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Abstract. LetG; = (V1, E1) andG; = (V2, E») be two edge-colored graphs (without multiple edges or loops).
A homomorphisnis a mappingp : Vi +— V- for which, for every pair of adjacent verticesandv of G1, ¢ (u)
and¢ (v) are adjacent is; and the color of the edgg(u)¢ (v) is the same as that of the edge

We prove a number of results asserting the existence of a @aptige-colored from a s€, into which every
member from a given class of graphs, also edge-colored @pmaps homomorphically.

We apply one of these results to prove that every three-dimensional hyperbolic reflection group, having rotations
of orders from the sefl = {my, my, ..., mk}, has a torsion-free subgroup of index not exceeding some bound,
which depends only on the skt.
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1. Introduction

LetG; = (Vq, E1) andG; = (V,, Ey) be two edge-colored graphs (without multiple edges
or loops). We define a mapping : Vi — V, to be ahomomorphisnif, for every pair of
adjacent vertices andv of Gy, ¢ (u) and¢ (v) are adjacent i, and the color of the edge
¢ (W (v) is the same as that of the edge. In Section 2, we prove a number of results
asserting the existence of a gra@h edge-colored from a s€l, into which every graph
from a given class of graphs, also edge-colored fdpnmaps homomorphically. In each
case we also give explicit upper bounds for the number of vertic€s in

Homomorphisms arise naturally when dealing with Coxeter groups. For each Coxeter
group G the edges of the corresponding Coxeter graph are “colored” by integexs or
and there is a simple relationship between homomorphisms of the Coxeter graph (in a
slightly modified form) and those of the associated group. Hence some results about group
homomorphisms have a natural restatement in terms of graph homomorphisms.

*Research supported in part by a USA Israeli BSF grant and by the Fund for Basic Research administered by the
Israel Academy of Sciences.
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We apply these ideas to prove that every hyperbolic reflection group, having rotations
of orders from the seM = {m;, my, ..., m¢}, has a torsion-free subgroup of index not
exceeding some bound, which depends only on thé/isél/e compare this theorem with
known results about torsion-free subgroups of Fuchsian groups [4], and of arbitrary Kleinian
groups [5]. In outline, the method is to reduce statements about torsion-free subgroups to
statements about group homomorphisms, to reformulate these in terms of graph homomor-
phisms, and then to apply the purely graph-theoretic results of Section 2.

We tacitly identify graphs edge-colored from a set of only one color with uncolored
graphs. We say that a colored graph is planar, complete etc., if the underlying uncolored
graph has the corresponding property.

We denote byC(Y) the Cayley graph obtained from the generatingYdtvhere the
group will be clear from the context). In all the cases we consMevill be closed under
taking inverses, and we will rega€(Y) as anundirected graph.

2. [Edge-colored graphs and their homomorphisms

In this section we prove the following.

Theorem 2.1 For every integer n> 1there is a finite graph Gwhose edges are colored
by the n colordl, 2, ..., n so that every planar graph whose edges are colored with these
colors maps homomorphically into,G

Itis of interest to know how small the grapf@s in the above theorem can be made. Let
An denote the minimum possible number of vertices of a gaphWe have,

Proposition 2.2 For every positive integer,n
n®+3 <, <5n*.

We prove the upper bound of this proposition as a consequence of a more general result.
For a family of graphg and for an integen > 1, letA(G, n) denote the minimum possible
number of vertices in an edge colored graplso that each member gfwhose edges are
colored by colors from the sét, 2, ..., n} maps homomorphically into itA (G, n) = co
if there is no such finited). Theacyclic chromatic numbeof a graphG is the minimum
number of colors in a proper vertex coloring®fso that the vertices of each cycle receive
at least 3 distinct colors. This notion was introduced byridum and has been studied
by various researchers. In particular, it has been proved by Borodin [2] that the acyclic
chromatic number of any planar graph is at most 5. Thus, the upper bound of Proposition
2.2 follows from the following more general result, proved below.

