(Q)-1

A Ukl Vp(@—1 7 D Ujpa e Upp)—1
=Y D Up-a-vy-b Uy a-vy-b-ug
u v
= My1(u, v, 5).
Since the mixing operator is linear inandv, and using Lemma 9.3, we obtain:

> u(©) = My1(¥(P), ¥(Q), 5),
C
where the sum ranges over all maximal chainghich have the typér, s, n) = (1, 1, 5).
Proceeding along these lines one can generalize this argument to prove Theorem 9.2 in t
case when the two posets hakdabelings.

10. Proof of Theorem 9.2

We will now prove Theorem 9.2 in the general case, that is, we will not as$uared Q
haveR-labelings. We begin by defining a m#&pfrom the set of chains of the posetx Q
to the set of quadruplgslp, do, r, s) such thatp is a chain inP, dg is a chain inQ, and
r.s € {1, 2}. We will do this so that(dg) — I(dp) = r + s — 3, wherel () denotes the
length of the chain. This condition implies that lengths of the chdinanddg differ by at
most one.

We now describe the mag. Letc = {(0,0) = (X0, Yo) < (X1, Y1) < -+ < (X, Yi) =
A, 1)} be achaininthe posé&tx Q. Observe thatthe chail@ = xg < X; < -+ < X = 1}
and{0=vyo < y1 <--- <y = 1} are weakly increasing.

We will now find two other chains in the poseBsand Q. Let zy = 0p andwo = 0o.
Recursively define

z = min{X; :yj > wi_1},
wj = max{y,— X = z}.

This recursion ends whan, = lQ since then we cannot firgl, ;. Observe thad = zo <
Z<Zp<--<Zii<zi<landd=wp<wi<wy <. < wg= 1.
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Let dg be the chain0 = wo < w1 < wy < --- < wx = 1}. Letdp be the chain
0=20<z <2z <--- <271 < z < 1}. Observe that we considdp as a set, not as a
multiset. Ifzg = z; letr = 2, otherwiseg = 1. If z, = 1 lets = 2, otherwises = 1. Now
letK(c) = (dp,dg,r,s).

For a setS of chains of the poseP x Q, defineW(S) = Wp,o(S) to be the sum
Y ces Wpx(C), Wherewp, g is the weight function defined in Section 3.

Lemma 10.1 Let dp be the chaif0 = po < p1 < - < p = 1} and let d, be the
chan{f0 =qo < qy < --- < gv = 1}, where K = k +r + s — 3. For the four cases
r.s) e {(1.1),(1,2,(21), (2 2} we have

W(K~*(dp, do. 1. 1)) = W([po. p1]) - a- ¥([do. Gu])

b-a- W(Ok_2, G_1]) - b- W ([ Pe_1, Pe]).
W(KY(dp, dqo. 1. 2)) = W([po. p1]) - - ¥ ([do. Gu])

b b W(pe-1. p]) - a- W([Ok-1. Gk]).
W(K (dp, dg, 2, 1)) = W([qo, qu]) - b - ¥ ([ po, p1])

ca-a- (o1, ) -b- W pe_s, P,
W(K Y (dp. dg. 2, 2)) = ¥([do. ta]) - b- W ([ po. pa])

ca---b-W(pe_s, pl) - a- ¥ (O, Qera])-

Here the inserted’s andb’s alternate.

Proof: We will prove the case wheft, s) = (1, 2). The other three cases are proved by
a similar argument.

Let c be a chain such tha (c) = (dp, dg, 1, 2). Observe that the paip;, g;) belongs
tothe chaircforalli =0, ..., k. Similarly, the pairp;, gi_1) may or may not belong to
fori =1, ..., k. Any other element of the chaibelongs to either an interval of the form

[(Pi-1, Gi—1), (Pi, gi—1)] or of the form [(pi, Gi—1), (pi, 0)]-
More formally, the chairt contains the pairép;, g). That is,

{(pO, q0)9 (plv ql)s e (pks Qk)} cc

Also, the chairt is a subset of the union of these intervals. That is,

cc

k
| [(Pi—1, Gi—1), (Pis -] U [(pi, di—1), (Pis O]

i=1

It is easy to see that any chaih of P x Q that fulfills these two conditions satisfies
K(c) = (dp, dQ, 1,2).

