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Abstract. It is well known that an association schemeX = (X, {Ri}0≤i≤d) with k1 > 2 has at most twoP -
polynomial structures. The parametrical condition for an association scheme to have twoP -polynomial structures
is also known. In this paper, we give a similar result forQ-polynomial association schemes. In fact, ifd > 5,
then we obtain exactly the same parametrical conditions for the dual intersection numbers or Krein parameters.
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1. Introduction

A d-class symmetric association schemeis a pairX = (X, {Ri}0≤i≤d), whereX is a finite
set, eachRi is a nonempty subset ofX ×X for i = 0, 1, . . . , d satisfying the following.

(i) R0 = {(x, x)|x ∈ X}.

(ii) {Ri}0≤i≤d is a partition ofX ×X, i.e.,

X ×X = R0 ∪R1 ∪ · · · ∪Rd, Ri ∩Rj = ∅ if i 6= j.

(iii) tRi = Ri for i = 0, 1, . . . , d, wheretRi = {(y, x)|(x, y) ∈ Ri}.

(iv) There exist integersphi,j such that for allx, y ∈ X with (x, y) ∈ Rh,

phi,j = |{z ∈ X|(x, z) ∈ Ri, (z, y) ∈ Rj}|.

We refer toX as thevertex setof X , and to the integersphi,j as theintersection numbers
of X .

Let X = (X, {Ri}0≤i≤d) be a symmetric association scheme. LetMatX(R) denote
the algebra of matrices over the realsR with rows and columns indexed byX. The i-th
adjacency matrixAi ∈ MatX(R) of X is defined by

(Ai)xy =
{

1 if (x, y) ∈ Ri
0 otherwise

(x, y ∈ X).

* This research was partially supported by the Grant-in-Aid for Scientific Research (No.06640075,
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From(i)− (iv) above, it is easy to see the following.

(i)′ A0 = I.

(ii)′ A0 + A1 + · · · + Ad = J , whereJ is the all-1s matrix, andAi ◦ Aj = δi,jAi for
0 ≤ i, j ≤ d, where◦ denotes the entry-wise matrix product.

(iii)′ tAi = Ai for 0 ≤ i ≤ d.

(iv)′ AiAj =
d∑

h=0

phi,jAh for 0 ≤ i, j ≤ d.

By theBose-Mesner algebraofX we mean the subalgebraM of MatX(R) generated by
the adjacency matricesA0, A1, . . . , Ad. Observe by(iv)′ above that the adjacency matrices
form a basis forM. Moreover,M consists of symmetric matrices and it is closed under◦.
In particular,M is commutative in both multiplications.

Since the algebraM consists of commutative symmetric matrices, there is a second basis
E0, E1, . . . , Ed satisfying the following.

(i)′′ E0 =
1
|X|J .

(ii)′′ E0 + E1 + · · ·+ Ed = I, andEiEj = δi,jEi for 0 ≤ i, j ≤ d.

(iii)′′ tEi = Ei for 0 ≤ i ≤ d.

(iv)′′ Ei ◦ Ej =
1
|X|

d∑
h=0

qhi,jEh, (0 ≤ i, j ≤ d) for some real numbersqhi,j .

E0, E1, . . . , Ed are the primitive idempotents of the Bose-Mesner algebra. The parameters
qhi,j are calledKrein parametersor dual intersection numbers.

Conventionally, we assumephi,j andqhi,j are zero if one of the indicesh, i, j is out of range
{0, 1, . . . , d} otherwise mentioned clearly.

A symmetric association schemeX = (X, {Ri}0≤i≤d) with respect to the ordering
R0, R1, . . . , Rd of the relations is called aP -polynomial association schemeif the following
conditions are satisfied.

(P1) phi,j = 0 if one ofh, i, j is greater than the sum of the other two.

(P2) phi,j 6= 0 if one ofh, i, j is equal to the sum of the other two for0 ≤ h, i, j ≤ d.

In this case we writeci = pii−1,1, ai = pii,1, bi = pii+1,1 andki = p0
i,i for i = 0, 1, . . . , d.

A symmetric association schemeX = (X, {Ri}0≤i≤d) with respect to the ordering
E0, E1, . . . , Ed of the primitive idempotents of the Bose-Mesner algebra is called aQ-
polynomial association schemeif the following conditions are satisfied.

(Q1) qhi,j = 0 if one ofh, i, j is greater than the sum of the other two.

(Q2) qhi,j 6= 0 if one ofh, i, j is equal to the sum of the other two for0 ≤ h, i, j ≤ d.
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In this case we writec∗i = qii−1,1, a∗i = qii,1, b∗i = qii+1,1 andk∗i = q0
i,i for i = 0, 1, . . . , d.

If X = (X, {Ri}0≤i≤d) is aP -polynomial association scheme with respect to the ordering
R0, R1, . . . , Rd, then the graphΓ = (X,R1) with vertex setX, edge set defined byR1

becomes a distance-regular graph. In this case,

Ri = {(x, y) ∈ X ×X|∂(x, y) = i},

where∂(x, y) denotes the distance betweenx andy. Conversely, every distance-regular
graph is obtained in this way.
Q-polynomial association schemes appear in design theory in connection with tight condi-

tions, but it is not much studied compared withP -polynomial association schemes, though
there are extensive studies ofP - andQ-polynomial association schemes.

Recently the author studied imprimitiveQ-polynomial association schemes and showed
in [9] that if d > 6 andk∗1 > 2, then imprimitiveQ-polynomial association schemes are
either dual bipartite or dual antipodal, i.e., dual intersection numbers satisfy eithera∗i = 0
for all i, or b∗i = c∗d−i for all i 6= [d/2]. This is a continuation of the study ofQ-polynomial
association schemes.

As is well known, the Bose-Mesner algebra of a symmetric association scheme be-
comes a so-calledC-algebra and satisfies Kawada-Delsarte duality, and by this duality
Q-polynomial association schemes correspond toP -polynomial association schemes in
‘algebraic level’. On the other hand, the combinatorial properties of association schemes
can be easily seen as those of distance-regular graphs forP -polynomial association schemes
but theQ-polynomial property is not well understood. See [10, 11].

Some of the properties ofP -polynomial association schemes are expected to hold in
Q-polynomial association schemes as dual. But it is also true that some of the properties
such as the unimodal property ofith valencieski’s do not hold fork∗i ’s in Q-polynomial
association schemes. Until recently, there was no break through to replace the parametrical
conditions obtained by combinatorial argument in distance-regular graphs by something in
Q-polynomial association schemes.

Recently, Garth A. Dickie proved the following:

LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme. Then for eachi
with 0 < i < d, qi1,i = 0 implies thatq1

1,1 = 0.

The corresponding result forP -polynomial association scheme is easily shown by a simple
combinatorial argument. Dickie substituted that part by matrix identities in [6], which is a
part of [5, Chapter 4]. In [9], the author generalized Dickie’s result and obtained Proposition
2 and Corollary 1, which played the key roles in the proof of the main theorem in it.

In this paper, we prepare another identity using matrix identities to treat the problem to
determine association schemes with multipleQ-polynomial structures.

The following is our main result in this paper.

Theorem 1 LetX = (X, {Ri}0≤i≤d) withk∗1 > 2 be aQ-polynomial association scheme
with respect to the orderingE0, E1, . . . , Ed of the primitive idempotents.

(1) SupposeX isQ-polynomial with respect to another ordering. Then the new ordering
is one of the following:
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(I) E0, E2, E4, E6, . . . , E5, E3, E1,

(II) E0, Ed, E1, Ed−1, E2, Ed−2, E3, Ed−3, . . .,

(III) E0, Ed, E2, Ed−2, E4, Ed−4, . . . , Ed−5, E5, Ed−3, E3, Ed−1, E1,

(IV ) E0, Ed−1, E2, Ed−3, E4, Ed−5, . . . , E5, Ed−4, E3, Ed−2, E1, Ed, or

(V ) d = 5 andE0, E5, E3, E2, E4, E1.

(2) X has at most twoQ-polynomial structures.

It is well known thatQ-polynomial association schemes withk∗1 = 2 are the association
schemes attached to ordinaryn-gons as distance-regular graphs. We also give parametrical
conditions in each of the cases in the theorem above. See Theorem 2. Association schemes
with multipleP -polynomial structures were studied by Eiichi Bannai and Etsuko Bannai
in [1], see also [2, 3, 7]. On the other hand, the corresponding problem forQ-polynomial
association schemes was raised by Eiichi Bannai and Tatsuro Ito in [2, Sections III.4, III.7]
in connection with the integrality condition of the eigenvalues ofP - andQ-polynomial
association schemes. In his thesis [5], Garth A. Dickie classifiedP -polynomial association
schemes with multipleQ-polynomial structures. Our result in this paper is a generalization
of a part of his result and actually it can substitute a part of his proof. It is worth noting that
Dickie’s proof uses the additional conditionP -polynomial property fully. He proves first
that the association schemes in question is thin in Terwilliger’s terminology. This part can
be seen without difficulty as a corollary of our result.

The author believes thatP -polynomial association schemes andQ-polynomial association
schemes share many more properties which cannot be seen atC-algebra level. That means
we may be able to expect higher duality between these types of schemes. On the other hand,
each of these classes of association schemes should be studied separately to understand their
peculiarity. Just as the graph theoretical arguments developed in distance-regular graphs
have successfully applied in the study of association schemes, the representation theory in
Q-polynomial association schemes should shed light from different direction.

2. Basic Properties ofQ-polynomial Schemes

In this section, we collect the properties of Krein parametersqhi,j which are derived al-
gebraically from the conditions ofP -polynomialC-algebra with nonnegative structure
constants. See the definitions and the proofs in [9].

Lemma 1 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents. Letk∗i = q0

i,i. Then the following
hold.

(1) qhi+1,jc
∗
i+1 = qhi,j−1b

∗
j−1 + qhi,j(a

∗
j − a∗i ) + qhi,j+1c

∗
j+1 − qhi−1,jb

∗
i−1.

(2) k∗hq
h
i,j = k∗i q

i
j,h andk∗i > 0 for i = 0, 1, . . . , d. In particular, qhi,j 6= 0 if and only if

qij,h 6= 0.
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(3) qi+hi,h+1c
∗
h+1 = qi+hi,h (a∗i + · · ·+ a∗i+h − a∗1 − · · · − a∗h).

Well known Krein condition asserts that Krein parametersqhi,j are all nonnegative, and
we can derive some more properties of them using this condition.

Lemma 2 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect to
the orderingE0, E1, . . . , Ed of primitive idempotents. Thenqhi,j ≥ 0 for all 0 ≤ h, i, j ≤ d
and the following hold.

(1) If qhi+1,j−1 = qhi+1,j = qhi+1,j+1 = 0 for 0 ≤ i < d, thenqhi,j = qhi+2,j = 0.

(2) If qhl,j−l+i = qhl,j−l+i+1 = · · · = qhl,j+l−i = 0 for i ≤ l and 0 ≤ i < d, then
qhi,j = qh2l−i,j = 0.

(3) For all i, j with 0 ≤ i, h, i+ h ≤ d, a∗i = a∗i+1 = · · · = a∗i+h = 0 impliesa∗1 = · · · =
a∗h = 0.

(4) For all h andi with 0 ≤ h, i, i+ h ≤ d, the following hold.

(i) If qhi,i+h−1 = 0, thena∗i ≤ a∗i+h. Moreover ifa∗i = a∗i+h, thenqhi+1,i+h = 0.

