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Abstract. It is well known that an association schette= (X, {R; }o<i<q) With k1 > 2 has at most twdP-
polynomial structures. The parametrical condition for an association scheme to ha@epmlgnomial structures

is also known. In this paper, we give a similar result @polynomial association schemes. In factdif> 5,

then we obtain exactly the same parametrical conditions for the dual intersection numbers or Krein parameters.
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regular graph, integrality of eigenvalue

1. Introduction

A d-class symmetric association scheima pairX’ = (X, {R; }o<i<a), WhereX is afinite
set, eachR; is a nonempty subset &f x X fori =0,1,...,d satisfying the following.
(i) Ro={(z,2)|lz e X}.

(17) {R:}o<i<a is a partition ofX x X, i.e.,

XXX:R(]UR1U"'URd7 leRJZQIf’L#]

(Z?Z) tRi = R; fori = 0,1,...,d, WheretRi = {(y, a:)|(:r,y) S R,}
(iv) There exist integerpﬁj such that for alke, y € X with (z,y) € Ry,

p?)j = |{z € X|(z,2) € Ry, (2,9) € R;}|.

We refer toX as thevertex sebf X, and to the integemﬁj as theintersection numbers
of X.

Let ¥ = (X, {R;}o<i<a) be a symmetric association scheme. Mettx (R) denote
the algebra of matrices over the redswith rows and columns indexed by. Thei-th
adjacency matrixd; € Matx (R) of X is defined by

[ 1if(z,y) € R;

(Ai)ay = { 0 otherwise (z,y € X).

* This research was partially supported by the Grant-in-Aid for Scientific Research (N0.06640075,
No. 09640062), the Ministry of Education, Science and Culture, Japan.
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From(:) — (iv) above, it is easy to see the following.
(1) Ag=1.

(i1) Ao+ A1 +---+ Ag = J, whereJ is the allds matrix, and4; o A; = ¢; ; A; for
0 <1i,j < d, whereo denotes the entry-wise matrix product.

(ZZZ)/ tAi =A;for0<i<d.
d
(iv) AA; => pl Ay for0<i,j<d.
h=0

By theBose-Mesner algebraf X we mean the subalgeh/& of Mat x (R) generated by
the adjacency matricety, A4, . .., A;. Observe byiv)’ above that the adjacency matrices
form a basis forM. Moreover, M consists of symmetric matrices and it is closed under
In particular,M is commutative in both multiplications.

Since the algebra1 consists of commutative symmetric matrices, there is a second basis
Ey, Eq, ..., E4 satisfying the following.

N _ =

(ii)” Eo+FE1+---+E;=1, andEiEj = 6i,jEi for0 < 1,7 < d.
(iii)// tEi =F; for0 < <d.

d
(iv)" EioE; = |71\ Z qgijh, (0 <4, j < d) for some real numberg',.
h=0

Ey, E4, ..., E4are the primitive idempotents of the Bose-Mesner algebra. The parameters
q{fj are calleKrein parametersr dual intersection numbers

Conventionally, we assunﬁj andquj are zero if one of the indices i, j is out of range
{0,1,...,d} otherwise mentioned clearly.

A symmetric association scheme = (X, {R;}o<i<q) With respect to the ordering
Rg, Ry, ..., Rgoftherelationsis called B-polynomial association schenii¢he following
conditions are satisfied.

(P1) pzj = (0 if one of h, i, j is greater than the sum of the other two.
(P2) pﬁj # 0 if one of h, 4, j is equal to the sum of the other two for< h, 4,5 < d.

In this case we write; = p;_, |, a; = p} ;, bi = pj,, ; andk; = p, fori =10,1,...,d.
A symmetric association scheme = (X, {R;}o<i<q) With respect to the ordering
Ey, Fq, ..., Ey of the primitive idempotents of the Bose-Mesner algebra is calléd a

polynomial association scherifghe following conditions are satisfied.

(Q1) qffj = (0 if one of h, 4, j is greater than the sum of the other two.

(Q2) qffj # 0 if one of h, ¢, j is equal to the sum of the other two for< h,4, 7 < d.
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In this case we write; = ¢;_, ;,a; = ¢}, b} = ¢}, andk} = ¢}, fori =0,1,...,d.

If ¥ = (X, {R;}o<i<a) isaP-polynomial association scheme with respectto the ordering
Ro, Ry, ..., Ry, then the grapi’ = (X, R,) with vertex setX, edge set defined bi,
becomes a distance-regular graph. In this case,

R; = {($7y) € X x X|8(a:,y) = i}a

whered(z, y) denotes the distance betweermndy. Conversely, every distance-regular
graph is obtained in this way.

@-polynomial association schemes appear in design theory in connection with tight condi-
tions, but it is not much studied compared withpolynomial association schemes, though
there are extensive studies Bf and@Q-polynomial association schemes.

Recently the author studied imprimitiég-polynomial association schemes and showed
in [9] that if d > 6 andk} > 2, then imprimitive@-polynomial association schemes are
either dual bipartite or dual antipodal, i.e., dual intersection numbers satisfy €jtken
foralli, orb} = c;_, foralli # [d/2]. This is a continuation of the study f-polynomial
association schemes.

As is well known, the Bose-Mesner algebra of a symmetric association scheme be-
comes a so-called’-algebra and satisfies Kawada-Delsarte duality, and by this duality
@-polynomial association schemes correspond’tpolynomial association schemes in
‘algebraic level’. On the other hand, the combinatorial properties of association schemes
can be easily seen as those of distance-regular grapRsgotynomial association schemes
but the@-polynomial property is not well understood. See [10, 11].

Some of the properties adP-polynomial association schemes are expected to hold in
@-polynomial association schemes as dual. But it is also true that some of the properties
such as the unimodal property @h valenciest;'s do not hold fork}’s in Q-polynomial
association schemes. Until recently, there was no break through to replace the parametrical
conditions obtained by combinatorial argument in distance-regular graphs by something in
Q-polynomial association schemes.

Recently, Garth A. Dickie proved the following:

Let X = (X, {R;}o<i<a) be aQ-polynomial association scheme. Then for each
with 0 < i < d, ¢} ; = 0 implies thatg] ; = 0.

The corresponding result fé*-polynomial association scheme is easily shown by a simple
combinatorial argument. Dickie substituted that part by matrix identities in [6], which is a
partof [5, Chapter 4]. In [9], the author generalized Dickie's result and obtained Proposition
2 and Corollary 1, which played the key roles in the proof of the main theorem in it.

In this paper, we prepare another identity using matrix identities to treat the problem to
determine association schemes with multi@lgolynomial structures.

The following is our main result in this paper.

Theorem 1 LetX = (X, {R;}o<i<aq) With k} > 2 be a@Q-polynomial association scheme
with respect to the orderingy, E1, ..., E, of the primitive idempotents.

(1) Supposet is Q-polynomial with respect to another ordering. Then the new ordering
is one of the following:
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(I) Ey,E2,E4, FEg,...,E5, Es3, EY,
(II) Eo,Eq,E1,E4—1,E9,Ey_2,FE5,Eq_3,...,
(I11) Eo,Eq, B, Eq9,E4,Eq_4,...,Eq_5,F5,Eq_3,F3,Eq_1, Fy,
(IV) Eo,Eq_1,F2,Eq_3,FE4,Eq_5,...,E5,Eq_4,E3,E4q_o, FEq, Eg, OF

)
)
)
(V) d=5andEy, Es, B3, B, Ey, Er.

(2) X has at most tw@)-polynomial structures.

It is well known thatQ-polynomial association schemes with = 2 are the association
schemes attached to ordinarygons as distance-regular graphs. We also give parametrical
conditions in each of the cases in the theorem above. See Theorem 2. Association schemes
with multiple P-polynomial structures were studied by Eiichi Bannai and Etsuko Bannai
in [1], see also [2, 3, 7]. On the other hand, the corresponding proble®-falynomial
association schemes was raised by Eiichi Bannai and Tatsuro Ito in [2, Sections 111.4, 111.7]
in connection with the integrality condition of the eigenvaluesiefand Q-polynomial
association schemes. In his thesis [5], Garth A. Dickie classifigmblynomial association
schemes with multipl€-polynomial structures. Our result in this paper is a generalization
of a part of his result and actually it can substitute a part of his proof. It is worth noting that
Dickie's proof uses the additional conditidhpolynomial property fully. He proves first
that the association schemes in question is thin in Terwilliger’s terminology. This part can
be seen without difficulty as a corollary of our result.

The author believes th&t-polynomial association schemes @pgbolynomial association
schemes share many more properties which cannot be séealgébra level. That means
we may be able to expect higher duality between these types of schemes. On the other hand,
each of these classes of association schemes should be studied separately to understand their
peculiarity. Just as the graph theoretical arguments developed in distance-regular graphs
have successfully applied in the study of association schemes, the representation theory in
Q@-polynomial association schemes should shed light from different direction.

2. Basic Properties of@Q-polynomial Schemes

In this section, we collect the properties of Krein parame@éfgswhich are derived al-
gebraically from the conditions aP-polynomial C-algebra with nonnegative structure
constants. See the definitions and the proofs in [9].

Lemmal LetX = (X, {R;}o<i<a) be aQ-polynomial association scheme with respect
to the orderingEy, E1, . . ., E4 of primitive idempotents. Léff = qgi. Then the following
hold.

h * _ . h * h * * h * h *
(1) @11 = 4 j—1b51 + @ 5(a] —af) + @' j1Ci 1 — Giq ;051

(2) k;q{fj = kiqi, andk; > 0fori =0,1,...,d. In particular, ¢'; # 0 if and only if
Q;,h # 0.
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i+h * _ _it+h/ % * *
(3) GhiiChir =iy (af +-+aj, —af —---—ap).

Well known Krein condition asserts that Krein parameqéjr]sare all nonnegative, and
we can derive some more properties of them using this condition.

Lemma2 LetX = (X, {R;}o<i<a) be aQ-polynomial association scheme with respect to
the orderingEy, E1, . . ., E4 of primitive idempotents. Theﬁj >0forall0 < h,i,j <d
and the following hold.

(1) If q;,l+1,j—1 = qihHJ = qf+17j+1 =0for0<i<d, thenq{fj = qf+2’j =0.

(2 a1 = a5 1o = - = q'j4 = 0fori < land0 < i < d, then
h —ogh =0
4.5 = 91-i,5 '

(3) Foralld,jwith0 <i,h,i+h<d af =aj,,=--=aj, =0impliesa; =--- =
ay = 0.

(4) Forall handiwith0 < h,i,i+ h < d, the following hold.
(i) gl p_y =0, thena; <a, ,. Moreoverifa; = af,,, thengl, ., = 0.
(i) gy =0, thenar > a¥, . Moreover ifa; = a7 ,, theng); , _, =0.
(éi7) If QZthl = qzh+1,i+h =0, thena; = ajyp-
(5) Forall handiwith0 < i < h < d, the following hold.

(i) gy, _ipy =0, thenay < aj_,. Moreover ifa; = aj_,, thengl,, , _, = 0.

7
(i) gy, ; =0, thena; > aj_,. Moreover ifa; = aj_,, theng/', ., = 0.

o h _ h _ _
(4i7) If TGh—iv1 = dp1n—i = 0, thena; =aj _,.

3. New Conditions on Krein Parameters

Only a few restrictions of the Krein parametqu of symmetric association schemes are
known except those derived algebraically using Lemma 1 or Krein conditions in Lemma 2.
We list other restrictions on Krein parameters. The first one is shown in [4]. See also
[2, Theorem 2.3.8, Proposition 2.8.3]. This is the key to connect the conditions on Krein
parameters with representations or matrix identities. Actually, all the rest follow from this
identity.

Proposition 1 Let X = (X,{R;}o<i<q¢) be a symmetric association scheme. Let
Ey, E4, ..., E; be primitive idempotents and Iefd be the Krein parameters. Then for
0 < h,i,j <d,we have

@' =0 > (En)us(Ei)uy(Ej)u: = 0forall z,y,z € X.
ueX

The following three results are proved in [9]. Proposition 2 is shown by Lemma 3 and
Corollary 1 is a direct consequence of Proposition 2.
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Lemma3 LetX = (X, {R;}o<i<a) be a symmetric association scheme. Let

Ey, Eq,...,E4 be primitive idempotents and qu)j be the Krein parameters. Suppose
{i | ¢ x4} ,, # 0} C {h}. Then for all integerd) < h,i,j,k,1,m < d and the vertices
a,a’, b, b, the following hold.

(1) Z(Ej)ea(Ek)ea’(El)eb( m eb T;g[ Z ea Ek ea’ (Eh)

eeX eeX
(2) Z(Ej)ea(Ek)ea’(El)eb(Em,)eb’ = Z (Ej)ea(Ek')ea/(Eh)ee’ (El)e/b(Em)e/b/-

Proposition 2 Let ¥ = (X, {R;}o<i<a) be a@Q-polynomial association scheme with
respect to the orderingy, E1, . .., B, of primitive idempotents. Suppose that

{1 Qé‘,h+iq£—j,h+j #0} Cc{h+i—j}.

Thenforh > 0,i > j > 1withh+i+j <d,q'}", =0 implies thatq}}7 . = 0.

Corollary 1 LetX = (X, {R; }o<i<a) be aQ-polynomial association scheme with respect
to the orderingEy, F1, . .., E4 of primitive idempotents.

(1) Forh>0,i > 1withh +i+1<d,

h+i h+i  _ i ; h+l
41 =4y =0 impliesthatg);,, = 0.

(2) Forh>0,i>2withh +i+2<d,

h+i _ _h+i _ _h+i H H h+2
Qinvo = o nti = Gonpi—1 = 0 impliesthatgy 5, = 0.

By settingh = 0 in Corollary 1, we have the main result in [6], i.&; = 0 implies
a; =0foralll <i<d-1.

We give another application of the matrix identities, which gives a basic tool to handle
Krein parameters of association schemes.

Proposition 3 LetX = (X, {R; }o<i<a) be @ symmetric association scheme. Suppose the
following.

(D) {t | g xGhm # 0} {1}, (2) {t | g5 15, # 0}  {m}.

Theng}'; # 0 implies thatg, , = qi’m.
Proof: Let X (h,1,j,k,1,m) be the following sum.

Z (Eh)w,a:(Ei)wJ/ (Ej)uh,z(Ek)y,Z(El)w,y(Em):v,z-
w,x,y,z2€X
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We evaluateX (h, i, j, k, [, m) using Lemma 3 under our assumption.
Rearranging first the order of the product and apply Lemr{ig By our assumptiofil),
we have the following.