Hence when computing the weight of the chajrthe interval [pi_1, Gi—1), (pi, 0i-1)]
contributest ([pi_1, pi]), the pair(p;, gi_1) contributesa, the interval [p;, di—1), (pi, Gi)]
contributes¥ ([gi_1, Gi]), and finally the pair(p;, g;) contributesb. This completes the
proof of the lemma in the case whéns) = (1, 2). a
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Proof of Theorem 9.2: For (r, s, n) in the index set, defineP(r, s, n) to be the set of
chains in the posd®? x Q such that

P(r,s,n) ={c: K(c) = (dp,dg,r,s), wherel(dp) +1(dg) = n}.

We would like to comput&V/ (P (1, 2, 2- k)). To do this, we must consider all possible ways
to have a chain irP of lengthk and a chain imQ of lengthk. We may compute all such
possibilities by considering the two expressiaxtg P) and AX(Q). By Lemma 10.1, we
have that

W(P(L.2.2-k) =Y > W(Py)-a-¥(Qu) b--b-¥(Py)-a ¥(Qu)
P Q

u v

= Ml,z(uv v, 2 ° k)s

whereu = W (P) andv = ¥(Q). The second equality holds sindeis a coalgebra map.
The last equality is the expression for the mixing operator.

One may generalize this argument to obtain W&tP(r, s, n)) = M, s(u, v, n) for
(r, s, n) belonging to the index sét The theorem follows by summing over all triplets in
the index set. a

Define an algebra map from A to itself byx(a) = a — b and« (b) = 0. Since the
monomiala’®~1 has coefficient 1 in the expansion ¥f(P), we have thak (¥ (P)) =
(a— b)p(P)fl_

Recall that in the definition oft (P) we sum over all chains in the poset If we
condition on the smallest nonzero element in the chain, we obtain the following expression

W(P)=(@-b® 4+ Y @-b b w(x, 1))
O<x<1
=k(WP)+ Y w0 x]) b-w(x, 1]
O<x<1

= k(W (P)) + Z (Pw))-b-¥(Py).

We use this identity to find a formula far (P ¢ Q) in terms of¥ (P) and ¥ (Q). Note
that a nonzero element Po Q is of the form(x, y), wheredp < x < 1p and0q < y < 1q.
Moreover, the rank of the eleme()t y) is p(X) +p(y) — 1. Hence,c(lIJ([O x, ) =
(@— b)?*W-1 = (@ — by +eWN-2 = (W([0, x])) - k (¥ ([0, y])).

We now obtain

UPoQ =xkWPoQ)+ > k(0 x,y)))-b-w(x y), @D
O0<(x.y)<d.1)

=k(WP) k(W) + Y W0, x]) - . (¥ (0, yI)

0<(x,y)<d.1)
b w(x, 1] x [y, 1]
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= 1 (W(P) -k (¥(Q) + Y w(W(0.X]) -k (W(Q) -b-w(x. i)

O<x<1
+ Dk (W(P)) (W0, y]) - b w(ly, 1])
6<y<i
+ Y (W0, XD) k(W0 yD) - b w(x, 1] x [y, 1].
O<x<i
O<y<1

Here the second term comes from the case whenl, the third from the case = 1, and
the last from the remaining case. This equation can be expressed in Sweedler notation a

W(PoQ) = k(W(P) k(¥(Q)+ Z (Pw)) - ¥ (¥(Q)) - b ¥(Py)
+ZK(‘I’(P)) (W (Q(l))) ‘b-¥(Qw)
+ Z Z (Pw)) - (¥(Qw)) -b- ¥(Pa x Q).