(ii) If qhi+1,i+h = 0, thena∗i ≥ a∗i+h. Moreover ifa∗i = a∗i+h, thenqhi,i+h−1 = 0.

(iii) If qhi,i+h−1 = qhi+1,i+h = 0, thena∗i = a∗i+h.

(5) For all h andi with 0 ≤ i ≤ h ≤ d, the following hold.

(i) If qhi,h−i+1 = 0, thena∗i ≤ a∗h−i. Moreover ifa∗i = a∗h−i, thenqhi+1,h−i = 0.

(ii) If qhi+1,h−i = 0, thena∗i ≥ a∗h−i. Moreover ifa∗i = a∗h−i, thenqhi,h−i+1 = 0.

(iii) If qhi,h−i+1 = qhi+1,h−i = 0, thena∗i = a∗h−i.

3. New Conditions on Krein Parameters

Only a few restrictions of the Krein parametersqhi,j of symmetric association schemes are
known except those derived algebraically using Lemma 1 or Krein conditions in Lemma 2.
We list other restrictions on Krein parameters. The first one is shown in [4]. See also
[2, Theorem 2.3.8, Proposition 2.8.3]. This is the key to connect the conditions on Krein
parameters with representations or matrix identities. Actually, all the rest follow from this
identity.

Proposition 1 Let X = (X, {Ri}0≤i≤d) be a symmetric association scheme. Let
E0, E1, . . . , Ed be primitive idempotents and letqhi,j be the Krein parameters. Then for
0 ≤ h, i, j ≤ d, we have

qhi,j = 0⇔
∑
u∈X

(Eh)ux(Ei)uy(Ej)uz = 0 for all x, y, z ∈ X.

The following three results are proved in [9]. Proposition 2 is shown by Lemma 3 and
Corollary 1 is a direct consequence of Proposition 2.
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Lemma 3 LetX = (X, {Ri}0≤i≤d) be a symmetric association scheme. Let
E0, E1, . . . , Ed be primitive idempotents and letqhi,j be the Krein parameters. Suppose
{i | qij,kqil,m 6= 0} ⊂ {h}. Then for all integers0 ≤ h, i, j, k, l,m ≤ d and the vertices
a, a′, b, b′, the following hold.

(1)
∑
e∈X

(Ej)ea(Ek)ea′(El)eb(Em)eb =
qhl,m
|X|

∑
e∈X

(Ej)ea(Ek)ea′(Eh)eb.

(2)
∑
e∈X

(Ej)ea(Ek)ea′(El)eb(Em)eb′ =
∑

e,e′∈X
(Ej)ea(Ek)ea′(Eh)ee′(El)e′b(Em)e′b′ .

Proposition 2 Let X = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with
respect to the orderingE0, E1, . . . , Ed of primitive idempotents. Suppose that

{l | qlj,h+iq
l
i−j,h+j 6= 0} ⊂ {h+ i− j}.

Then forh ≥ 0, i ≥ j ≥ 1 with h+ i+ j ≤ d, qh+i
i,h+j = 0 implies that qh+j

j,h+j = 0.

Corollary 1 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents.

(1) For h ≥ 0, i ≥ 1 with h+ i+ 1 ≤ d,

qh+i
i,h+1 = qh+i

1,h+i = 0 implies that qh+1
1,h+1 = 0.

(2) For h ≥ 0, i ≥ 2 with h+ i+ 2 ≤ d,

qh+i
i,h+2 = qh+i

2,h+i = qh+i
2,h+i−1 = 0 implies that qh+2

2,h+2 = 0.

By settingh = 0 in Corollary 1, we have the main result in [6], i.e.,a∗i = 0 implies
a∗1 = 0 for all 1 ≤ i ≤ d− 1.

We give another application of the matrix identities, which gives a basic tool to handle
Krein parameters of association schemes.

Proposition 3 LetX = (X, {Ri}0≤i≤d) be a symmetric association scheme. Suppose the
following.

(1) {t | qti,kqth,m 6= 0} ⊂ {l}, (2) {t | qtj,kqth,l 6= 0} ⊂ {m}.

Thenqhi,j 6= 0 implies thatqik,l = qjk,m.

Proof: LetX(h, i, j, k, l,m) be the following sum.∑
w,x,y,z∈X

(Eh)w,x(Ei)w,y(Ej)w,z(Ek)y,z(El)x,y(Em)x,z.
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We evaluateX(h, i, j, k, l,m) using Lemma 3 under our assumption.
Rearranging first the order of the product and apply Lemma 3(2) by our assumption(1),

we have the following.

X(h, i, j, k, l,m)

=
∑
w,z∈X

(Ej)w,z
∑
x,y∈X

(Ei)y,w(Ek)y,z(El)y,x(Eh)x,w(Em)x,z

=
∑
w,z∈X

(Ej)w,z
∑
x∈X

(Ei)x,w(Ek)x,z(Eh)x,w(Em)x,z

=
∑

w,x∈X
(Ei)x,w(Eh)x,w

∑
z∈X

(Ek)x,z(Em)x,z(Ej)w,z

=
∑

w,x∈X
(Ei)x,w(Eh)x,w

∑
z∈X

(Ek ◦ Em)x,z(Ej)z,w

=
∑

w,x∈X
(Ei)x,w(Eh)x,w((Ek ◦ Em)Ej)x,w

=
qjk,m
|X|

∑
w,x∈X

(Ei)x,w(Eh)x,w(Ej)x,w

=
qjk,m
|X|

∑
w∈X

∑
x∈X

(Ei ◦ Ej)w,x(Eh)x,w

=
qjk,m
|X|

∑
w∈X

((Ei ◦ Ej)Eh)w,w

=
qjk,m
|X|

qhi,j
|X|

∑
w∈X

(Eh)w,w

=
qjk,mq

h
i,j

|X|2 k∗h.

Now by symmetry we swapi with j, andl with m to obtain the following.

X(h, i, j, k, l,m) =
qik,lq

h
i,j

|X|2 k∗h.

