;“ Journal of Algebraic Combinatori&(1998), 139-152
“ (© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Vexillary Elements in the Hyperoctahedral Group

SARA BILLEY billey@math.mit.edu
Dept. of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139

TAO KAI LAM *
Dept. of Mathematics, National University of Singapore, Kent Ridge Crescent, S119260, Singapore

Received June 19, 1996; Revised April 29, 1997

Abstract. In analogy with the symmetric group, we define the vexillary elements in the hyperoctahedral group
to be those for which the Stanley symmetric function is a single S€rtunction. We show that the vexillary
elements can be again determined by pattern avoidance conditions. These results can be extended to include
root systems of type8, B, C, andD. Finally, we give an algorithm for multiplication of Sch@-functions with

a superfied Schur function and a method for determining the shape of a vexillary signed permutation using jeu d
taquin.
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1. Introduction

The vexillary permutations in the symmetric group have interesting connections with
the number of reduced words, the Littlewood-Richardson rule, Stanley symmetric func-
tions, Schubert polynomials and the Schubert calculus. Lascoux andz8obérger [16]

have shown that vexillary permutations are characterized by the property that they avoic
any subsequence of length 4 with the same relative order as 2143. Macdonald has given
good overview of vexillary permutations in [18]. In this paper we propose a definition for
vexillary elements in the hyperoctahedral group. We show that the vexillary elements car
again be determined by pattern avoidance conditions.

We begin by reviewing the history of the Stanley symmetric functions and establishing
our notation. We have included several propositions from the literature, which we have
used in the proof of the main theorem. In Section 3, we have defined the vexillary element:
in the symmetric group and the hyperoctahedral group to be those elements for which th
corresponding Stanley symmetric function is a single Schur function or Sgtunction
respectively with coefficient 1. We state and prove that the vexillary elements are precisely
those elements which avoid 18 different patterns of lengths 3 and 4. Due to the quantity
of cases that need to be analyzed we have used a computer to verify a key lemma in th
proof of the main theorem. The definition of vexillary can be extended to cover the root
systems of typed, B, C, andD; in all four cases the definition is equivalent to avoiding
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certain patterns. In Section 4, we give an algorithm for multiplication of S€htunctions

with a superfied Schur function. In Section 5, we describe a method of finding the Stanley
symmetric function of a vexillary signed permutation using jeu de taquin. We conclude
with several open problems related to vexillary elements in the hyperoctahedral group.

2. The hyperoctahedral group and Stanley symmetric functions

Let S, be the symmetric group whose elements are permutations written in one-line notatior

as wy, wo, ..., wn]. S is generated by the adjacent transpositigrfer 1 < i < n, where
oi interchanges positionsandi 4+ 1 when acting on the right, i.e.,.[., wi, wi1, .. .Jo; =
[...,wi+1, wj, ]

Let By, be the hyperoctahedral group (or signed permutation group). The elemdts of
are permutations with a sign attached to every entry. We use the compact notationwhereab
is written over an element with a negative sign. For examBl&,[1] € Bs. B, is generated
by the adjacent transpositionsfor 1 <i < n, as ing,, along withog which acts on the
right by changing the sign of the first element, i.e; Jwo, . . ., wp]og = [W1, wa, ..., wy].

If w can be written as a product of the generatgsy,, - - - 04, and p is minimal, then
the concatenation of the indicaga, - - - a, is areduced wordor w, andp is thelengthof
w, denoted (w). Let R(w) be the set of all reduced words fer The signed (or unsigned)
permutationsyy, ..., wp] and [wy, ..., wy, N+1,n+2, .. .] have the same set of reduced
words. For our purposes it will be useful to consider these signed permutations as the sar
in the infinite groupsS,, = US, or B, = UB;.

Lets, be the Schur function of shapeand letQ; be the SchuQ-function of shape..

See [17] for definitions of these symmetric functions.