Theorem 2.3 Let Gx be the family of all graphs with acyclic chromatic nhumber not
exceeding kthen for every odd ni(Go, n) = (n + 1), and for every k and m.(Gk, n) <
knk-1,
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We note that it is not difficult to show that the family_, of all complete bipartite graphs
with k — 1 vertices in one side consists of graphs with acyclic chromatic number akmost
and yetn > 2,

MG .y =nt4k—1

showing that the above theorem is nearly tight. We note also that, by known results about
the acyclic chromatic numbers of graphs embeddable on surfaces other than the plane
(see [1]) the assertion of Proposition 2.2 may be extended to more complicated surfaces.
As we have learned from J. Befil during the completion of this paper, a notion similar
to the one considered here has been studied by Raspaud and Sopena [8], (see also [7, 11]
In these papers the authors study homomorphisms betdissriedgraphs, and show, in
particular, that there exists a directed grapton 80 vertices, with no cycle of length 2, so
that every orientation of a planar graph maps homomorphicallythtd he proof is based
on acyclic colorings, like our proof here, and although we do not see any way to deduce the
results here from the results in the papers mentioned above or vice versa, it seems that the
same techniques are useful in both cases.
To prove Theorem 2.3 we need the following two simple lemmas.

Lemma 2.4 If 7 is the family of all forests theffior every odd nA(7,n) = n+ 1.

Proof: A star withn edges of distinct colors shows thatZ, n) > n + 1. A complete
graphK onn + 1 vertices with a propear edge-coloring of its edges shows thaf, n) <

n+ 1. Indeed, the vertices of each forest can be mapped into th&sené by one, always
adding a vertex that has at most one neighbor in the previously mapped vertices, and using
the fact that an edge of each color is incident with each verték.of m|

Lemma?2.5 LetU beacomplete bipartite graph onthe classes of vertices{a, ay, . . .,
ap}and B= {by, by, ..., by}, with a proper coloring of its edges by n colors. Then for any
forest T whose edges are colored by the same n colors and for any bipartition of the set
of vertices of T into vertex classes V and & which no two vertices of V or of W are
adjacent there is a homomorphism of T into U that maps V into A and W into B.

Proof: It suffices to map any connected componenfTofThis can be done as in the
previous proof, by mapping the vertices of the componentlihtine by one, starting by
mapping a vertex into the appropriate vertex clasbl pand always adding a vertex that

has a unigque neighbor among the previously mapped vertices. Since each color is incident
with each vertex ol , the mapping can indeed be completed. m|

Proof of Theorem 2.3: The assertion that(G,,n) = n + 1 for oddn follows from
Lemma 2.4. To prove the main part of the theoremUebe a complete bipartite graph
on the two vertex classes = {a;, ap, ..., an} andB = {by, by, ..., by}, with a proper
coloring of its edges bwn colors.

Define an edge-colored grafi as follows:
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The vertices of5’ are allk-tuples of the form

(I, X1, X2, ooy Xicy Xigds - -5 Xi)

where 1<i <kand 1< x; <nforall j.
An edge ofG’ joins the two vertices

(I, X0, X2, ooy Xic1y Xigds - -5 Xi)

and

(ja yla y2a DR} YJ—l» Yj+l, R Yk)

if and only ifi # j. Such an edge, where< |, is colored the same as the edggby, in
the graphJ.

We claim that every edge-colored graph colored f{@n2, . . ., n} with acyclic chromatic
number not exceedirig maps homomorphically int@’. To see this, leG be such a graph
and letVy, ..., Vk be a partition of the vertices ¢ defined by an acyclic coloring of
it. Each induced subgrap@; j = G[V; U Vj](1<i < j <k) is then a forest so that by
Lemma 2.5 there is a homomorphigh); from eachG; ; into U, mappingV; into A and
Vj into B. Suppose; j (v) = ay, ) forallv € V; and, similarlyg; j (w) = by, ) for all
w e Vj.