Therefore ifqhi,j 6= 0, we haveqik,l = qjk,m as desired.

Corollary 2 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents. Ifqhi,j 6= 0, then the following
hold.

(1) If qhi−1,j = qhi−1,j−1 = qhi,j+1 = qhi+1,j+1 = 0, thenc∗i = b∗j .

(2) If qhi−1,j = qhi−1,j+1 = qhi,j−1 = qhi+1,j−1 = 0, thenc∗i = c∗j .
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(3) If qhi−1,j+1 = qhi,j+1 = qhi+1,j−1 = qhi+1,j = 0, thenb∗i = b∗j .

Proof: It is easy to check each of the following.

(1) {t | qti,1qth,j+1 6= 0} ⊂ {i− 1}, and{t | qtj,1qth,i−1 6= 0} ⊂ {j + 1}.

(2) {t | qti,1qth,j−1 6= 0} ⊂ {i− 1}, and{t | qtj,1qth,i−1 6= 0} ⊂ {j − 1}.

(3) {t | qti,1qth,j+1 6= 0} ⊂ {i+ 1}, and{t | qtj,1qth,i+1 6= 0} ⊂ {j + 1}.

Hence we have the assertions as direct consequences of the previous proposition.

Corollary 3 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents. Ifk∗1 > 2, then the following hold.

(1) If qh2,h = qh1,h = qh2,h−1 = 0 with 2 ≤ h ≤ d, thenh = d.

(2) If qh2,h = qh1,h = qh2,h+1 = 0 with 2 ≤ h ≤ d, thenh = d.

Proof: (1) By Corollary 2,b∗1 = c∗h−1, c∗1 = c∗h+1. Supposeh < d. Thenq2
h+1,h−1 6= 0

andq2
h,h−1 = q2

h,h = 0 by our assumption. Hence by Corollary 2,c∗h+1 = c∗h−1. Thus
b∗1 = c∗1 = 1. This impliesk∗1 = 2, becausea∗h = qh1,h = 0 impliesa∗1 = 0 by Corollary 1.
This is not the case. Thereforeh = d.

(2) In this case, we haveb∗1 = b∗h+1 andc∗1 = b∗h−1. Similarly, if h < d, then we have
b∗h+1 = b∗h−1 andk∗1 = 2. This is a contradiction.

4. Multiple Q-polynomial Structures

In this section and the next, we prove the following result. It is obvious that Theorem 1 is
a direct consequence of it.

Theorem 2 LetX = (X, {Ri}0≤i≤d) withk∗1 > 2 be aQ-polynomial association scheme
with respect to the orderingE0, E1, . . . , Ed of the primitive idempotents.

(1) SupposeX isQ-polynomial with respect to another ordering. Then the new ordering
is one of the following:

(I) E0, E2, E4, E6, . . . , E5, E3, E1,

(II) E0, Ed, E1, Ed−1, E2, Ed−2, E3, Ed−3, . . .,

(III) E0, Ed, E2, Ed−2, E4, Ed−4, . . . , Ed−5, E5, Ed−3, E3, Ed−1, E1,

(IV ) E0, Ed−1, E2, Ed−3, E4, Ed−5, . . . , E5, Ed−4, E3, Ed−2, E1, Ed, or

(V ) d = 5 andE0, E5, E3, E2, E4, E1.

(2) Let qhi,j be the Krein parameters with respect to the original ordering. Supposed ≥ 3.
Then,
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(I) holds if and only ifq1
1,1 = · · · = qd−1

1,d−1 = 0 6= qd1,d.

(II) holds if and only ifqd1,d 6= 0 = qd2,d = · · · = qdd,d.

(III) holds if and only if one of the following holds:

(i) d = 3, andq3
1,3 = 0 6= q3

2,3,

(ii) d = 4, q4
1,4 = q4

3,4 = 0, andq4
2,4 6= 0 6= q4

2,3, or

(iii) d ≥ 5, qd2,d 6= 0 = qd1,d = qd3,d = · · · = qdd,d. Moreover ifd = 2e − 1, then

qj1,j 6= 0 impliesj = e and ifd = 2e, thenqj1,j 6= 0 if and only ifj = e, e+ 1.

(IV ) holds if and only if one of the following holds:

(i) d = 3, q2
1,2 6= 0 = q2

3,2, or

(ii) d ≥ 4, qd−1
2,d = · · · = qd−1

d,d = 0. Moreover, ifd = 2e, thenqj1,j 6= 0 implies

j = e and ifd = 2e+ 1, thenqj1,j 6= 0 if and only ifj = e, e+ 1.

(V ) holds if and only ifq5
1,5 = q5

2,5 = q5
4,5 = q5

5,5 = 0 6= q5
3,5 andq5

3,4 = 0.

(3) X has at most twoQ-polynomial structures.

Before we start the proof, we prepare some lemmas to illustrate the structures ofQ-
polynomial association schemes appeared in the theorem above.

Lemma 4 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents. For3 ≤ m ≤ d, the following
are equivalent.

(1) a∗1 = a∗2 = · · · = a∗m−1 = 0 6= a∗m.

(2) q2
1,2 = q2

2,3 = · · · = q2
m−2,m−1 = 0 6= q2

m−1,m.

Proof: Suppose(1) holds. Sincem ≥ 3, a∗2 = q2
1,2 = 0. Now by induction, we have

q2
i,i+1 = 0 for i = 1, 2, . . . ,m − 2 from Lemma 2(4)(i). Moreoverq2

m−1,m 6= 0 by
Lemma 2(4)(iii).

Conversely, suppose(2). Then by Corollary 1(1), a∗1 = 0 asd ≥ 3. Now we have(1)
by Lemma 2(4)(i), (iii).

Lemma 5 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents. Suppose

qd1,d 6= 0 = qd2,d = · · · = qdd,d.

Then the following hold.

(1) For 0 ≤ i, j ≤ d, qdi,j 6= 0 if and only if0 ≤ i+ j − d ≤ 1.

(2) If, in addition,q1
1,1 = · · · = qd−1

1,d−1 = 0 6= qd1,d, thenk∗1 = 2.
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Proof: (1) This is a direct consequence of Lemma 2(2).
(2) We first observe the following:

1. qdi,d−i 6= 0 for i = 1, . . . , d− 1, {t | qti,1qtd,d−i+1 6= 0} ⊂ {i− 1} and
{t | qtd−i,1qtd,i−1 6= 0} ⊂ {d− i+ 1}.

2. qdi+1,d−i 6= 0 for i = 1, . . . , d− 1, {t | qti+1,1q
t
d,d−i+1 6= 0} ⊂ {i} and

{t | qtd−i,1qtd,i 6= 0} ⊂ {d− i+ 1}.

Now we apply Proposition 3. We obtainc∗i = b∗d−i for i = 1, . . . , d− 1 from the first set of
conditions, andc∗i+1 = b∗d−i for i = 1, . . . , d− 1 from the second set of conditions. Thus

1 = c∗1 = b∗d−1 = c∗2 = b∗d−2 = · · · = c∗d−1 = b∗1 = c∗d.

Sincea∗1 = 0, we havek∗1 = c∗1 + a∗1 + b∗1 = 2 as desired.

Lemma 6 LetX = (X, {Ri}0≤i≤d) be aQ-polynomial association scheme with respect
to the orderingE0, E1, . . . , Ed of primitive idempotents. Suppose

qd−1
2,d = · · · = qd−1

d,d = 0.

Then the following hold.

(1) For 0 ≤ i, j ≤ d, qd−1
i,j 6= 0 only if0 ≤ i+j−(d−1) ≤ 2. Moreover, ifi+j−(d−1) ∈

{0, 2}, qd−1
i,j 6= 0.

(2) Supposed ≥ 3. Then, for0 ≤ i, j ≤ d, qdi,j 6= 0 if and only ifi+ j = d.

(3) If d ≥ 3, thenb∗i = c∗d−i for i = 0, 1, . . . , d, i.e.,X is dual antipodal2-cover.

Proof: (1) This is a direct consequence of Lemma 2(2).
(2) By the assumption,qd2,d−1 = · · · = qdd,d−1 = 0. Sinced ≥ 3, qdd−1,d−1 = qdd−1,d =

0. Henceqdd,d = 0, by Lemma 2(1). Now by induction oni in reverse order,qdi,d = 0 for
1 ≤ i ≤ d, asqdi+1,d = qdi+1,d−1 = 0.

(3) By (2), we can apply Corollary 2(1) by settingh = d, j = d− i for i = 0, 1, . . . , d.

From now on assume the following:

X = (X, {Ri}0≤i≤d) is aQ-polynomial association scheme with respect to the ordering
E0, E1, . . . , Ed of the primitive idempotents. Letqhi,j ’s (and c∗i ’s, a∗i ’s, b∗i ’s) be Krein
parameters or dual intersection numbers with respect to this ordering of the primitive
idempotents. Supposek∗1 > 2.

Let ∆ = ∆(h) be a graph on the vertex setV∆ = {0, 1, . . . , d} such thati is adjacent to
j, or i ∼ j, if and only if qhi,j 6= 0. Hence for this particular graph, we allow loops. Let
∂(i, j) denote the distance betweeni andj in this graph and∆l(i) = {j | ∂(i, j) = l}. Let
∆(i) = ∆1(i), and∆∗(i) = ∆(i)− {i}.
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It is easy to see that∆(h) is a path graph, if and only ifX isQ-polynomial with respect
to the orderingE0, Eh, . . . of the primitive idempotents. Here bya path graphwe mean a
path which may include some loops.

We prove Theorem 2 in a series of lemmas. In Lemma 7, we check that if the parameters
satisfy one of the conditions in(2) thenX isQ-polynomial with respect to the corresponding
ordering. In Lemma 8, we show(3) assuming that(1) and (2) are valid. In the next
section we show the main part, i.e., ifX has differentQ-polynomial ordering of primitive
idempotents then the ordering is the one listed in(1) and the parameters satisfy the conditions
in (2).

Lemma 7 If Krein parametersqhi,j ’s satisfy the conditions of one of the cases inTheorem 2
(2), thenX isQ-polynomial with respect to the corresponding ordering.

Proof: It suffices to show that the graph∆ = ∆(h) is a path graph, whereh = 2 in (I),
h = d in (II), (III), h = d− 1 in (IV ), andh = 5 in (V ).

Suppose the condition in(I) holds, i.e.,q1
1,1 = · · · = qd−1

1,d−1 = 0 6= qd1,d. Then by
Lemma 4, we have that

q2
1,2 = q2

2,3 = · · · = q2
d−2,d−1 = 0 6= q2

d−1,d.

Sinceq2
i,i+2 6= 0 for i = 0, 1, . . . , d−2, we have∆∗(i) = {i−2, i+2} for i = 2, . . . , d−2,

∆∗(d − 1) = {d − 3, d} and∆∗(d) = {d − 2, d − 1}. Therefore, it is easy to check that
∆ = ∆(2) is a path graph

0 ∼ 2 ∼ 4 ∼ 6 ∼ · · · ∼ 5 ∼ 3 ∼ 1.

Suppose the condition in(II) holds. Then by Lemma 5(1) we have thatqdi,j 6= 0 if and
only if 0 ≤ i+ j − d ≤ 1. It is easy to check that∆ is a path graph

0 ∼ d ∼ 1 ∼ d− 1 ∼ 2 ∼ d− 2 ∼ 3 ∼ d− 3 ∼ · · · .

Suppose the condition in(III) holds. The assertions are easily checked for the cases
d < 5 from the conditions in(i), (ii). Supposed ≥ 5. Then by Lemma 2(2), qdi,j = 0 if
i+ j − d > 2 andqdi,j 6= 0 if i+ j − d = 2 for 0 ≤ i, j ≤ d. The additional conditions on

qj1,j ’s imply the following by Lemma 2(5)(i) and(iii).

1. If d = 2e− 1, thenqdi,d−i+1 6= 0 implies thati = e.

2. If d = 2e, thenqdi,d−i+1 6= 0 if and only if i ∈ {e, e+ 1}.

Now it is easy to check that∆ is a path graph

0 ∼ d ∼ 2 ∼ d− 2 ∼ 4 ∼ d− 4 ∼ · · · ∼ d− 5 ∼ 5 ∼ d− 3 ∼ 3 ∼ d− 1 ∼ 1.

Suppose the condition in(IV ) holds. The assertion is trivial ifd = 3. Supposed ≥ 4.
Then by Lemma 6(1), qd−1

i,j = 0 if i + j > d + 1 andqd−1
i,j 6= 0 if i + j = d + 1 for

0 ≤ i, j ≤ d. The additional conditions onqj1,j ’s imply the following by Lemma 2(5)(i)
and(iii).
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1. If d = 2e, thenqd−1
i,d−i 6= 0 implies thati = e.

2. If d = 2e+ 1, thenqd−1
i,d−i 6= 0 if and only if i ∈ {e, e+ 1}.

Now it is easy to check that∆ is a path graph

0 ∼ d− 1 ∼ 2 ∼ d− 3 ∼ 4 ∼ d− 5 ∼ · · · ∼ 5 ∼ d− 4 ∼ 3 ∼ d− 2 ∼ 1 ∼ d.
Finally if the condition in(V ) holds, then∆ is a path graph

0 ∼ 5 ∼ 3 ∼ 2 ∼ 4 ∼ 1.

Note thatq5
2,4 6= 0 follows from Lemma 2(1) as q5

3,5 6= 0 while q5
2,6 = q5

2,5 = 0.

Lemma 8 X has at most twoQ-polynomial structures.

Proof: It suffices to show that no two of the sets of parametrical conditions of Theorem 2
(2) hold simultaneously. We may assumed ≥ 3.

Suppose(I) holds. Thena∗1 = · · · = a∗d−1 = 0 6= a∗d. Sincea∗d 6= 0 anda∗2 = 0, the
only possible case is(II). Now by Lemma 5(2), we havek∗1 = 2, which contradicts our
assumption.

Suppose(II) holds. Thena∗d 6= 0 andq3
2,2 6= 0 if d = 3 by Lemma 5(1). Hence none

of the other cases can occur.
Suppose(III) holds. If d = 3, thenq3

1,3 = 0 6= q3
2,3. Hence if(IV ) holds as well,

q3
2,2 = 0. By Lemma 1(1) with h = 3, i = 3, j = 2, we haveq3

3,2a
∗
2 + q3

3,3c
∗
3 = 0. Thus

a∗2 = q2
1,2 = 0, which is not the case in(IV ). If d ≥ 4, thenqd2,d 6= 0. Hence(V ) cannot

occur.(IV ) does not occur either, asX is dual antipodal 2-cover by Lemma 6.
(IV ) and(V ) cannot occur simultaneously, asq5

3,5 6= 0 in the case(V ), while q5
3,5 = 0

in the case(IV ) as it is dual antipodal 2-cover.
ThereforeX has at most twoQ-polynomial structures.

5. Proof of Main Theorem

SupposeX = (X, {Ri}0≤i≤d) has anotherQ-polynomial structure, i.e.,X isQ-polynomial
with respect to another orderingE0, Ei1 , Ei2 , . . . , Eid of primitive idempotents. Just to
simplify the notation, leti1 = h, andi2 = i. We may assume thatd > 2 andh > 1.
We determine the order0, i1, i2, . . . and the conditions ofqhl,m’s in the following. Let

∆ = ∆(h). By our assumption,∆ is a path graph. One of the keys is that for eachl with
1 ≤ l ≤ d, |∆(l)| ≤ 3 or |∆∗(l)| ≤ 2.

In Lemma 9, we show that the first member in the new orderingh = 2, d − 1 or d. In
Lemma 10, we treat the case whenh = 2 and show that we have(I) or (IV )(i) in the
theorem. Lemma 11 is for the case whenh = d − 1 and we show that(IV ) occurs. The
case whenh = d requires a little more work. In Lemma 12, we determine the second
memberi in the new ordering to showi = 1 or 2 with an exception when we have(V ). In
Lemmas 13 and 14, we determine the case wheni = 1 and2 respectively by showing that
we have either the case(II) or (III) respectively.
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Lemma 9 The first memberh = i1 of the new ordering is either2, d− 1 or d.

Proof: By way of contradiction, assume that3 ≤ h ≤ d− 2. In particular,d ≥ 5.
We first claim thatqh1,h = qh2,h = 0. Supposeqhl,h 6= 0 with l = 1 or 2. Since

3 ≤ h ≤ d− 2, qhl,h−l 6= 0 6= qhl,h+l by (Q2). Hence∆(l) 3 h, h− l, h+ l. Sincel 6= h,
the only possibility is thath = 2l = 4 or h = 4, i = 2, i3 = 6 and∆(4) ⊂ {0, 2, 4}.
Observe thatq4

4,8 = 0 sinceq4
4,8 6= 0 implies8 ∈ ∆(4), so eitherd = 6 or d = 7.

If d = 7, then we haveq4
3,7 6= 0 while q4

4,6 = q4
4,7 = q4

4,8 = 0, which contradicts
Lemma 2(1).

