ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

Vertex-Transitive Non-Cayley Graphs with Arbitrarily Large Vertex-Stabilizer

Marston D.E. Conder and Cameron G. Walker

DOI: 10.1023/A:1008687226819

Abstract

A construction is given for an infinite family { p < 2 2 n + 2 p < 2^{2^n + 2} . The construction uses Sierpinski”s gasket to produce generating permutations for the vertex-stabilizer (a large 2-group).

Pages: 29–38

Keywords: symmetric graph; vertex-transitive; arc-transitive

Full Text: PDF

References

1. Marston Conder, “An infinite family of 5-arc-transitive cubic graphs,” Ars Combinatoria 25A (1988), 95-108.
2. Marston Conder and Peter Lorimer, “Automorphism groups of symmetric graphs of valency 3,” J. Combinatorial Theory Ser. B 47 (1989), 60-72.
3. B. Huppert, Endliche Gruppen I, Springer-Verlag, 1983.
4. R.C. Miller, “The trivalent symmetric graphs of girth at most 6,” J. Combinatorial Theory Ser. B 10 (1971), 163-182.
5. H.-O. Peitgen, H. J\ddot urgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science, Springer-Verlag, 1992.
6. C.E. Praeger, “Finite primitive permutation groups: A survey,” Groups-Canberra 1989 (Springer Lecture Notes in Mathematics), 1456 (1990), 63-84.
7. C.E. Praeger and M.Y. Xu, “A characterisation of a class of symmetric graphs of twice prime valency,” European J. Combinatorics 10 (1989), 91-102.
8. Richard Weiss, “s-Transitive graphs,” in Algebraic Methods in Graph Theory (Coll. Math. Soc. János Bolyai) 25 (1984), 827-847.
9. Helmut Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition