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Abstract. Let G be a bipartite graph with a bicoloratidi\, B}, |A| = |B|, and letw : E(G) — K whereK
is a finite abelian group witk elements. For a subs&tC E(G) let w(S) = []..gw(e). A perfect matching
M C E(G) is aw-matchingif w(M) = 1.

It is shown that if de¢p) > d for all a € A, then eitheiG has now-matchings, oG has at leastd — k + 1)!
w-matchings.
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1. Introduction

Let G be a bipartite graph with a bicoloratigi\,, B}, |A| = |B|. LetE(G) € Ax B
denote the edge set &f, and letm(G) denote the number of perfect matchingsof

Let K be a (multiplicative) finite abelian groug| = k, and letw : E(G) — K be a
weight assignment on the edges@f ForS € E(G) let w(S) = [[ogw(®).

A perfect matchingM of G is a w-matchingif w(M) = 1. We shall be interested in
m(G, w), the number ofv-matchings ofG.

M. Hall (see exercise 7.15 in [9]) showed thatifG) > 1 and if dega) > d for all
ae A thenm(G) > d!.

Hall's result is the cask = 1 of the following Theorem. The case= 2 was proved
in [1].

Theorem 1.1 Letw:E(G) — K. If m(G, w) > 1anddega) > d for alla € A, then
m(G, w) > (d—-k+1!.

Theorem 1.1 is tight wheK = Cy, the cyclic group of ordek. More generally, for a
finite abelian groug, lets = s(K) denote the maximalfor which there exists a sequence
X1,...,X € Ksuchthaf[,_, x # 1forall@¥ # | < [s] = {1,...,s}. The problem of
determinings(K) was suggested by Davenport (see [11]) and addressed by a number of
authors [3, 5, 10, 11].
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Letd > s = s(K) and letG = Kq 4 denote the complete bipartite graph a k [d].
Letw:E(Kqq4) — K be given byw(i, j) = 1ifi = jori > s+ 1, andw(, j) = X;
otherwise, whergq, . . ., Xs are as above. Than(G, w) = (d — s)! .

This construction suggests the following conjecture (which contains Theorem 1.1 since
it's easy to see that(K) < k — 1).

Conjecture 1.2 ([1]) Letw:E(G) — K. If m(G, w) > 1anddega) > d foralla € A,
then MG, w) > (d — s(K)!.

In Section 2 we utilize the complex group algebr&db prove Theorem 1.1. In Section 3
we discuss a possible approach to Conjecture 1.2 Whsma p-group (the nice point here is
the reduction to Conjecture 3.2 via Claim 3.3), and observe a connection with a conjecture
of Griggs and Walker [8].

2. Proof of Theorem 1.1

The main ingredient of the proof of Theorem 1.1 is the following result on group-weighted
digraphs.

Theorem 2.1 Let D = (V, E) be a simple digraph and let: E — K. If deg"(v) >
k for all v € V, then there exist vertex-disjoint directed cycleg C., C; such that

H!:l HeeC. pe =1

Proof: It is, of course, enough to prove the Theorem when'depy = k for all v.
Let C[K] denote the complex group algebrakf M,,«(C[K]) then x k matrices over
C[K] and Mp(C[K]) = Mnxn(C[K]). (For group algebras see e.g., [12].) For a matrix
Q = (Gij) € Mq(C[K]) andx € C[K], let S(Q,X) = {o € $: [[; ioi) = X} (Where
S is the symmetric group).

Assume now thaVV = [n] and associate witlD the matrixQ = (g;j) € Mn(C[K])
givenbyg; =1forall1<i <n,qgj = ¢(, j)if (i, j) € E, andg; = 0 otherwise.

Claim 2.2 There exists a matrix G= (G;j) € Mp(C) withg; = 1forall 1 <i <n, such
that the matrix R= (rjj) € Mn(C[K]) given by fj = ¢ q; satisfieddetR = 0in C[K].

