A Family of Optimal Packings in Grassmannian Manifolds
P.W. Shor
and N.J.A. Sloane
DOI: 10.1023/A:1008608404829
Abstract
A remarkable coincidence has led to the discovery of a family of packings of m 2 + m - 2\text m/2 m^2 + m - 2{\text{ }}m/2 -dimensional subspaces of m-dimensional space, whenever m is a power of 2. These packings meet the orthoplex bound and are therefore optimal.
Pages: 157–163
Keywords: Grassmannian manifold; packing; separating subspace; Barnes-wall lattice; quantum coding theory; Clifford group
Full Text: PDF
References
1. A. Barenco, C.H. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P.W. Shor, T. Sleator, J. Smolin, and H. Weinfurter, “Elementary gates for quantum computation,” Phys. Rev. A. 52 (1995), 3457-3467.
2. E.S. Barnes and N.J.A. Sloane, “New lattice packings of spheres,” Canad. J. Math. 35 (1983), 117-130. P1: PMR Journal of Algebraic Combinatorics KL540-03-Shor February 5, 1998 10:46 A FAMILY OF OPTIMAL PACKINGS 163
3. E.S. Barnes and G.E. Wall, “Some extreme forms defined in terms of Abelian groups,” J. Australian Math. Soc. 1 (1959), 47-63.
4. B. Bolt, T.G. Room, and G.E. Wall, “On Clifford collineation, transform and similarity groups I,” J. Australian Math. Soc. 2 (1961), 60-79.
5. B. Bolt, T.G. Room, and G.E. Wall, “On Clifford collineation, transform and similarity groups II,” J. Australian Math. Soc. 2 (1961), 80-96.
6. W. Bosma and J. Cannon, Handbook of Magma Functions, Sydney, 1995.
7. W. Bosma, J.J. Cannon, and G. Mathews, “Programming with algebraic structures: Design of the Magma language,” in Proceedings of the 1994 International Symposium on Symbolic and Algebraic Computation, M. Giesbrecht (Ed.), Association for Computing Machinery, Oxford, 1994, pp. 52-57.
8. W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system I: The user language,” J. Symb. Comp. 1996, 24 (1997), 235-265.
9. A.R. Calderbank, P.J. Cameron, W.M. Kantor, and J.J. Seidel, “Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets,” Proc. London Math. Soc., 75 (1997), 436-480.
10. A.R. Calderbank and P.W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A, 54 (1996), 1098-1105.
11. J.H. Conway, R.H. Hardin, and N.J.A. Sloane, “Packing lines, planes, etc.: Packings in Grassmannian space,” Experimental Math. 5 (1996), 139-159.
12. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 2nd edition, Springer-Verlag, NY, 1993.
13. G.D. Forney, Jr., “Coset codes-Part II: Binary lattices and related codes,” IEEE Trans. Information Theory 34 (1988), 1152-1187.
14. G.E. Wall, “On Clifford collineation, transform and similarity groups IV,” Nagoya Math. J. 21 (1962), 199- 222.
2. E.S. Barnes and N.J.A. Sloane, “New lattice packings of spheres,” Canad. J. Math. 35 (1983), 117-130. P1: PMR Journal of Algebraic Combinatorics KL540-03-Shor February 5, 1998 10:46 A FAMILY OF OPTIMAL PACKINGS 163
3. E.S. Barnes and G.E. Wall, “Some extreme forms defined in terms of Abelian groups,” J. Australian Math. Soc. 1 (1959), 47-63.
4. B. Bolt, T.G. Room, and G.E. Wall, “On Clifford collineation, transform and similarity groups I,” J. Australian Math. Soc. 2 (1961), 60-79.
5. B. Bolt, T.G. Room, and G.E. Wall, “On Clifford collineation, transform and similarity groups II,” J. Australian Math. Soc. 2 (1961), 80-96.
6. W. Bosma and J. Cannon, Handbook of Magma Functions, Sydney, 1995.
7. W. Bosma, J.J. Cannon, and G. Mathews, “Programming with algebraic structures: Design of the Magma language,” in Proceedings of the 1994 International Symposium on Symbolic and Algebraic Computation, M. Giesbrecht (Ed.), Association for Computing Machinery, Oxford, 1994, pp. 52-57.
8. W. Bosma, J. Cannon, and C. Playoust, “The Magma algebra system I: The user language,” J. Symb. Comp. 1996, 24 (1997), 235-265.
9. A.R. Calderbank, P.J. Cameron, W.M. Kantor, and J.J. Seidel, “Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets,” Proc. London Math. Soc., 75 (1997), 436-480.
10. A.R. Calderbank and P.W. Shor, “Good quantum error-correcting codes exist,” Phys. Rev. A, 54 (1996), 1098-1105.
11. J.H. Conway, R.H. Hardin, and N.J.A. Sloane, “Packing lines, planes, etc.: Packings in Grassmannian space,” Experimental Math. 5 (1996), 139-159.
12. J.H. Conway and N.J.A. Sloane, Sphere Packings, Lattices and Groups, 2nd edition, Springer-Verlag, NY, 1993.
13. G.D. Forney, Jr., “Coset codes-Part II: Binary lattices and related codes,” IEEE Trans. Information Theory 34 (1988), 1152-1187.
14. G.E. Wall, “On Clifford collineation, transform and similarity groups IV,” Nagoya Math. J. 21 (1962), 199- 222.