Definition 1 Forw € §,, define theS, Stanley symmetric function by

Gu(X) = Z Z XiyXi, - Xy, 1)

acR(w) (i1=--=<i))
€A(D(a))

where A(D(a)) is the set of all weakly increasing sequences such that if > ax, then
ik_]_ < ik.
Forw e By, define theC,, Stanley symmetric function by

Fu(X) = Z Z 2l xi, -+ - X, (2)

acR(w) (i1<---<iy)
eA(P(a)

where A(P(@)) is the set of all weakly increasing sequences such tlat if < ax > a1
then we don't haveyx_; = ix = ixy1, (i.€., we cannot have equality across a peak in
the corresponding reduced word), giddenotes the number of distinct valugsin the
admissible sequence, i.e., the number of distinct variables in the monomial.

In [23], Stanley showed th&,, is a symmetric function and used it to express the number
of reduced words of a permutatienin terms of f*, the number of standard tableaux of
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shaper. Namely,
#R(w) =Y oy T4, ©)

wherea? is the coefficient 0§, in G,,. Bijective proofs of (3) were given independently by

Lascoux and Saltzenberger [15] and Edelman and Greene [6]. Reiner and Shimozono [21]

have given a new interpretation of the coefficiemsin terms of D (w)-peelable tableaux.
Stanley also conjectured that there should be an analog of (B.foilhis conjecture

was proved independently by Haiman [9] and ski@wicz [10] in the following form:

#R(w) =Y pLa", 4)

whereg” is the number of standard tableaux on the shifted shapedg?, is the coefficient
of Q, whenF, is expanded in terms of the SchQrfunctions.

The Stanley symmetric functions can also be defined using the nilCoxeter algebra o
S, andB,, see [7, 8]. The relationship between Kk&wicz’s proof of (4) and3, Stanley
symmetric functionsis exploredin[12]. See also[2, 13, 27]for other connections to Stanley
symmetric functions. The functiors, are usually referred to as the Stanley symmetric
functions of typeC because they are related to the root systems of@ypehe Weyl groups
for the root systems of typB andC are isomorphic, so we can study the grdBpby
studying either root system. We consider the root systems ofByped D at the end of
Section 3.

The Stanley function§,, can easily be computed using Proposition 2 below which is
stated in terms of special elementdHp There are two types of “transpositions” in the hy-
peroctahedral group. These transpositions correspond to reflections in the Weyl group of th

root systemB,,. Lettj; be a transposition of the usual type, i.e...[ wi, ..., wj, .. .Jtj =
[...,wj,...,wi,...]. Letsj,i < ] be atransposition of two elements that also switches
signf...,wi,...,wj,...]Js; =[...,wj,..., wi,...]. We defines; to be the “transposi-

tion” which changes the sign of th¢h element, i.e.,.[.., wi,...]Jsi = [..., wi,...]- A
signed permutation is said to have descenatr if wy > wy ;.

Proposition 2 ([1]) The Stanley symmetric functions of type C have the following recur-
sive formulas

Fw = § : FU«’trstir + § : Fwtrssr ’ (5)
O<i<r O<i
I (wirsti )=l (w) l(wtsSr )=l (w)

wherer isthe last descentof and s is the largest position such theg < w; . The recursion
terminates whetw is strictly increasing in which case, /= Q;, wherex is the partition
obtained from arranging|w; | : wi < 0} in decreasing order.

For example, lety = [4, 1, 2, 3]. Thenr = 2 sincew, > ws is a descent anth; < wa,
ands = 3 sincews < wz < wy. This implieswt,s = [4, 2, 1, 3] and we have

Fia123 = Fia.12 3]st T F12.1.2.3]tss = F2.4.1.3 + Faz 12 (6)
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Continuing to expand the right-hand side we ség3[1, 2] is strictly increasing, so
Fazi2=QuaandFz 13 =Fz313).5s = F5.21.34 = Qe.2- HenceFz 153 = Qays)
+Qi2-

Note thatl (wt;s) is always equal td(w) — 1 in Proposition 2 because of the choice
of r ands. Hence, ifl (wtstir) = I(w), thenl(wtstir) = l(wts) + 1 wherer; is a
transposition of either type. The reflections which increase the lengti, oby exactly 1
are characterized by the following two propositions.