Proof: Let x1, ..., xx denote the complex characterskof For 1<i < nletN*(i) =
{i=d,])eE}.
With anyn x k matrix H = (hj) € Mp«(C) and 1< i < n, we associate kux k matrix
Hi indexed byN* (i) x [k] and given byH; (j, 1) = xi(gij)h;j for j e NT(), 1 <1 <k.
We may clearly choose dd € Mp,«(C) such that rankd; = kforall1 <i < n. The
non-singularity ofH; implies that there exists a vectas; : j € N*(i)) such that for all
1<l<k

hip = — Z GiHi(j,h) =— Z Gij xi1 (@ij)hii. 1)

jeN*@) JeN* ()
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Now definec; = 1 andc; = 0ifi # j and(, j) ¢ E, and letR = (r;j) = (Cjqj) €

Mn (C[K]).

Then (1) implies thatforall | <k, 0# (hy, ..., h.)T is a nullvector of the matrix
x (R = (x(rij)) € My(C). It follows that x; (detR) = det((R)) = 0forall 1 < <Kk,
hence deR = 0 in C[K]. O

Claim 2.2 implies that

0:detR:Z< > Sg(a)ﬁcia(i))x.

xeK \ 0eS(Q,x) i=1

Since the identity permutation id belongs3$(Q, 1) and[ [, ¢i = 1, it follows that there
exists id# o € S(Q,1). ThenEqy := {(i,0(i)):i # o(i)} is a non-empty union of
vertex-disjoint directed cycles, s&y = U!:1 Ci, and

1_[ H p(e) = HQiq(i) =1 O

i=1eeC;

Theorem 1.1 now follows from Theorem 2.1 as in [1]; l&tbe a bipartite graph on
{A, B}, |Al = |B] =nandw:E(G) - K. Fora € AletUg(a, w) denote the set of all
edges incident witla which participate inv-matchings ofG, and|Ug (a, w)| = ug(a, w).

The following result clearly implies Theorem 1.1 by inductionchn

Theorem 2.2 If G has aw-matching then there exists ana A such that 4 (a, w) >
degz (@) —k+ 1.

Proof: LetM = {(as, by), ..., (an, by)} be aw-matching ofG. With no loss of generality
we may assume that (g, bj) = 1 for alli. (Otherwise for each ande > g, multiply
w(e) by w(a, by).)

Construct a directed grapB on {1, ..., n} by taking (i, j) € E(D) iff (&,b;) €
E(G)\Ug(ai, w), and letp: E(D) — K be defined byp(i, j) = w(a, bj). Suppose
for a contradiction that the assertion of the theorem is false, so that(weg k for
all v € V(D). It then follows from Theorem 2.1 thdd contains vertex-disjoint cycles
Cy,...,C with ]_[!=l ]_[eeci pe =1. LetVp = U!le(Ci) and define a permutatian
onVobyo(vy) = v if (v1, v2) € U!:l E(Cj). Then the perfect matching

M = {(a,b):i &Vo}U{(@, b)) :1 € Vo}

is aw-matching. So, sincéa;, b, ) € Ug(a, w) for anyi € Vp, we have the desired
contradiction. |

3. An approach to thep-group case

LetK = Cpa x --- x Cpa be an abeliarp-group, and leZ,[K] denote the group algebra
of K overZp. Letl,(K) = {3, .k axX € Zp[K]: >,k a = 0}, theaugmentation ideal
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of Zy[K]. It was shown by Olson [11], and independently Kruyswijk (see [2]), th&k)
is nilpotent of degre®_;_,(p® — 1) + 1, and that this implies(K) = "i_;(p® — 1).
ForS C Zp[K] let My (S) denote the set of x n matrices with entries is. Forl <n—1
letUk (n, 1) denote the set of matric€® = (g;j) € Mn (K U{0}) such that for eache [n],
gi =1andQ() :={j #i : gj # 0} has cardinality.
By the proof of Theorem 1.1, Conjecture 1.2 for thegroupK will follow from the
following analogue of Claim 2.2.

Conjecture 3.1 For any Q= (g;j) € Uk (n, s(K) + 1) there exists a matrix G= (Gj) €
Mn(Zp) with g; = 1for 1 <i < n, such that R= (rjj) = (Gj0ij) € Mn(Zp[K]) satisfies
detR=0in Zy[K].