Define a mag from the vertices o6 to those ofG’ by takingv € V; to the vertex

(iv wl,i (U), 1//2,i (U)$ ey wifl,i (U), wi,i+1(v)v ) Wi,k(v))

of G'.
Now letv € Vi, w € V; be adjacent vertices iG, (i < j). Thenw is mapped byp to
the vertex

(o Yo j(w), Yo j(w), .., Yj—aj(w), ¥ j4a(w), ..., ¥jk(w))

of G’'. By the definition ofG’ the verticesp (v) and¢ (w) are adjacent and joined by an
edge of the same color as that of the edge )by, ;w) = ¢i.j(v)¢ij(w) iNU. Sinceg; ;
is @ homomorphism, this is also the colorwaf in G. We have thus shown that is a
homomorphism. Sinc&’ haskn“~* vertices the proof is complete. O

To complete the proof of Proposition 2.2, we need to establish the lower boung. for
To do this we define a class of graphs, thangular graphs A, inductively as follows:

(1) Atriangular circuit is inA
(2) If G € A, then the graph obtained by putting a new vertex in one of the fad8ésaoi
by joining it to the three existing vertices of this face, is alsain

Clearly all triangular graphs are planar. By a simple counting argument we show,
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Lemma2.6 A(A,n)>n3+3

Proof: Let H be a graph edge-colored from the col¢ts2, ..., n} into which every
triangular graph, edge-colored from the same set, maps homomorphically. We suppose for
a contradiction thaH has fewer tham® 4 3 vertices.

For eachG € A, leth(G) be the set of homomorphisms fraéito H (ignoring colors),
andc(G) the set of edge-colorings & from the colorq1l, 2, ..., n}. Each ma € h(G)
induces a unique coloring @ for which ¢ is also a homomorphism a@loredgraphs.

This gives a mapping(G) — ¢(G) which, by assumption, is onto. We thus have,

Ic(G)| = [hG)] @

Now construct the grap8’ € A by subdividing a face o&6. A homomorphism ih(G)
can be extended @’ in at mosin® — 1 ways (the image of the new vertex must differ from
that of its three neighbors) so thii(G’)| < (n®—1)|h(G)|. Each of the three new edges in
G’ can be colored im ways so thaic(G)| = n®|c(G)|. Hence by repeatedly subdividing,
we obtain a grapls” € A for which |c(G”)| > |h(G")|, contrary to (1). O

Itis well known that there is a homomorphism of an uncolored g@jatito a graph with
k vertices if and only ifG has a proper vertex coloring ycolors. To see this, observe
that given such a coloring, we can form the complete graph wkesetices are the colors
used. The mapping that takes each vertex to its color is then a homomorphism. Conversely
given a homomorphism of G into the complete graph davertices, coloring each vertex
by its image undey gives a proper vertex coloring. In particular, we haye= 4, as a
consequence of the four-color theorem.

3. Coxeter groups
3.1. Coxeter groups and homomorphisms

Edge colored graphs arise naturally fr@uoxeter groupsThese are groups with a presen-
tation of the form

G=(X|R)

whereX = {a : i € |} andRcomprises the relatoeg(i € I) and possibly some additional
relators of the formia;a;)™ (i # j), mjj > 2. If & a; is of infinite order we setn;; = oo.

We will assume henceforth that the generatingXaes finite, X = {ai, ..., an}. We
refer to the members of ascanonical generatorsf G.

From G (or more precisely from its presentation) we may form an edge colored graph
y (G) by taking as vertices the canonical generators and jomingda; by an edge colored
m;; whenevem;; # oco. The graphy (G) is closely akin to the familiar Coxeter diagram,
but differs in thats; anda; are joined whem;; = 2 and not whem;; = oo. If y(G) is
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disconnected the® can be expressed as a free product of two or more Coxeter groups. We
shall suppose henceforth thatG) is connected.
FromG we may form the index two subgro@ comprising products of an even number
of canonical generators. This subgroup is generatetl by {ri; = a;a; | m;j < oo} (we
use here the assumption thaiG) is connected) and has presentation

G®=(T|R)

1M

whereR’ contains the relations of the forrn and

Figiolisig - - - Finiy 2

While the generators @& correspond to vertices gf(G), those ofG° correspond to its
directed edges;; being expressed graphically by the directed edge #pta a;. There is
a one to one correspondence between directed circujt$®f (including those of length
two) and relations of the form (2).

Now suppose we have a groltpwith generating seY. We color edges of the Cayley
graphC(Y) by the orders of the corresponding generators.

Let$:G° — H be a homomorphism which maps every generatd®’ito a generator
in Y of the same order. We define a homomorph¢sfnom y (G) to C(Y) as follows. Let
$ be defined arbitrarily at one vertex p{G). We then extend the definition gfto the
other vertices of/ (G) one by one. l#(a) is defined an@, is adjacent t@; then we set
¢(a)) = d(a)¢(aa;). The mapp is well defined becausgtakes relations of the form (2)
to the identity.