Proposition 3 ([19]) If we S or B and i < j, then l(wtj;) = I(w) 4+ 1if and only if

® Wi < Wj

and no k exists such that
o i <k<jandw; < wk < wj.

Note that the first condition above guaranteesltat;) > I (w), and the second condi-
tion determines when the length is increased by exactly 1. Similarly, in the next proposition,
the first two conditions guarantee thabs;) > | (w), and the next two conditions determine
whenl(ws;j) — [ (w) is 1.

Proposition 4 ([1]) If w e By, andi < j, thenl(ws;) = I(w) + 1if and only if
o —Wj < Wj and—wi < Wj
o ifi # j, eitherw; <O0orw; <0,

and no k exists such that either of the following is true
e k<iand—w; < wk < wj
o k< jand—wi < wy < wj.

3. Main results

In this section we give the definition of the vexillary elementSjandB,,. Then we present
the main theorem. The proof follows after several lemmas.

Definition5 If w € S, thenw isvexillary if G,, = s, for some shapg F | (w). Similarly,
if w € By thenw is vexillary if F,, = Q, for some shape + | (w) with distinct parts.

It follows from Eq. (3) that ifw is vexillary then the number of reduced words @ois the
number of standard tableaux of a single shape (unshifted 8, or shifted forw € By).

For S,, this definition is equivalent to the original definition of vexillary given by Lascoux
and Sclutzenberger in [16]. They showed that vexillary permutatiorare characterized
by the condition that no subsequerce b < ¢ < d exists suchthab, < wa < wq < we.
This property is usually referred to as 21d%oiding Lascoux and SaltZzenberger also
showed that the Schubert polynomial of typgindexed byw is a flagged Schur function
if and only if w is a vexillary permutation. One might ask if the Schubert polynomials of
typeB, C or D indexed by a vexillary element could be written in terms of a “flagged Schur
Q-function.”
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Many other properties of permutations can be given in terms of pattern avoidance. Fol
example, the reduced words of 321-avoiding [3] permutations all have the same content
and a Schubert variety i8L,/B is smooth if and only if it is indexed by a permutation
which avoids the patterns 3412 and 4231 [11]. Also, West [28], Simion and Schmidt [22],
Noonan [20], and Bona [4, 5] have studied pattern avoidance more generally and giver
formulas for computing the number of permutations which avoid combinations of patterns.
Recently, Stembridge [27] has described several properties of signed permutations in termr
of pattern avoidance as well.

We define pattern avoidance in terms of the following function whilelttensany sub-
sequence into a signed permutation.

Definition 6 Given any sequencaya; - - - a of distinct nonzero real numbers, define
fl(aya; - - - a) to be the unique elemebt= [by, ... , b¢] in Bk such that

e For all j, botha; andb; have the same sign.
e Foralli, j, we havelbi| < |bj|ifand only if |& | < |a;].

For examplefl(6, 3, 7, 0.5) = [3, 2, 4, 1]. Any word containing the subsequerges, 7,
0.5 does not avoid the patteB@41.

Another way to describe pattern avoidance is with the signed permutation matrices.
Namely, a signed permutation matrix avoids the patterm if no submatrix ofw is the
matrix v.

Theorem 7 An elementv € By, is vexillary if and only if every subsequence of lengii
w flattens to a vexillary element inyBln particular, w is vexillary if and only if it avoids
the following patterns

321 321 3A 321 32
231 132 4123 4123 3412
3412 3412 3412 3142 2341
2413 B4l 2143

()

This list of patterns was conjectured in [13]. Due to the large number of non-vexillary
patterns in (7) we have chosen to prove the theorem in two steps. First, we have verifiet
that the theorem holds fd8s (see Lemma 8). Second, we show that any counterexample
in By, would imply a counterexample iBg.