Supposed = 6. Thenq4
2,6 6= 0. Hence by Lemma 2(1), we have eitherq4

3,5 6= 0 or
q4
3,6 6= 0. Since there is a path3 ∼ 1 ∼ 5 in ∆, which is guaranteed to exist by(Q2),

3 6∼ 5 andq4
3,6 6= 0. Hence the new ordering has to be0 ∼ 4 ∼ 2 ∼ 6 ∼ 3 ∼ 1 ∼ 5. This

contradicts Lemma 2(1), asq4
3,6 6= 0, while q4

4,5 = q4
4,6 = q4

4,7 = 0. Thus we have the
claim.

As qh1,h = qh2,h = 0, we haveqh2,h−1 6= 0 6= qh2,h+1 by Corollary 3. Therefore, we have
h− 2, h− 1, h+ 1, h+ 2 ∈ ∆(2). This is impossible.

Lemma 10 Supposed ≥ 3 andh = i1 = 2. Then one of the following holds.

(i) d = 3, the new ordering is0, 2, 1, 3 andq2
1,2 6= 0 = q2

2,3, i.e., the case(IV )(i) holds.

(ii) The new ordering is0, 2, 4, 6, . . . , 5, 3, 1 andq1
1,1 = · · · = qd−1

1,d−1 = 0 6= qd1,d, i.e., the
case(I) holds.

Proof: Supposeq2
1,2 6= 0. Thenh = 2, i = i2 = 1, andq2

2,3 = q2
2,4 = 0 as∆∗(2) =

{0, 1}. We have(i) in this case.
Supposeq2

1,2 = 0. By Corollary 1,q1
1,1 = 0 asd ≥ 3. There exists anm such that

a∗1 = a∗2 = · · · = a∗m−1 = 0 6= a∗m

since otherwise∆ is not connected. Then by Lemma 4, we have

q2
1,2 = q2

2,3 = · · · = q2
m−2,m−1 = 0 6= q2

m−1,m.

If m < d, thenq2
m−1,m+1 6= 0. Hencem − 3,m,m + 1 ∈ ∆∗(m − 1), which is a

contradiction. Thusm = d and we have(I).

Lemma 11 Suppose3 ≤ h = i1 = d − 1. Thenqd−1
2,d = · · · = qd−1

d,d = 0. Moreover,

if d = 2e, thenqj1,j 6= 0 impliesj = e and if d = 2e + 1, thenqj1,j 6= 0 if and only if
j = e, e+ 1. In particular, the case(IV ) holds.

Proof: First we claim thatqd−1
1,d−1 = 0 6= qd−1

2,d−1 andi = i2 = 2. If qd−1
1,d−1 6= 0, then

d− 2, d− 1, d ∈ ∆(1). This is impossible asd ≥ 4. Supposeqd−1
2,d−1 = 0. By Corollary 3,

qd−1
2,d−2 6= 0 6= qd−1

2,d . Henced − 3, d − 2, d ∈ ∆(2). Thusd = 4 or 5. d 6= 5, because

3 ∼ 2 ∼ 5 ∼ 1 ∼ 3 in ∆ = ∆(4). d 6= 4, because1 ∼ 2 ∼ 4 ∼ 1 in ∆ = ∆(3). Thus we
have the claim. In particular,0 ∼ d− 1 ∼ 2 in this case.
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Next we claim thatqd−1
d,2 = 0. As otherwise,d − 3, d − 1, d ∈ ∆(2). Henced − 3 = 2

or d = 5. We have0 ∼ 4 ∼ 2 ∼ 5 ∼ 1 ∼ 3 in ∆ = ∆(4). This is impossible as
q4
2,5 6= 0 = q4

3,5 = q4
3,4 contradicts Lemma 2(1).

We claimqd−1
d,3 = 0. Suppose not. Then1 ∼ d ∼ 3 ∼ d − 4. Since0 ∼ d − 1 ∼ 2,

3 6= d − 1 and thatqd−1
d,4 = qd−1

d−1,3 = 0. Hence in order to haveqd−1
d,3 6= 0, qd−1

d−1,4 6= 0
by Lemma 2(1). Since∆(d − 1) ⊂ {0, 2, d − 1}, we haved = 5. This is impossible as
1 ∼ 5 ∼ 3 ∼ 1 in ∆. Thusqd−1

d,3 = 0.

We now claim thatqd−1
d,j 6= 0 if and only if j = 1. Sinceqd−1

2,d = qd−1
3,d = 0, in order to

showqd−1
d,j = 0 for j > 1 by induction, it suffices to show thatqd−1

d,j−1 = qd−1
d−1,j−1 = 0

for eachj with 4 ≤ j ≤ d. Sincej ≥ 4, we need only to checkqd−1
d,d = 0. Note that

qd−1
d−1,j−1 6= 0 only if j = 1, 3, d. Supposeqd−1

d,d 6= 0. Thenqd−1
d−1,d−1 6= 0 asqd−1

d−1,d = 0.
By our observation above,∆∗(d) = {1} andd comes as the last member in the new ordering
as well. Let̃a∗j denote the dual intersection number with respect to the new ordering. Since

d ≥ 4, qd−1
1,1 = 0. In our caseqd−1

d−1,d−1 6= 0 or ã∗1 6= 0. In view of Corollary 1(1), this is

impossible asqd−1
1,1 = 0 and1 is not the last member in the new ordering.

Therefore,qd−1
d,j 6= 0 if and only if j = 1 and thatqd−1

l,m = 0 if l+m ≥ d+ 2. Moreover

we haveqd−1
l,m 6= 0 if l +m = d− 1 or d+ 1. In particular, we have the ordering of(IV ).

Now the rest follows easily. See also the proof of Lemma 7.

Lemma 12 Suppose3 ≤ h = i1 = d. If i = i2 ≥ 3, thend = 5, and the new ordering
is 0, 5, 3, 2, 4, 1 andq5

1,5 = q5
2,5 = q5

4,5 = q5
5,5 = 0 6= q5

3,5 andq5
3,4 = 0, i.e., the case(V )

holds.