In the other direction lgp be a graph homomorphisp(G) — C(Y). We obtain a group
homomorphismy’ from G° to H, which mapsT to Y, as follows. Each generator ih
corresponds to a directed edgedfs), which is mapped to a directed edgednyY), which
corresponds to a generator Yh This determines a homomorphisph with the required
properties. The following theorem is an easy consequence of the definitions.

Theorem 3.1 If the mapsp — $ andg — ¢’ are as defined abov&hen(q?)/ = ¢ and
if ¢’ = ¢ at one pointtheny’ = ¢.

3.2. Reflection groups and their torsion-free subgroups

We now apply the foregoing ideas in a geometrical contex€oXeter polyhedron Bn
hyperbolic 3-spacéd® is one whose dihedral angles are all integer submultiples.of
Poinca¥g’s polyhedral theorem [6] gives that the grdBp= G(P) generated by reflections
through the faces oP is discrete. Leky, ..., Xm denote these reflections. Cleaxy =

1(1 <i < m)andifx andx; are reflections through adjacent faces which meet at an angle
of /p then(xixj)? = 1—sincex;x; is a rotation through 2/p. Again by Poincae’s
theorem, every relation i (P) is a consequence of these, so 1B&P) is a Coxeter group.

A (hyperbolic) reflection groupis the order two subgrou@®(P) of such aG(P). In
geometric termsG0(P) is the subgroup of orientation preserving isometrie§ ), and
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the graphy (G(P)) is simply the dual of the edge skeleton®f As such it is connected
and planar.

According to Selberg’s Lemma [9], every finitely generated matrix group has a torsion-
free subgroup of finite index. In particular, finitely generated Coxeter groups (being matrix
groups) have this property. We consider the problem of determining the smallest index of
a torsion-free subgroup of a given groGp We denote this index bjn(G).

Let¢(G?) denote the least common multiple of the orders of all finite subgrou@$.oft
is easy to show tham(G°) must be a multiple of (G°) (see e.qg., [4]). Whe is a Fuchsian
group, Edmonds Ewing and Kulkarni [4] have shown th&G°)/¢(G°) is either 1 or 2
according to the individual group. By contrast, for Kleinian groups, Jones and Reid [5]
have shown than(G°)/£(G°) can be made arbitrarily large, even if only cocompact groups
are considered. For reflection groups the largest known valog@f) /¢ (G°) seems to be
4 (e.g., for the group%(9) of [3]). Now we prove the following theorem.

Theorem 3.2 If G is a hyperbolic reflection group then(8°) is bounded above by a
constant that depends only 66G°).

To prove this we require the following well-known lemma (see e.g., [10]).

Lemma 3.3 If G is a( finitely generatesl Coxeter group for which &has a torsion-free

subgroup of index nthen there is a homomorphism fronf @nto a transitive group of

permutations of1, 2, ..., n} for which every edge relatog;ris mapped to a permutation
consisting only of m-cycles. If @ is a reflection group then the converse holds.

If the transitivity condition is omitted we have a torsion-free subgroup of index not
exceedingn.

Sketch of Proof: Given a torsion free subgroup of indexn, the required permutation
representation is obtained by considering the actiocB®6n then cosets oH.

The converse requires the fact that a finite order element of a reflection group must be
conjugate to the power of an edge relator. It then follows that the stabilizer of any point in

the set being permuted is torsion free. O
Let Co(my, my, ..., my) denote the Cayley graph generated by permutations of
{1, 2,...,n} consisting entirely ofm; cycles(1 <i < k). Using Theorem 3.1, we have

the following result, which is essentially a restatement of Lemma 3.3 in terms of graph
homomorphisms,

Lemma 3.4 If G is a finitely-generated Coxeter group with edge relators of orders
my, my, ..., My, and there exists an index n torsion-free subgroup 8f tAen there is

a homomorphism from(G) to C,(my, ..., my). If G is a reflection groupand such a
homomorphism existthen G has a torsion-free subgroup of index not exceeding n.