Lemma8 Letw € Bg, thenwisvexillary ifand onlyif itdoes not contain any subsequence
of length3 or 4 which flattens to a pattern iv).

The LISP code used to verify Lemma 8 is available from the first author on request. In
summary, we verify that the following two statements are either both true or both false for
each elemenb in Bg:
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e Isw vexillary? (This is computed using the recurrence from Proposition 2)
e Doesw avoid all of the patterns in (7)? (Compare each flattened subsequence of length:
3 and 4 with the pattern list).

Lemma9 Letw be any signed permutation. Suppasew;, - - - wj, iS a subsequence of

w, and let ue By befl(wi, wi, - - - wi,). Then the following statements hold

1. Ifthe last descent ab;, wi, - - - wj, appears in positioni then the last descent of u isin
position r.

2. Ifinaddition, wi, < w;, and is is the largest index i such that this is trugthen u < u,
and s is the largest index in u such that this is true.

3. If v = wr;, thenfl(v;, - - - vj,) = fl(wi, - - - wj,) - Tjx wherez;;, and tjx are transposi-
tions of the same type.

These facts follow directly from the definition of the flatten function.

Lemma 10 Foranyve B, and anyO<i <r, if | (vti;) — I (v) > 0 then there exists an
index k suchthatk k <r, vy < vk < v, and l(vty,) — 1 (v) = 1. Similarly, if | (vs;) —1(v)
> 0 then there exists an index k such that either

o k<r, vy <, and l(vtyy) — 1 (v) =1, or

o K<i, —v <v <, andl(vsy) — 1 (v) = 1.

Proof: If I(vty) —I(v) > O, consider the sd; : i < j <r andv; <v}. This setis
nonempty since; is a member. Pick such thaty is the largest value in this set. Then no
j exists such that < j <r andw < vj < vr, hence by Proposition B(vt,) — 1 (v) = 1.

Sayl(vsy) — I (v) > 0. If there existk <r such that < vr, choosek such thatyy is
the largest value ifwx < vy : k <r}. Then noj exists such that < j <r andv < vj < vr,
hence by Proposition B(vty,) — 1 (v) = 1.

Otherwise, assumigvs,) — [ (v) > 0 and nok exists such that <r andvg < v;. In
particular, this means > v,. Recall from Proposition 4(vs;) — I (v) > 0 implies that
eitherv; <0 or vy <0 and not both. Thusy; > 0 > v,. Choosek such thatyy is the
smallest value iqux > —uv; : k < i}. This setis not empty sincg is in the set from the
remarks just before Proposition 4. Furthermore,jnor exists such that-vx < vj < vr
(by assumption), and n¢’ <k exists such that-v, <vj, <wvx (by choice ofk). Hence
[ (vs¢) — I (v) = 1 by Proposition 4. O

Lemma 11 Given anyw € By, and any subsequence of say w;,wi, - - - wj,, letv =
f(wi, wi, - - - wi) € Be. If I(wtj; i) — I(w) = 1then l(vtjx) — I(v) = 1. Similarly, if
l(ws; i) — (w) = 1then l(vsjk) — 1 (v) = 1.

Proof: If I(wt, i) —1(w) > Lthenw;; < wj, SOv; < vk since the flatten map preserves the
relative order of the elements in the subsequence and signs. Thetéfitig,— | (v) > 1.
If I(wt;; i) — I (w) = 1then noi; <m <iy exists such thai; <wm < wj,. Thisin turn
implies that noj <m < k exists such that; < vy < vk, hencd (vtj) — 1 (v) = 1.