Proof: Supposei = i2 ≥ 3. Then we have

qd1,d = qd2,d = · · · = qdi−2,d = qdi−1,d = 0 6= qdi,d.

Thus qdd−1,1 6= 0 and qdd−1,i−1 6= 0. We claim thatqdd−1,i+1 6= 0. As b∗i 6= 0 and
qdi,d 6= 0, qdd−1,i+1 = 0 implies thatqdd,i+1 6= 0. Hencei + 1 = d or i = d − 1. Then
qdi,d = qdd−1,i+1 = 0, which is absurd. Thusqdd−1,i+1 6= 0 and1, i− 1, i+ 1 ∈ ∆(d− 1).
Hence we must haved− 1 = i+ 1 or i = d− 2, i.e.,0 ∼ d ∼ d− 2.

Since∆∗(d− 1) = {1, d− 3}, we have2, d− 4, d ∈ ∆(d− 2) if d ≥ 6. Note thatd ≥ 6
with qdd−2,d 6= 0 implies thatqdd−3,d−1 6= 0 andqdd−4,d−2 6= 0 by Lemma 2(2). Hence
d = 5 or 6.

Supposed = 6. Then0 ∼ 6 ∼ 4 ∼ 2, q6
3,4 = q6

5,4 = 0 andq6
1,6 = q6

2,6 = q6
3,6 = q6

5,6 =
0. Henceq6

2,5 = 0 as well and2 becomes the end vertex in∆ by (Q1), which is absurd.
Supposed = 5. Then the new ordering is0 ∼ 5 ∼ 3 ∼ 2 ∼ 4 ∼ 1 and we have desired

conditions.

Lemma 13 Suppose3 ≤ h = i1 = d andi = i2 = 1. Then the new ordering is

0, d, 1, d− 1, 2, d− 2, 3, d− 3, . . .

and we haveqd1,d 6= 0 = qd2,d = · · · = qdd,d, i.e.,(II) holds.
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Proof: Sinceqd1,d 6= 0 = qd2,d = · · · = qdd−1,d, we need to show thatqdd,d = 0. We usẽa∗j
to denote the dual intersection numbers with respect to the new ordering. Supposeqdd,d 6= 0.
Thenã∗1 6= 0. Sinced ≥ 3, qd1,1 = 0. This contradicts Corollary 1. Thusqdd,d = 0. By
Lemma 5(1), qdl,m 6= 0 if and only if l+m ∈ {d, d+ 1}. Hence∆(l) = {d− l, d− l+ 1}
for l = 1, 2, . . . , d and we have the assertion.

Lemma 14 Suppose3 ≤ h = i1 = d andi = i2 = 2. Then the new ordering is

0, d, 2, d− 2, 4, d− 4, . . . , d− 5, 5, d− 3, 3, d− 1, 1.

Moreover we have the conditions in(III), i.e., one of the following holds.

(i) d = 3, andq3
1,3 = 0 6= q3

2,3,

(ii) d = 4, q4
1,4 = q4

3,4 = 0, andq4
2,4 6= 0 6= q4

2,3, or

(iii) d ≥ 5, qd2,d 6= 0 = qd1,d = qd3,d = · · · = qdd,d. Moreover ifd = 2e − 1, thenqj1,j 6= 0
impliesj = e and ifd = 2e, thenqj1,j 6= 0 if and only ifj = e, e+ 1.

Proof: Supposed = 3. Then the new ordering is0, 3, 2, 1 and the condition in(i) is easy
to check.

Supposed = 4. Then the new ordering is0, 4, 2, 3, 1 asq4
2,1 = 0. Now the condition in

(ii) is easy to check.
Hence assumed ≥ 5. By our assumption, we have that

qd2,d 6= 0 = qd1,d = qd3,d = · · · = qdd−1,d.

We claim thatqdd,d = 0. As otherwise,qd2,2 6= 0 by Corollary 1(1) as before. This is absurd
asd ≥ 5.

Therefore by Lemma 6, we haveqdl,m = 0 if l+m > d+2 andqdl,m 6= 0 if l+m = d+2
for all 0 ≤ l,m ≤ d. Therefored−l, d−l+2 ∈ ∆(l) and the conditions are easily checked.

This completes the proof of Theorem 2.

6. Concluding Remarks

1. One of the keys to our proof is Lemma 9, and forP -polynomial scheme case the
corresponding result is easily obtained by the unimodal property ofki’s and the equality
condition fork1 = ki. Here we used vanishing conditions of the structure constants.
In this sense our proof follows [8].

2. Our proof can be applied to association schemes with multipleP -polynomial structures
simply by replacing Krein parametersqhi,j with phi,j and hencec∗i , a

∗
i , b
∗
i by ci, ai, bi.

Actually, the theorem is proved for the following class ofP -polynomialC-algebras.
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X is aP -polynomialC-algebra satisfying the following.

(A) The structure constantsphi,j ’s are all nonnegative.
(B) Forh ≥ 0, i ≥ j ≥ 1 with h+ i+ j ≤ d,

{l | plj,h+ip
l
i−j,h+j 6= 0} ⊂ {h+ i− j}

andph+i
i,h+j = 0 implies thatph+j

j,h+j = 0.

(C) If phi,j 6= 0, {t | pti,kpth,m 6= 0} ⊂ {l}, and{t | ptj,kpth,l 6= 0} ⊂ {m},
thenpik,l = pjk,m.

SinceP -polynomialC-algebras associated withP -polynomial association
schemes satisfy these conditions, our proof in this paper is applicable to association
schemes with multipleP -polynomial structures. In that case(V ) can be eliminated
easily by a result of A. Gardiner in [3, Proposition 5.5.7].

3. The author does not know any primitiveQ-polynomial association schemes which is
notP -polynomial. Are there such examples?

4. Is it possible to eliminate or classify the cases in Theorem 2? See [5, 7].
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