Bose-Mesner Algebras Related to Type II Matrices and Spin Models
François Jaeger
, Makoto Matsumoto2
and Kazumasa Nomura3
2Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223 Japan
DOI: 10.1023/A:1008691327727
Abstract
A type II matrix is a square matrix W with non-zero complex entries such that the entrywise quotient of any two distinct rows of W sums to zero. Hadamard matrices and character tables of abelian groups are easy examples, and other examples called spin models and satisfying an additional condition can be used as basic data to construct invariants of links in 3-space. Our main result is the construction, for every type II matrix W, of a Bose-Mesner algebra N(W) , which is a commutative algebra of matrices containing the identity I, the all-one matrix J, closed under transposition and under Hadamard (i.e., entrywise) product. Moreover, if W is a spin model, it belongs to N(W). The transposition of matrices W corresponds to a classical notion of duality for the corresponding Bose-Mesner algebras N(W) . Every Bose-Mesner algebra encodes a highly regular combinatorial structure called an association scheme, and we give an explicit construction of this structure. This allows us to compute N(W) for a number of examples.
Pages: 39–72
Keywords: spin model; link invariant; association scheme; Bose-mesner algebra
Full Text: PDF
References
1. R. Bacher, P. de la Harpe, and V.F.R. Jones, “Tours de centralisateurs pour les paires d'alg`ebres, mod`eles `a spins et mod`eles `a vertex,” preprint.
2. Ei. Bannai, “Association schemes and fusion algebras: An introduction,” J. Alg. Combin. 2 (1993), 327-344.
3. Ei. Bannai and Et. Bannai, “Spin models on finite cyclic groups,” J. Alg. Combin. 3 (1994), 243-259.
4. Ei. Bannai, Et. Bannai, and F. Jaeger, “On spin models, modular invariance, and duality,” preprint.
5. Ei. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.
6. Et. Bannai and A. Munemasa, “Duality maps of finite abelian groups and their applications to spin models,” preprint, 1995.
7. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
8. R.C. Bose and D.M. Mesner, “On linear associative algebras corresponding to association schemes of partially balanced designs,” Ann. Math. Statist. 30 (1959), 21-38.
9. P.J. Cameron and J.H. van Lint, Graphs, Codes and Designs, London Math. Soc. Lecture Notes 43, Cambridge, 1980.
10. P. Delsarte, “An algebraic approach to the association schemes of coding theory,” Philips Research Reports Supplements 10 (1973).
11. C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, 1993.
12. F. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter Graphs and Towers of Algebras, Springer, 1989.
13. P. de la Harpe, “Spin models for link polynomials, strongly regular graphs and Jaeger's Higman-Sims model,” Pacific J. of Math 162 (1994), 57-96.
14. P. de la Harpe and V.F.R. Jones, “Paires de sous-alg`ebres semi-simples et graphes fortement réguliers,” C.R. Acad. Sci. Paris 311, Série I, (1990), 147-150.
15. P. de la Harpe and V.F.R. Jones, “Graph invariants related to statistical mechanical models: Examples and problems,” J. Combin. Theory Ser. B 57 (1993) 207-227.
16. A.A. Ivanov and C.E. Praeger, “Problem session at ALCOM-91,” Europ. J. Combinatorics 15 (1994), 105-112.
17. F. Jaeger, “Strongly regular graphs and spin models for the Kauffman polynomial,” Geom. Dedicata 44 (1992), 23-52.
18. F. Jaeger, “On spin models, triply regular association schemes, and duality,” J. Alg. Combin. 4 (1995), 103-144.
19. F. Jaeger, “New constructions of models for link invariants,” Pac. J. Math., to appear.
20. F. Jaeger, “Towards a classification of spin models in terms of association schemes,” Advanced Studies in Pure Math. 24 (1996), 197-225. P1: SUD Journal of Algebraic Combinatorics KL583-04-Jaeger May 27, 1998 12:10 72 JAEGER, MATSUMOTO AND NOMURA
21. V.F.R. Jones, “On knot invariants related to some statistical mechanical models,” Pac. J. Math. 137 (1989), 311-336.
22. V.F.R. Jones, private communication.
23. V.F.R. Jones and V.S. Sunder, Introduction to Subfactors, to appear.
24. V.G. Kac, Infinite Dimensional Lie Algebras, Progress in Mathematics 44, Birkh\ddot ausen, Boston, Basel, Stuttgart, 1983.
25. L.H. Kauffman, “An invariant of regular isotopy,” Trans. AMS 318 (1990), 417-471.
26. K. Kawagoe, A. Munemasa, and Y. Watatani, “Generalized spin models,” J. of Knot Theory and its Ramifications 3 (1994), 465-475.
27. A.I. Kostrikin and P.H. Tiep, Orthogonal Decompositions and Integral Lattices, Expositions in Mathematics 15, De Gruyter, Berlin, New York, 1994.
28. A. Munemasa and Y. Watatani, “Paires orthogonales de sous-alg`ebres involutives,” C.R. Acad. Sci. Paris 314 (1992), 329-331.