We next formulate another, perhaps more natural, conjecture which implies Conjec-
ture 3.1.

Let A = (A4,..., Ay be an ordered family of subsets af] [such thati ¢ A; for all
1 <i < n. LetW,(A) denote the affine space of all matric@s= (cij) € Mn(Z,) such
thatci; = 1, andci; = O whenever # j andj ¢ A.

Conjecture 3.2 If |Aj| > I forall 1 <i < n, then W(A) contains a matrix of rank at
most n—|.

To show that Conjecture 3.2 implies Conjecture 3.1 we need

Claim3.3 Let Q= (gj) € Mn(K) and C= (Gj) € Mn(Zp). If rankC < n—s(K) — 1,
then R= (rij) = (GijGij) € Mn(Zp[K]) satisfiesdetR = 0.

Proof: Let B € My(Zp) be a non-singular matrix such that the fis¢K) + 1 rows of
BC are zero. Then wittBBR = (tjj) € Mn(Zp[K]), it follows thatt;; e I,(K) for all
1<i <s(K)+1,1<j <n. Sincely(K) is nilpotent of degree(K) + 1 it follows that
detBR=)", ¢ Sw []_; tioi) = 0, hence deR = 0. m

Conjecture 3.2 = Conjecture 3.1 SupposeQ = (¢j) € Uk (n,s(K) + 1), and let
A= (Q(1),..., Q(n)). By Conjecture 3.2 there exist€ac Wy(A) such that raniC <
n—s(K)—1. LetQ = (qj) € Mn(K) be givenbyq; = g;; if g;; € K andqy; an arbitrary
element ofK otherwise. ClearyR' := (cjqjj;) = (Gjgj) = R, therefore by Claim 3.3
detR = detR = 0. O

Remarks.

1. Thecasels= 1, n—1of Conjecture 3.2 are trivial. We have provedthe chse?, n—2
by a graph theoretical argument similier to Proposition 4.1 in [1].

2. Againletd = (Aq, ..., Ay withi ¢ A foralli. Itis easy to see that the existence of a
matrix of rank at mosih — | in W, (A) is equivalent to the existence of vectorse VAS
i € [n], satisfying

(@) vi € (vj : j € Ay)foralli, and
(b) (vi i e[n]) = Z:J (where(-) is linear span).
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(Then x I matrix H whose rows are the's will then satisfyM H = O for an appropriate
M e Wy(A).) So Conjecture 3.2 is equivalent to the statement that suexist whenever
|Ai| = foralli.

For anl-uniform hypergrapl# = {Fy, ..., Fm} on [n], say F hasproperty G, if there
exists a matrixd € Mny (Zp) such that thé x | minors of H corresponding to th&;’s
are all non-singular. I#4 as above i$-uniform and has propert§, with corresponding
H, then the rows oH satisfy (a), (b), giving Conjecture 3.2 fof. (For example, since
propertyG,, clearly does hold for any fixed and large enouglp, the same follows for
Conjecture 3.2.)

Of course, we cannot expect (and do not need) propgeptyn general; still, sufficient
conditions for the property are of interest. A conjecture of Griggs and Walker [8] says
that for anyn and A C Z,, the hypergraptA+ i :i € Zn} has propertyG,. (This was
motivated by, and would imply, a conjecture proposed in [4, 6].) |Bor= 3, the Griggs-
Walker Conjecture was proved byfedi et al. [7], who actually showed propef®y for
an arbitrary 3-uniform, 3-regulaF.

For general, such a generalization does not hold, but we believe the following, less
extreme relaxation may be correct.

Conjecture 3.4 If Fisl-uniform on[n] and for each t and distinct4..., F € F,
[FiNn---N K| <maxk—t+ 1,0},

and
|[FLU---UFR|>minfk+t —1,n},

thenF has property G.

This contains (via the Cauchy-Davenport Theorem) the Griggs-Walker conjecture when
n is prime, and would presumably shed some light on the general case as well.
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