If 1(ws i) —1(w) > 1then—w;; < wj, and—wj, < wj; SO—v;j < vk and—wvk < v; since
the flatten map preserves the relative order of the elements in the subsequence and sigr



VEXILLARY ELEMENTS IN THE HYPEROCTAHEDRAL GROUP 145

Also, ifij #ix then eithemw;; <0 orwj, <0 so eithew; < 0orvk <0. Thereforel (vsjx) —
l(v) > 1. Ifl(ws i) — I (w) =1 then nom < iy exists such that-w;, <wm < wj,, and no
m < ij exists such that wj, <wm < wj,. Thisin turn implies that nen < k exists such that
—Vj < Vm < Uk, and nam < j exists such that vy < vm < vj, hencd (vsj ) —1(v) =1. O

Lemma 12 Given anyw € B, if w is non-vexillary therw contains a subsequence of
length4 which flattens to a non-vexillary element in.B

Proof: Sincew is non-vexillary then eithelf,, expands into multiple terms on the first step
ofthe recurrence in (5) or else the recurrence yi€lds= F, wherev is again non-vexillary.
Assume the first step of the recurrence gives

Fu = Futen, + Futer, + Other terms

Letn be the smallest index such that =i for alli > n, thenn + 1 is greater than j, r
ands. Lete: {1, 2, 3,4} — {i, j,r, s, n+1} be an order preserving map onto the 4 smallest
distinct numbers in the range. Let = fl(wq ) Wa@ Wa3 Wa@). By Lemma 11

| (w,[tafl(r)a*]-(s)][tofl(i)afl(r)]) = I(U)/)

and

I (w/[ta’l(r )Ot’l(S)] [Ta—l(j)a—l(r)]) — | (w/)
Therefore, the recursion implies

Fu = Fw'[torl(r)afl(s)][fa*(iwt*l(r)] + Fw'[torl(r)afl(s)][fafl(j)afhr)] +other terms.
Hencew’ € B4 is not vexillary, and it follows thai contains the non-vexillary subsequence
Wer(1) Wa(2) Wa (3) War (4) -

If, on the other hand, the first step of the recursion gikgs= F, thenv = wt;s7j,
andv is not vexillary. Assume by induction on the number of steps until the recurrence
branches into multiple terms, thatontains a non-vexillary subsequence sgyvcvg. If
i,r,s ¢ {a,b,c,d}thenwwpwcwy is exactly the same non-vexillary subsequence. So we
can assume the sf, b, c, d, i, r, s} has at most 6 elements. Let

¢:{1,2,...,6} > {a,b,c,d,i,r,sfu{n+1,n+2}

be an order preserving map which sends the numbers 1 through 6 to the 6 smallest distin
integers in the range. Let’ = ﬂ(w¢(1)w¢(2) e w¢(6)) andv = ﬂ(v¢(1)v¢(2) s U¢(6)).

By constructionp’ € Bg contains a non-vexillary subsequence, herids not vexillary by
Lemma 8. We will use the recursion df, to show thatw’ is not vexillary inBg. From
Lemma 9 it follows that

V' = w'tyi)p1s) Tping-1m) -
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By Lemma 11] (v) = | (wt;s) + 1 = I (w) implies] (v') = I (w’). Therefore,
F. = F, + possibly other terms.

Regardless of whether there are any other terms in the expandign af’ is not vexillary
sincev’ is not vexillary. Again by Lemma 8, this implies that contains a non-vexillary
subsequence of length 4, saw'’s wywy,. Hencew contains the non-vexillary subsequence

W () W (1) W (g) W (h) - o

This proves one direction of Theorem 7.

Lemma 13 Given anyw € B, if w contains a subsequence of lengtivhich flattens to
a non-vexillary element in Bthenw is non-vexillary.