X(h,i,j,k,l,m)
= Z (Ej)w,= Z (Ei)y,w(Er)y,2(E)y,(En)z,w(Em)z,

w,z€X z,yeX

= Z (Ej)w,z Z(Ei)z,w(Ek)z,z(Eh)r,w(Em)r,z

w,z€X zeX

= Z (Ei):z:,w(Eh):z:,w Z(Ek)w,z(Em)m,z(Ej)w,z

w,xeX zeX

= Z (Ei)x,w(Eh)x,w Z (Ek' o Em)x,z(Ej)z,w

w,reX zeX

= Z (Ei):r,w(Eh):r,w((Ek ° Em)Ej)z,w
w,reX

J
qk,m
= W Z (Ei)aw(Eh)Lw(Ej)Lw
w,xeX

J
= qkT,m Z Z(El OEj)wyx(Eh)m,w

weX zeX

|
al
= m Z ((Ei 0 Ej)En)w,uw
weX

@l als
_ ym i, (Eh)
X X w;{ ww

X2

Now by symmetry we swapwith j, andl with m to obtain the following.

X(hi b1y m) — Tetha
y 0 ]y Ry ly |X|2 h*
Therefore ifg"; # 0, we havey} , = g, as desired. O

Corollary 2 LetX = (X, {R;}o<i<a) be aQ-polynomial association scheme with respect
to the orderingEy, E1, ..., E4 of primitive idempotents. I(ﬂfj # 0, then the following
hold.

(1) If qZh—Lj = qih—l,j—l = Qi}fj-i-l = Qz'h-s-l.,j—irl =0, thenc] = b}.

B _h _ _
(2) Wiy ;= a1 01 = 4jo1 = 441,j—1 = 0, thenej = ¢}
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(3) Walyji1 = a1 = a1 -1 = 4, = 0, thend} = b7

Proof: Itis easy to check each of the following.

(1) {t] Q§,1QZ,J-+1 # 0} C {i— 1}, and{t | q;,lqz,i_l #0C {j+1}
(2) {t] qf,lqi,j_1 # 0} C {i—1},and{t | Q§,1qz,i—1 #0} C{j—1}
() {t1¢i1ah 541 # 0} C{i+ 1} and{t [ g5, 41 # 0} C {j + 1}

Hence we have the assertions as direct consequences of the previous propositionl

Corollary 3 LetX = (X, {R;}o<i<a) be aQ-polynomial association scheme with respect
to the orderingEy, E1, . . ., E4 of primitive idempotents. K > 2, then the following hold.

(1) fgh, =qt), =d}),_, =0with2 < h < d, thenh = d.

(2) f g}, =qt) =}, =0with2 < h < d, thenh = d.

Proof: (1) By Corollary 2,b} = ¢;,_;, ¢ = ¢, ;. Supposé < d. Theng;, ,, , _; # 0
andg;, ,_, = gi, = 0 by our assumption. Hence by Corollary@,,, = ¢j_,. Thus
by = ¢ = 1. This impliesk; = 2, because = ¢", = 0 impliesaj = 0 by Corollary 1.
This is not the case. Therefohe= d. 7

(2) In this case, we have = by, andc] = by _,. Similarly, if h < d, then we have
by, = b;,_, andkj = 2. This is a contradiction. O

4. Multiple @-polynomial Structures

In this section and the next, we prove the following result. It is obvious that Theorem 1 is
a direct consequence of it.

Theorem 2 LetX = (X, {R;}o<i<q) With k > 2 be aQ-polynomial association scheme
with respect to the orderingy, E1, . .., E, of the primitive idempotents.

(1) SupposeY is Q-polynomial with respect to another ordering. Then the new ordering
is one of the following:
(I) Eo,E2,E4, Fs,...,E5, Es, Fy,
(II) Eo,Eq,E1,E4—1,E9,FEy_2,FE5,FEq_3,...,
(I1I) Ey,Eq,E0,Eq_2,E4,Eq_u,...,Eq_5,F5,Eq_3,E3,Eq_1, F1,
(IV) Eo,Eq—1,F2,Eq_3,E4,Eq_5,...,E5,Eq_4,E3,E4_o, Fq, Eg, Of
(V) d=>5andEy, Es, Es, By, Ey, B.

(2) Letgq)'; be the Krein parameters with respect to the original ordering. Supposes.
Then,
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(I) holdsifand onlyify} , =--- = q{ 3L, =0#qf .
(IT) holdsifandonlyifyf ; 20 =¢§ ;= = ¢4 4.
(IIT) holds if and only if one of the following holds:
(i) d=3, and(ﬁ,g =0# qg’,&
(i) d=4,qt, =q3,=0,andgs, # 0 # ¢5 3, Or
(iii) d =5, GaF0=qly=¢f4="-= qg{d. Moreover ifd = 2e — 1, then
qi ; # 0impliesj = eandifd = 2¢, theng ; # Oifand onlyifj = e, e+1.
(IV') holds if and only if one of the following holds:
(i) d=3,q7, #0= g3, Or
(i) d > 4, qg;zl - .= qi:ll = 0 Moreover, ifd = 2e, thenq{,j # 0 implies
j=eandifd =2e+ 1, theng] ; # Oifandonly ifj =e, e + 1.

(V) holdsifand only if/ 5 = ¢35 = ¢35 = ¢35 = 0 # ¢35 andg3 4 = 0.

(3) X has at most tw@-polynomial structures.

Before we start the proof, we prepare some lemmas to illustrate the structufgs of
polynomial association schemes appeared in the theorem above.

Lemma4 LetX = (X, {R;}o<i<qa) be aQ-polynomial association scheme with respect
to the orderingEy, E1, .. ., E4 of primitive idempotents. Fo3 < m < d, the following

are equivalent.
(1) (IT = a; == arrL—l =0 7é afn'

(2) q%,z = q§,3 == qzn—Q,m—l =0+# q72n—1,m'

Proof: Supposg1) holds. Sincen > 3, a3 = ¢, = 0. Now by induction, we have
¢ = O0fori =1,2,...,m — 2 from Lemma 2(4)(i). Moreoverg;, ,,, # 0 by
Lemma 2(4)(#ii).

Conversely, suppos@). Then by Corollary X(1), aj = 0 asd > 3. Now we have(1)
by Lemma 2(4) (i), (ii3). O

Lemma5b LetX = (X, {R;}o<i<a) be aQ-polynomial association scheme with respect
to the orderingEy, E1, ..., E4 of primitive idempotents. Suppose

Qf,d #0= qg,d == qid-
Then the following hold.
(1) For0<i,j<d, ¢!, #0ifandonlyif0 <i+j—d<1.

(2) If,inaddition,q} , =--- =¢f ;' = 0# ¢, thenk} = 2.
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Proof: (1) This is a direct consequence of Lemmé&2.
(2) We first observe the following:

1. q;{d_i #0fori=1,...,d=1,{t|q ¢} 4 ;.1 #0} C{i—1}and
{tla) ;15,1 #0F C{d—i+1}.

2. q;i%»l,dfi 7é O fOrZ = 17 . ,d — 1, {t ‘ qg*'rlqué,dfi«i»l 7é O} C {Z} and
{t| qtti—i,qui,i 0} C{d—i+1}.

Now we apply Proposition 3. We obtaifi = b);_, fori =1,...,d — 1 from the first set of

conditions, and;, ; = b)_, fori =1,...,d — 1 from the second set of conditions. Thus
l=ci=by  =c; =0 o= =ci,=b=ch

Sincea} = 0, we havek] = ¢] + aj + b = 2 as desired. O

Lemma6 LetX = (X, {R;}o<i<a) be aQ-polynomial association scheme with respect
to the orderingEy, E1, . .., E4 of primitive idempotents. Suppose

qud == qd d =0.
Then the following hold.
(1) For0 <z' j <d, ¢’ #00nlyif0 < i+j—(d—1) < 2. Moreover, ifi+j—(d—1) €
{0,2}, ¢/t #0.
(2) Supposel > 3. Then, for0 <i,j < d, ¢¢; # 0ifand only ifi + j = d.

(3) Ifd>3,thenb; =c)_,fori=0,1,...,d,i.e., X is dual antipodaR-cover.

Proof: (1) This is a direct consequence of Lemmé&2.

(2) By the assumptionyg ;, | =--- =g, , = 0. Sinced > 3,44 , 4, 1 =qf 14 =
0. Hencegg ;, = 0, by Lemma 2(1). Now by induction oni in reverse orde, = 0 for
1<i<d asqlyy4=0qf\141=0

(3) By (2), we can apply Corollary 21) by settingh = d, j =d—ifori =0,1,...,d.

O

From now on assume the following:

X = (X, {R;}o<i<aq) is aQ-polynomial association scheme with respect to the ordering
Ey, E4, ..., Ey of the primitive idempotents. qu 's (and ¢}’s, al’'s, b;'s) be Krein
parameters or dual intersection numbers with respect to thIS orderlng of the primitive
idempotents. Supposg > 2.

Let A = A be a graph on the vertex SEtA = {0, 1, ..., d} such that is adjacent to
j,0ri ~ 7, if and only Ifq # 0. Hence for this par'ucular graph, we allow loops. Let

d(i, j) denote the distance betweeandg in this graph and\; (i) = {j | 0(¢,7) = l}. Let
A(i) = Aq(7), andA* (i) = A(i) — {i}.
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It is easy to see thak(") is a path graph, if and only it is Q-polynomial with respect
to the orderingty, Ey,, . . . of the primitive idempotents. Here laypath graphwe mean a
path which may include some loops.

We prove Theorem 2 in a series of lemmas. In Lemma 7, we check that if the parameters
satisfy one of the conditions {2) thenX’ is Q-polynomial with respect to the corresponding
ordering. In Lemma 8, we shoyB) assuming that1l) and (2) are valid. In the next
section we show the main part, i.e. Af has different)-polynomial ordering of primitive
idempotents thenthe ordering is the one listed jrand the parameters satisfy the conditions
in (2).

Lemma 7 IfKrein parametersy;’ ;'s satisfy the conditions of one of the caseSleorem 2

(2), thenX is Q-polynomial with respect to the corresponding ordering.

Proof: It suffices to show that the grapk = A" is a path graph, where = 2 in (I),
h=din(II),(IIT),h=d—1in(IV),andh =5in (V).
Suppose the condition if/) holds, i.e.,qi1 = ... = qf;il_l =0 # q‘l{d. Then by
Lemma 4, we have that
Q%,Q = qg,s == qglfQ,dfl =0+# Q§71,d~

Sinceg?, 5 # 0fori =0,1,...,d—2,wehaveA*(i) = {i—2,i+2}fori = 2,...,d—2,
A*(d—1) = {d—3,d} andA*(d) = {d — 2,d — 1}. Therefore, it is easy to check that
A = A®) is a path graph

0~2~dnbBr o~ b~3~l

Suppose the condition iff /) holds. Then by Lemma Bl) we have thaq;{j # 0 if and
onlyif 0 <i+j—d<1. Itiseasyto check tha\ is a path graph

O~d~1~d—-1~2~d—-2~3~d—3~---

Suppose the condition i/ 1) holds. The assertions are easily checked for the cases
d < 5 from the conditions ir(¢), (i¢). Supposel > 5. Then by Lemma 22), q,f{j =0if
i+j—d>2 andq;{j #0ifi4+j—d=2for0 <1,j <d. The additional conditions on
qi ;'s imply the following by Lemma 25)(i) and(iii).

1. Ifd=2e—1,theng!, ; , # 0implies thati = e.

2. Ifd=2e,theng!, , , #0ifandonlyifi € {e,e+1}.

Now it is easy to check thak is a path graph
O~d~2~d—2~d~d—4n~-o~nd—5~5~d—3~3~d—1n~1.

Suppose the condition iff V') holds. The assertion is trivial if = 3. Supposel > 4.
Then by Lemma 1), ¢/;' = 0if i +j > d+ Landg’;" #0if i+ j =d+1for
0 < i,j < d. The additional conditions oqnfyj’s imply the following by Lemma 25)(4)
and(iii).
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1. Ifd=2e, theng!,!, # 0implies thati = e.

2. Ifd=2e+1,theng;!, #0ifand onlyifi € {e,e + 1}.
Now it is easy to check thak is a path graph
O~d—1~2~d-3~4~d—-5~--~b~d—4~3~d—2~1~d.
Finally if the condition in(V") holds, themA is a path graph
O~b~3~2~4~ 1.

Note thatgs, # 0 follows from Lemma 2(1) asq¢3; # 0 while ¢35 = ¢35 = 0.
O

Lemma 8 X has at most twa@)-polynomial structures.

Proof: It suffices to show that no two of the sets of parametrical conditions of Theorem 2
(2) hold simultaneously. We may assume> 3.

Suppos€) holds. Them] = --- = a)_; = 0 # aj. Sincea); # 0 anda3 = 0, the
only possible case ig ). Now by Lemma 52), we havek; = 2, which contradicts our
assumption.

Suppos€ 1) holds. Ther; # 0 andgs , # 0 if d = 3 by Lemma 5(1). Hence none
of the other cases can occur. '

Supposg 1) holds. Ifd = 3, theng? ; = 0 # ¢3 ;. Hence if(IV) holds as well,
¢ 5 = 0. By Lemma 1(1) with h = 3,7 = 3, j = 2, we havey3 ya3 + ¢3 3¢5 = 0. Thus
a3 = qi 5 = 0, which is not the case itZV'). If d > 4, thengg ; # 0. Hence(V') cannot
occur. (V') does not occur either, &6 is dual antipodal 2-cover by Lemma 6.

(IV)) and(V') cannot occur simultaneously, 5 # 0 in the casgV'), while ¢ 5 = 0
in the casé V) as it is dual antipodal 2-cover.

ThereforeX’ has at most twa)-polynomial structures. |

5. Proof of Main Theorem

Suppose¥’ = (X, {R; }o<i<q) has anotheR-polynomial structure, i.ed’ is Q-polynomial
with respect to another ordering,, F;,, E;,, . .., E;, of primitive idempotents. Just to
simplify the notation, let; = h, andis = i. We may assume that > 2 andh > 1.
We determine the ordef, iy, i»,... and the conditions of;’,,'s in the following. Let
A = A™_ By our assumption) is a path graph. One of the keys is that for eaelith
1<i<d, A1) <3or|A*(])] < 2.

In Lemma 9, we show that the first member in the new ordeking 2, d — 1 ord. In
Lemma 10, we treat the case when= 2 and show that we have) or (IV)(7) in the
theorem. Lemma 11 is for the case when- d — 1 and we show that/V') occurs. The
case wherh, = d requires a little more work. In Lemma 12, we determine the second
memberi in the new ordering to show= 1 or 2 with an exception when we hav&’). In
Lemmas 13 and 14, we determine the case when and2 respectively by showing that
we have either the casél) or (111) respectively.
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Lemma 9 The first membek = i, of the new ordering is eithe}, d — 1 or d.

Proof: By way of contradiction, assume that< h < d — 2. In particular,d > 5.

We first claim thatq1 h = q2 n = 0. Supposeq{jh # 0withl = 1 or2. Since
3<h<d—2,q",_ ﬁéogéqth by (Q2). HenceA(l) > h,h — I, h + [. Sincel # h,
the only possibility is that = 20l = 40orh = 4,i = 2,i3 = 6 andA( ) € {0,2,4}.
Observe that} ¢ = 0 sinceqj g # 0 |mpI|e38 € A4 ) S0 eltherd =6ord=".

If d = 7, then we have137 # 0 while ¢i s = q¢i, = ¢ig = 0, which contradicts
Lemma 2(1).

Supposerl = 6. Theng; s # 0. Hence by Lemma 21), we have eitheys 5 # 0 or
q3 ¢ 7 0. Since there is a path ~ 1 ~ 5in A, which is guaranteed to exist {%2),

3 76 5 andq3 ¢ 7 0. Hence the new orderlng has to(be« 4~2~6~3~1~5. This
contradicts Lemma 21), asq3 ¢ # 0, while ¢j 5 = qis = qi, = 0. Thus we have the
claim.

Asql, = q2 , =0, we haveq2 no1 70 # q;g,,,ﬂ by Corollary 3. Therefore, we have
h—2,h—1,h+1,h+2 € A(2). This is impossible. O

Lemma 10 Supposel > 3 andh = i; = 2. Then one of the following holds.
(i) d=3,the new ordering i9,2,1,3 andqi , # 0 = ¢3 5, i.e., the cas¢IV')(i) holds.

(¢¢) The new ordering i§,2,4,6,...,5,3,1 andq},1 =...= qf;il_l =0# qf’d, i.e., the
case([) holds.

Proof: Supposef, # 0. Thenh = 2,i =iy = 1,andg; 3 = ¢34, = 0 @asA*(2) =
{0,1}. We have(7) in this case.
Supposey; , = 0. By Corollary 1,¢; ; = 0 asd > 3. There exists am such that

* % % _ *
al_a2_"'_am,—1_07éa'm

since otherwise\ is not connected. Then by Lemma 4, we have

2 _ 2 _ _ 2 _ 2
912=4q23= """ =4n-2m-1=— 0# n—1,m"

If m < d, theng?, .., # 0. Hencem — 3,m,m +1 € A*(m — 1), which is a
contradiction. Thusn = d and we havégr). O

Lemma 11 Suppos& < h = i; = d — 1. Thengy ;' = --- = ¢f;' = 0. Moreover,
if d = 2e, thenq1 # 0 impliesj = eand ifd = 2e + 1, thenq1 # 0 if and only if
j=e, e+1.1In part|cular the cas€V) holds.

Proof:  First we claim thag ' a1 =0 # q2 Landi =iy = 2. If ¢f, d . # 0, then
d—2,d—1,d € A(1). This is impossible ag > 4. Supposei " 4—1 = 0. By Corollary 3,
34y # 0 # g3, Henced —3,d — 2,d € A(2). Thusd = 4 or5. d # 5, because
302~ l~3inA =A@, d # 4, becausd ~2~4~1in A =AG), Thuswe
have the claim. In particulad, ~ d — 1 ~ 2 in this case.
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Next we claim that1§,‘21 = 0. As otherwised — 3,d — 1,d € A(2). Henced — 3 = 2
ord =5 Wehave0 ~ 4 ~2~5~ 1~ 3inA =A™, This is impossible as
¢ 5 # 0 = q3 5 = ¢34 contradicts Lemma 21).

We <:Iaiqu_1 = 0. Suppose not. Theh~ d ~ 3 ~ d—4. Since0) ~ d — 1 ~ 2,
3 # d — 1 and thatg] ;' = ¢4~} ; = 0. Hence in order to have};" # 0, ¢f_{ , # 0
by Lemma 2(1). SlnceA(d —1) € {0,2,d — 1}, we haved = 5. This is impossible as
1~5~3~1inA. Thusgj;' =0.

We now claim that]d_1 # 0ifand only if j = 1. Slnceq2 4 = q3 . =0, in order to
showgj ' = 0 for j > 1 by induction, it suffices to show thafi>', = ¢j= ;_, =0
for eachj with 4 < j < d. Sincej > 4, we need only to checl;fjd = 0. Note that
q3"1,;_1 #Oonlyif j =1,3,d. Supposej,' # 0. Thengi~} , , # 0asqj_{, = 0.
By our observation abovA (d) = {1} andd comes as the last member in the new ordering
as well. Leta} denote the dual |ntersect|on number with respect to the new ordering. Since

d >4, q{;" = 0. Inour case;;_ La_1 #00ra; # 0. Inview of Corollary 1(1), this is
impossible a@m = 0 and1 is not the last member in the new ordering.
Thereforegd‘1 # Oifand only if j = 1 and that}’, ' = 0if I +m > d + 2. Moreover

we haveq ' £ 0if I+ m =d— 1ord+ 1. In particular, we have the ordering @fV").
Now the rest follows easily. See also the proof of Lemma 7. |

Lemma 12 Suppose8 < h =1i; = d. Ifi =iy > 3, thend = 5, and the new ordering
i50,5,3,2,4,1and¢} s = ¢35 =i s =425 =0 # ¢35 andq3 , = 0, i.e., the casgV)
holds.

