ELibM Journals • ELibM Home • EMIS Home • EMIS Mirrors

  EMIS Electronic Library of Mathematics (ELibM)
The Open Access Repository of Mathematics
  EMIS ELibM Electronic Journals

JOURNAL OF
ALGEBRAIC
COMBINATORICS

  Editors-in-chief: C. A. Athanasiadis, T. Lam, A. Munemasa, H. Van Maldeghem
ISSN 0925-9899 (print) • ISSN 1572-9192 (electronic)
 

The Enumeration of Fully Commutative Elements of Coxeter Groups

John R. Stembridge

DOI: 10.1023/A:1008623323374

Abstract

A Coxeter group element w is fully commutative if any reduced expression for w can be obtained from any other via the interchange of commuting generators. For example, in the symmetric group of degree n, the number of fully commutative elements is the nth Catalan number. The Coxeter groups with finitely many fully commutative elements can be arranged into seven infinite families A n, B n, D n, E n,F n, H n and I 2(m). For each family, we provide explicit generating functions for the number of fully commutative elements and the number of fully commutative involutions; in each case, the generating function is algebraic.

Pages: 291–320

Keywords: Coxeter group; reduced word; braid relation

Full Text: PDF

References

1. S. Billey, W. Jockusch, and R. Stanley, “Some combinatorial properties of Schubert polynomials,” J. Alg. Combin. 2 (1993), 345-374.
2. N. Bourbaki, Groupes et Alg`ebres de Lie, Masson, Paris, Chapters IV-VI, 1981.
3. L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, 1974.
4. C.K. Fan, “A Hecke algebra quotient and properties of commutative elements of a Weyl group,” Ph.D. Thesis, MIT, 1995.
5. C.K. Fan, “Structure of a Hecke algebra quotient,” J. Amer. Math. Soc. 10 (1997), 139-167.
6. I.P. Goulden and D.M. Jackson, Combinatorial Enumeration, Wiley, New York, 1983.
7. J. Graham, “Modular representations of Hecke algebras and related algebras,” Ph.D. Thesis, University of Sydney, 1995.
8. J.E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990.
9. J.R. Stembridge, “On the fully commutative elements of Coxeter groups,” J. Alg. Combin. 5 (1996), 353-385.
10. J.R. Stembridge, “Some combinatorial aspects of reduced words in finite Coxeter groups,” Trans. Amer. Math. Soc. 349 (1997), 1285-1332.




© 1992–2009 Journal of Algebraic Combinatorics
© 2012 FIZ Karlsruhe / Zentralblatt MATH for the EMIS Electronic Edition