Proof: Assumeuw is vexillary and letw®, w®, ..., w® be the sequence of signed
permutations which arise in expandiy, = F,0o = F,o = --- = F,w using the
recurrence (5). This recurrence terminates when the signed permuttiois strictly
increasing, hence/® does not contain any of the patterns in (7). Repladey the first
w® such thatw contains a non-vexillary subsequence arfd? does not, and let =
wi D = w ez,

Saywawpwcwy IS a non-vexillary subsequencein Ifi, r, s ¢ {a, b, ¢, d}, thenvavyvcvg
would be exactly the same non-vexillary subsequence. This contradicts our cheice of
So we can assume that the order of the{aeb, c, d, i, r, s} is less than or equal to 6. As
in the proof of Lemma 12, let

¢:{1,2,...,6} > {a,b,c,d,i,r,sfu{n+1,n+ 2}

be an order preserving map onto the smallest 6 distinct numbers in the range. et
fA(wgmywe@) - - wee) andv’ = vy vg@ - - - Vo). To simplify notation, we also let
i” = ¢ (i), r' = ¢~ 1(r), ands' = ¢~%(s). By constructionw’ € Bg contains a non-
vexillary subsequence henag is not vexillary by Lemma 8. As in Lemma 12 one can
show

F., = F, + other terms.

Sincew’ contains a non-vexillary subsequence aibes not, there must be anothertermin
F.» indexed by areflection; # 7 withl (w't s 7jr) = I (w’). One should note that =
j’is possible but then,» andr;» must be different types of transpositions. liet ¢ (j").
By Proposition 4 and the definition of the flatten function, we Haue st ) — 1 (wtrs) > 0.
By Lemma 10 there exists a reflection such that (wt;stir) — | (wtrs) = 1.

We must havey, # 7 sincer, # tj,. Hence,

Fu = Futen, + Futen, + POSSibly other terms.

This provesw is not vexillary, contrary to our assumption. |

This completes the proof of Theorem 7.
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The definition of vexillary can be extended using Stanley symmetric functions of type
B andD. These cover the remaining infinite families of root systems. It was shown in [2,
12] that these Stanley symmetric functions are always nonnegative linear combinations o
SchurP-functions. For these cases, we define vexillary by the condition that the Stanley
symmetric function is a single Schéx-function with coefficient 1.

Theorem 14 An elementv € By, is vexillary for type B if and only if every subsequence
of length4 in w flattens to a vexillary element of type B ig.Bn particular, w is vexillary
if and only if it avoids the following patterns

21 32 2841
2341 3412 3412 (8)
3412 4123 4123
An elementw € D is vexillary for typeD if and only if every subsequence of length 4
avoids the following patterns:

132 132 321 32 321 32
2341 2B41 2341 2341 3412 342
3412 3412 3412 3412 3412 3412
4123 4123 4123 4123

©)

Note, that the patterns that are avoided by vexillary elements ofypee not all type
D signed permutations but instead include some elements with an odd number of negativ
signs. The proof of Theorem 14 is very similar to the proof of Theorem 7 given above. The
analogs of Proposition 2 are given in [1]. Again the proof relies on a computer verification
that these patterns characterize all vexillary elemenBgiand Dg.

4. Arule for multiplication

Lascoux and Saltzenberger noticed that the transition equation for Schubert polynomials of
vexillary permutations can be used to multiply Schur functions [18, p. 62]. This provides an
alternative to the Littlewood-Richardson rule. There is an analog of Littlewood-Richardson
rule that can be used to multiply Sch@-functions [25, 30]. L. Manivel asked if the
transition equations for Schubert polynomials of tyge€, andD could lead to a rule for
multiplying SchurQ-functions. The answer is “sometimes”. There are only certain shifted
shapesu which can easily be multiplied by an arbitrary Sch@ffunction. Therefore,
we have investigated a different problem. In this section we present an algorithm for
multiplication of a SchuQ-function by a superfied Schur functiop(s;).

Let ¢ be the homomorphism from the ring of symmetric functions onto the subring
generated by odd power sums defined by

2px  for k odd,

(10)
0 for k even.

¢(pk)={
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The image of a Schur function under this maygs, ), is called asuperfied Schur function
The superfied Schur functions appear in connection with the Lie super algebras [24, 29].
The Stanley symmetric functions of tygeandC which are indexed by permutations

are related via the superfication operator.