Proof: Suppose = i; > 3. Then we have
d d d d d
91,d =92, = " =4%%-2d = %-1,d = 0# q;.d-

Thusqj ,, # Oandqf ,, , # 0. We claim thatq]_,,,, # 0. Asb; # 0 and
¢ty # 0,44 1,4, = 0implies thatgj,,, # 0. Hencei + 1 = dori = d — 1. Then
¢ty =q4_1.41 =0, whichis absurd. Thug} ,, , #0andl,i—1,i+1¢€ A(d—1).
Hence we musthavé—1=i+1lori=d—2,i.e,0~d~d—2.

SinceA*(d —1) = {1,d—3},we have2,d — 4,d € A(d—2)if d > 6. Note thatd > 6
with ¢§_, 4 # 0 implies thatq] 5, , # 0 andqj_, ; , # 0 by Lemma 2(2). Hence
d=50r6. '

Supposel = 6. Then0 ~ 6 ~ 4 ~2,¢§, = g5, =0andgl s = ¢35 = ¢ = 45,6 =
0. Henceg$ 5 = 0 as well and2 becomes the end vertex ik by (Q1), which is absurd.

Supposel = 5. Then the new ordering 5~ 5 ~ 3 ~ 2 ~ 4 ~ 1 and we have desired
conditions. O

Lemma 13 Suppos8 < h = i; = d andi = i, = 1. Then the new ordering is
0,d,1,d—1,2,d—2,3,d—3,...

and we have{ ; # 0 =qJ ;= --- = q} 4, i.e.,(I]) holds.
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Proof: Sinceq{ ; # 0 =¢4 ,="--- = qj_, 4, we need to show thaf] , = 0. We usei;
to denote the dual intersection numbers with respect to the new ordering. Sq@gqsej.
Thenaj # 0. Sinced > 3, ¢f ; = 0. This contradicts Corollary 1. Thug/ , = 0. By
Lemma5(1), ¢, # Oifand only ifi+m € {d,d+1}. HenceA(l) = {d—1,d—+1}
forl =1,2,...,dand we have the assertion. O

Lemma 14 Suppos8 < h =i, = d andi = i5 = 2. Then the new ordering is
0,d,2,d—2,4,d—4,....,d—5,5d—3,3,d—1,1.
Moreover we have the conditions(fI 1), i.e., one of the following holds.
(i) d=3,and¢} 3 =0# g3 3,
(i) d=4,q{4=0d54=0,andgy 4 # 0 # g3 3, 0"

(iti) d 25,45, #0=q{y=d}q= "= qj, Moreoverifd = 2¢ —1, theng ; # 0
impliesj = e and ifd = 2e, thenq{’j #0ifandonlyifj =e, e+ 1.

Proof: Supposel = 3. Then the new ordering i 3, 2, 1 and the condition itfi) is easy
to check.

Supposel = 4. Then the new ordering i%,4,2, 3,1 aSqQ{1 = 0. Now the condition in
(ii) is easy to check.

Hence assumé > 5. By our assumption, we have that

d d d d
42 4 #0= d1,d = 493,a = """ = 4d4-1,d-

We claim tha’qid =0. As otherwisqu,2 # 0 by Corollary 1(1) as before. This is absurd
asd > 5.
Therefore by Lemma 6, we hayg,, = 0if [+m > d+2andg},, # 0if I+m = d+2
forall0 <,m < d. Thereforel—I,d—I1+42 € A(l) andthe conditions are easily checked.
O

This completes the proof of Theorem 2.

6. Concluding Remarks

1. One of the keys to our proof is Lemma 9, and féipolynomial scheme case the
corresponding result is easily obtained by the unimodal propekysdnd the equality
condition fork; = k;. Here we used vanishing conditions of the structure constants.
In this sense our proof follows [8].

2. Our proof can be applied to association schemes with mulgdelynomial structures
simply by replacing Krein parametquj with ij and hence,a},bf by ¢;, a;, b;.
Actually, the theorem is proved for the following classi®fpolynomialC-algebras.
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X is a P-polynomialC-algebra satisfying the following.

(A) The structure constanﬁéﬁ ;'s are all nonnegative.
(B) Forh >0,i>j>1withh+i+j <d,

{] pé‘,thipéfj,thj #0} C{h+i—j}

a”dpﬁ?{ij = 0 implies thatp;?;;ij =0.
(C) If plt; # 0, {t | pLp}, # O} C {1}, and{t | p} .}, # 0} © {m},
thenpj,, = pj, -

Since P-polynomialC-algebras associated witP-polynomial association

schemes satisfy these conditions, our proof in this paper is applicable to association
schemes with multiple®-polynomial structures. In that cag®’) can be eliminated
easily by a result of A. Gardiner in [3, Proposition 5.5.7].

3. The author does not know any primitiggpolynomial association schemes which is
not P-polynomial. Are there such examples?

4. lIsit possible to eliminate or classify the cases in Theorem 2? See [5, 7].
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