29. K. Nomura, “Spin models constructed from Hadamard matrices,” J. Combin. Theory Ser. A 68 (1994), 251-261.
30. K. Nomura, “Twisted extensions of spin models,” J. Alg. Combin. 4 (1995), 173-182.
31. K. Nomura, “An algebra associated with a spin model,” J. Alg. Combin. 6 (1997), 53-58.
32. J.H. Van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
33. W.D. Wallis, A.P. Street, and J.S. Wallis, “Combinatorics: Room squares, sum-free sets, Hadamard matrices,” Lecture Notes in Math. 292, Springer-Verlag, Berlin, 1972.
34. D.M. Weichsel, “The Kronecker product of graphs,” Proc. AMS, 1962, Vol. 13, pp. 47-52.
2. Ei. Bannai, “Association schemes and fusion algebras: An introduction,” J. Alg. Combin. 2 (1993), 327-344.
3. Ei. Bannai and Et. Bannai, “Spin models on finite cyclic groups,” J. Alg. Combin. 3 (1994), 243-259.
4. Ei. Bannai, Et. Bannai, and F. Jaeger, “On spin models, modular invariance, and duality,” preprint.
5. Ei. Bannai and T. Ito, Algebraic Combinatorics I, Benjamin/Cummings, Menlo Park, 1984.
6. Et. Bannai and A. Munemasa, “Duality maps of finite abelian groups and their applications to spin models,” preprint, 1995.
7. A.E. Brouwer, A.M. Cohen, and A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, Heidelberg, 1989.
8. R.C. Bose and D.M. Mesner, “On linear associative algebras corresponding to association schemes of partially balanced designs,” Ann. Math. Statist. 30 (1959), 21-38.
9. P.J. Cameron and J.H. van Lint, Graphs, Codes and Designs, London Math. Soc. Lecture Notes 43, Cambridge, 1980.
10. P. Delsarte, “An algebraic approach to the association schemes of coding theory,” Philips Research Reports Supplements 10 (1973).
11. C.D. Godsil, Algebraic Combinatorics, Chapman and Hall, 1993.
12. F. Goodman, P. de la Harpe, and V.F.R. Jones, Coxeter Graphs and Towers of Algebras, Springer, 1989.
13. P. de la Harpe, “Spin models for link polynomials, strongly regular graphs and Jaeger's Higman-Sims model,” Pacific J. of Math 162 (1994), 57-96.
14. P. de la Harpe and V.F.R. Jones, “Paires de sous-alg`ebres semi-simples et graphes fortement réguliers,” C.R. Acad. Sci. Paris 311, Série I, (1990), 147-150.
15. P. de la Harpe and V.F.R. Jones, “Graph invariants related to statistical mechanical models: Examples and problems,” J. Combin. Theory Ser. B 57 (1993) 207-227.
16. A.A. Ivanov and C.E. Praeger, “Problem session at ALCOM-91,” Europ. J. Combinatorics 15 (1994), 105-112.
17. F. Jaeger, “Strongly regular graphs and spin models for the Kauffman polynomial,” Geom. Dedicata 44 (1992), 23-52.
18. F. Jaeger, “On spin models, triply regular association schemes, and duality,” J. Alg. Combin. 4 (1995), 103-144.
19. F. Jaeger, “New constructions of models for link invariants,” Pac. J. Math., to appear.
20. F. Jaeger, “Towards a classification of spin models in terms of association schemes,” Advanced Studies in Pure Math. 24 (1996), 197-225. P1: SUD Journal of Algebraic Combinatorics KL583-04-Jaeger May 27, 1998 12:10 72 JAEGER, MATSUMOTO AND NOMURA
21. V.F.R. Jones, “On knot invariants related to some statistical mechanical models,” Pac. J. Math. 137 (1989), 311-336.
22. V.F.R. Jones, private communication.
23. V.F.R. Jones and V.S. Sunder, Introduction to Subfactors, to appear.
24. V.G. Kac, Infinite Dimensional Lie Algebras, Progress in Mathematics 44, Birkh\ddot ausen, Boston, Basel, Stuttgart, 1983.
25. L.H. Kauffman, “An invariant of regular isotopy,” Trans. AMS 318 (1990), 417-471.
26. K. Kawagoe, A. Munemasa, and Y. Watatani, “Generalized spin models,” J. of Knot Theory and its Ramifications 3 (1994), 465-475.
27. A.I. Kostrikin and P.H. Tiep, Orthogonal Decompositions and Integral Lattices, Expositions in Mathematics 15, De Gruyter, Berlin, New York, 1994.
28. A. Munemasa and Y. Watatani, “Paires orthogonales de sous-alg`ebres involutives,” C.R. Acad. Sci. Paris 314 (1992), 329-331.
29. K. Nomura, “Spin models constructed from Hadamard matrices,” J. Combin. Theory Ser. A 68 (1994), 251-261.
30. K. Nomura, “Twisted extensions of spin models,” J. Alg. Combin. 4 (1995), 173-182.
31. K. Nomura, “An algebra associated with a spin model,” J. Alg. Combin. 6 (1997), 53-58.
32. J.H. Van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.
33. W.D. Wallis, A.P. Street, and J.S. Wallis, “Combinatorics: Room squares, sum-free sets, Hadamard matrices,” Lecture Notes in Math. 292, Springer-Verlag, Berlin, 1972.
34. D.M. Weichsel, “The Kronecker product of graphs,” Proc. AMS, 1962, Vol. 13, pp. 47-52.