Proposition 15 ([2, 12, 26]) Forv € S, we have F = ¢(G,).

Letv = [vy,..., vg] be any signed permutation. We denote the signed permutation
[1,2,...,n,v1+n,...,vg +n] by 1" x v. Also, if w = [wy, ..., wy] is another signed
permutation, letv x v be [wy, ..., wn,v1+Nn, ..., vqg +N] € Bnyyg.

Lemmal6 Forve S, andw € B, we have
Fva = Fw F1”><v = wav~ (ll)

Proof: From (2), wherv € Sy, F, is equal toF1n, Sinceaya; - - - a, € R(v) if and only if
(ar+n)(@+n---(ap+n) e RA" x v). The reduced words fav x v are all shuffles of a
reduced word fow with a reduced word for"Lx v. It remains to show that the monomials in
F,xw are exactly the product of monomialsky), andFin,, counted with their coefficients.

Leta=aay---ap€ R(1" x v) andi = i4i,- - -ip be an admissible sequenceaofWe
call (a, i) an admissible pair of"Lx v. Similarly, let(b, j) be an admissible pair af. We
now form an admissible paic, k) of w x v. Letk = kikz - - - kp4q be a rearrangement of
ij in weakly increasing order. To construg;tconsider a constant subsequekge- ke 1 =
<. = Ky in k with ke_1 < ke andks <ks,1. If this subsequence comes entirely from
(respectivelyj) the corresponding part of the reduced worid made up entirely of the
corresponding part af (respectivel\b). If it contains numbers from botlandj, then there
are two choices fo€gCey1 - - - Ct:

a1 -asblyg---basi8si2- -8,

or

a1 -as-1bbiy - - budsdsiiasyo - - @,

whereag is the smallest number m a1 - - - a,. One can check th&tis an admissible se-
guence for all possible choicesoflescribed above. Furthermore, each nonempty constant
subsequendk. - - - ks contributes a factor to the coefficientxf x, - - - x¢,,,. Namely, the
factor is 2 if the sequence comes entirely froor j, and if the sequence comes from both
we get a contribution of 2 for each of the two reduced subwords above so the factor is 4
Therefore, the sum of the coefficientsxfXxy, - - - X,., for k and all possible choices of

c will be 22284 wherea (and g) is the number of constant sequences onlyijirfin |j|
respectively), angt is the number of constant sequences from both. Cleai®/£2 equals

2112l which is the coefficient of the product corresponding to the admissible @airs
and(b, j). O
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The algorithm for multiplyingF,, F, given above will not carry over for arbitrary ele-
ments ofB,, becausd-, = Fin,, if and only if v € S.. However, from the algorithm and
Proposition 15 we have the following corollary.

Corollary 17 Letw € By, such that i, = Q,,, and letv € S such that G = s,. Then
QM '¢(SA) = wav (12)
and F, ., can be determined by the recursive formula in Proposiflon

Note, that D. Worley has shown th&,, - ¢(s,) is equal to a certain skew Sch@-
function [29, 7.11].

In the special case whdh, = ¢(s,) is a single Schuf-function, sayQ,, Corollary 17
can be used to multipl®),, andQ,,. This occurs only when is a vexillary element of type
C,andvisoftheform(im+I| -1, m+I1 -3, m+I1—5,..., m—1 + 1) for some positive
integersm > | [14].

5. The shape of a signed permutation

Given a vexillary elemeniv, for which straight shape doesG,, = s, if we S,? For
which shifted shapg doesF,, = Q, if we B? Forw € S, there are several ways to
determine this shape: the transition equation [18, p. 52], inserting a single reduced worc
using the Edelman-Greene correspondence [6], or by rearranging the code in decreasir
order [23]. For a vexillary element of tyf@ one can find the shapefor whichF,, = Q,,

by using the recursive formula (5) or by using the k@wicz insertion [10] or Haiman
procedures [9] on a single reduced word.