Proof of Theorem 3.2: From Theorem 2.1 there exists a grdpghwith edges colored
my, my, ..., M with the property thay (G) maps homomorphically intd wheneveiG°
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is a reflection group whose edge relators have ordefsin. .., mg}. SinceU can be
construed ag (G) for some Coxeter group, Selberg’s lemma and Lemma 3.4 givefan
whichU maps homomorphically int€,(my, my, ..., my). Since clearly the composition
of two homomorphisms is again a homomorphism, eye&) maps homomorphically into
thisCn(my, my, ..., my), whenever the orders of the edge relatoiGdare in{my, ..., my}.
The theorem then follows from Lemma 3.4. O

There are some cases where we can find a precise valig@h. When all the dihedral
angles ofP are equal tor/m, all the edges of the graph(G(P)) are coloredm. In this
casey (G(P)) maps homomorphically int€,(m), if and only if it contains an imbedded
copy of K, wherec is the chromatic number of (G(P)). It is readily verified thaC4(2)
is isomorphic toK4, so that, wherm = 2, G°(P) has a torsion-free subgroup of index
at most 4. Generally (and in all cases whérés bounded), this index will be exactly 4
and, of course, ili5(P), the same subgroup has index 8. This result was noted by Vesnin
[12], and can be used to construct compact hyperbolic manifolds by glueing together 8
copies ofP.

From Andreev’s theorem ([13], Chapter 6, Theorem 2.8), the polyhd@isninbounded
whenm > 3, but may have finite volume whan = 3. SinceCg(3) contains a copy of
K4 (e.g., the Cayley graph generated by the three permutations (125)(364), (156)(234) and
(163)(245)), we conclude, as above, that, whea: 3, G°(P) has a torsion-free subgroup
of index at most 6.

We note that one of the main theorems of Edmonds et al. ([4], Theorem 1.4) can be
formulated naturally in terms of graph homomorphisms (although this does not seem to
lead to any purely combinatorial proof of it). It is equivalent to the statement that every
circuit colored from(my, ..., my) maps homomorphically int&€,(my, ..., my) where
eithern = £(G% or n = 2¢(G°), depending on the individual case. Since, wiiis a
Dyck group (two-dimensional hyperbolic reflection group)) is a circuit, the existence
of indexn (or 2n) torsion-free subgroups follows, for these groups, from Lemma 3.4. This
result is relatively easily proved for the other Fuchsian groups.

Acknowledgment

We would like to thank Marston Conder, Yair Caro and Jarik®t@ for helpful suggestions
and comments.

References

1. N. Alon, B. Mohar, and D.P. Sanders, “Acyclic colourings of graphs on surfasea¢l J. Math, to appear.

2. O.V. Borodin, “On acyclic colorings of planar graphBjscrete Math 25 (1979), 211-236.

3. M.D.E. Conder and G.J. Martin, “Cusps, triangle groups and hyperbolic 3-fdld&yistral. Math. Soc. Ser.
A 55(1993), 149-182.

4. A.L. Edmonds, J.H. Ewing, and R.S. Kulkarni, “Torsion-free subgroups of Fuchsian groups and tesselations
of surfaces,'Invent. Math 69 (1982), 331-346.

5. K.N. Jones and A.W. Reid, “Minimal index torsion-free subgroups of Kleinian groups,” preprint.

6. B. Maskit,Kleinian Groups Springer-Verlag, 1987.



HOMOMORPHISMS OF EDGE-COLORED GRAPHS AND COXETER GROUPS 13

7. J. Neseftil, A. Raspaud, and E. Sopena, “Colorings and girth of oriented planar graphs,” preprint, 1995.
8. A.Raspaud and E. Sopena, “Good and semi-strong colorings of oriented planar drdphms,’Proc. Letters
51(1994), 171-174.
9. A. SelbergOn Discontinuous Groups in Higher-dimensional Spadesa Institute, Bombay, 1960.
10. D. Singerman, “Subgroups of Fuchsian groups and finite permutation gr&ups,London Math. Soc2
(1970), 319-323.
11. E. Sopena, “The chromatic number of oriented graphs,” preprint, 1995.
12. A.Yu. Vesnin, “Three-dimensional hyperbolic manifolds of trabell type,” Siberian Math. J28 (1987),
731-734.

13. E.B. Vinberg (Ed.)Geometry Il, Encyclopaedia of Mathematical Scienses. 29, Springer-Verlag, 1993.