Lettingu = W(P) andv = ¥(Q), and using the fact that theb-index is a coalgebra
homomorphism, we have

Y(PoQ)=«)- -« + ZK(U(D) k() -b-ug + ZK(U) -K(U(l)) -b-ve

+ZZ k(uw) -« (vay) -b - MU, v2)-

Here M(u, v) denotes the expression in Theorem 9.2. Hence, we conclude that we cal
compute¥ (P ¢ Q) in terms of¥ (P) andW¥ (Q). SinceL(U x V) = L(U) o L(V) fortwo
convex polytopet) andV, we obtain the following proposition.

Proposition 10.2 Let U and V be two convex polytopes. Then dlhendex of their
Cartesian product Ux V is given by

WU x V) =) «@) + ZK(U(D) (@) b Ug + Y kW) k(vw) bve
+ ZZ (Uw) -« (vw) b M(U@. ve).
where u= ¥(U) andv = ¥ (V).

11. Concluding remarks

There are a number of questions that appear at this point in the research. We put forward
few of them.
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In Section 8 we found new properties that hold for¢déndex of the shelling components
of the simplex. In [6] thecd-index of shelling components of the cube have been studied.
Are there any identities between thd-indexes of the shelling components of the cube
involving coproducts?

Stanley conjectured that among all Gorenstéattices of rankn, the Boolean algebra
B, minimizes all the coefficients of thed-index [21, Conjecture 2.7]. We present the
following generalization:

Conjecture 11.1 Let F be a polytope of dimensiondl. Then among all d-dimensional
polytopes having F as a facghe pyramid of F minimizes all the coefficients oftdendex.

Let L be a linear functional on the Newtonian coalgebra Then the linear majp*
defined onVv by

D () =) X -L(X2) - X@
X

is a coderivation ov. Thatis,D" satisfies the relation o D" = (D" ® 1+1® D)o A.
In the Newtonian coalgebraB, &£, A, andF are there any coderivations which have a
combinatorial interpretation?

In Section 9 when computing (P ¢ Q) in terms of¥ (P) andV¥ (Q), many terms with
negative signs occur. Could one find a more bijective formulafoP < Q), such as the
formula forw (P x Q) in Theorem 9.2? More importantly, consider the case whemd
Q are Eulerian, and we have(P) and¥ (Q) ascd-indexes. Do there exist formulas for
V(P x Q) and¥ (P < Q) where the computation is completely inside the algebrthat is,
where all terms ared-monomials. For instance, Hetyei has asked if there are any explicit
formulas for thecd-index of products of simplices.

There is one more operation on graded posets which preserves the Eulerian proper!
Let P and Q be two posets of the same rank+ 1. DefineP o Q to be the posetP —

0,1) + (Q — {0,1}) U {0,1}. Thatis, PoQ is formed by pairwise identifying the
extremal elements dP and Q. We have¥ (Po Q)=W¥(P)+¥(Q) — (a—b)". When
P and Q are Eulerian of the same odd rank 2 1, we have thaP o Q is Eulerian and
W(Po Q) =W(P)+¥(Q) —(Z—2-d)*

In order to obtain a better understanding of titkindex of an Eulerian pose®, one
would need to compute more examples. It would be interesting to implement the algorithn
in Section 3 in either Maple or Mathematica.

LetV andW be two convex polytopes iR". The Minkowski sunV +W is also a convex
polytope. Assume that we know thd-index of the two polytope¥ andW. This does not
give us enough information to compute ttakindex of the Minkowski sunV + W. What
additional information do we need bfandW in order to comput& (V +W)? Recall that
in Proposition 6.5 this was solved when one of the polytopes is a line segment in gener:
direction. Recently, the authors together with Louis Billera have found an answer in the
case when one of the polytopes is a line segment not in general direction.
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Note

In a forthcoming paper, Ehrenborg and Fox have found recursion(®rx Q) andW (P ¢ Q) completely inside
the algebraF. Recently Billera and Ehrenborg have proven Conjecture 11.1.
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