Definition 18 Given an element of S,, the code ofv is defined to be the composition

(C1,Cy, ..., Cn) Wherec, = #1 < j < n: v > v;}. The shape ob, denoted by (v),

is defined to be the transpose of the partition given by rearranging the code in decreasin
order.

It is well known that ifv is a vexillary permutation o§,, thenG, = s;,). We now
describe a procedure to define the shapaw) of a signed permutatiow so that whenw
is vexillary, F,, = Qjey).

Let w be an element oB,, not necessarily vexillary. Rearrange the numbers im
increasing order and denote this new signed permutatian et v € S, so thatw = uv.
Note thatl (w) = I(u) + | (v) andu is vexillary with F, = Q, wherep is the strictly
decreasing sequence given{iy; | : u; < 0} which is the same set dgw;| : wi <0}. For
any standard shifted Young tablebuof shapeu and any standard Young tablesuof
straight shape.(v), we form a new standard shifted tabledux V by jeu de taquin as
follows:

1. EmbedJ into the shifted shapg&= (n,n—1,...,2,1).
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2. Obtain a tableal by filling the remaining boxes of with 1', 2, . .. starting from the
rightmost column and in each column from bottom to top.

. Add|u| to each entry o¥ to obtainS.

. AppendR on the left side ofSto obtainT.

. Delete the box containing In T. If the resulting tableau is not shifted, apply jeu de
taquin to fill in the box. Repeat the procedure for the box containiregn@ so on until
all the primed numbers are removed.

6. The resulting tableau of shifted shape is denatedV .

[S20F ~N V]

We illustrate the procedure with an example. Suppose [3, —2, —4, 1] thenw = uv
whereu is [-4,—-2,1,3] andvis[4,2,1,3]. LetU= andV = Here,U
has shape4, 2) andV has shape([4, 2, 1, 3]) = (2,1, 1). Then, Steps 1 through 4 will
produce the following tableau:

T=[1]2]3]4]7]8]

5161319 (13)
4'12'110
1/

Deleting the boxes and applying jeu de taquin as in Step 5 gives

U v =[1]2[3[4]7]8]
5(6]9 (14)

10

If V is the standard Young tableau with entries filled successively from left to right and
then from top row down to the next, we denote the shapé e by A8(w) and call it the
shape ofw. In the example abové/ is of the form described and the result of combining
U andV by jeu de taquin in the example gives the shapg3, —2, —4, 1]) = (6, 3, 1). It

can be verified thaf;z —2 _41) = Q,31)-

Theorem 19 For any w € By, Q;s(,) appears in the expansion of,Fwith a nonzero
coefficient. In particularif w is vexillary,

Fw = QAB(w)- (15)

Proof: Using the notation from the algorithm above, one sees thabrresponds to

a reduced wordh of u under theB,-Edelman-Greene correspondence (a.k.a. Haiman
correspondance) [9]. Alsd corresponds to a reduced wdraf v under theA,-Edelman-
Greene correspondence. Thamis a reduced word ofy. The steps described above give
a sequence of shifted jeu de taquin moves for the Haiman proceduats blenceQ; s,
appears with positive coefficient in the expansionFgf If w is vexillary, the resulting
tableauU = V is independent of the choices bf andV. SinceF, is a single Schur
Q-function, the resulting shape® (w) must be that of the Schi®-function. |
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6. Open problems

The vexillary permutations i, have many interesting properties. We would like to explore
the possibility that these properties have analogs for the vexillary elemeBgs in

1. Is there a relationship between smooth Schubert varieti&qi2n)/B, SO(2n)/B or
SO(2n + 1)/B and the corresponding vexillary elements? In particular, does smooth
imply vexillary as in the case d,?

2. Is there a way to define flagged Sch+#functions so that the Schubert polynomial
indexed byw of type B or C is a flagged Schu®-functions if and only ifw is vexillary?

3. Are there other possible ways to define vexillary elemenk;,iso that any of the above
guestions can be answered?
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