;:‘ Journal of Algebraic Combinatori@s(1998), 115-126
' (© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Characteristic and Ehrhart Polynomials*

ANDREAS BLASS ablass@umich.edu
Department of Mathematics, University of Michigan, Ann Arbor, Ml 48109-1003

BRUCE E. SAGAN sagan@math.msu.edu
Department of Mathematics, Michigan State University, East Lansing, M| 48824-1027

Received May 1, 1996; Revised December 17, 1996

Abstract. Let A be a subspace arrangement andlet., t) be the characteristic polynomial of its intersection
lattice L (A). We show that if the subspacesdrare taken froni (3y), whereB3,, is the typeB Weyl arrangement,
theny (A, t) counts a certain set of lattice points. One can use this result to study the partial factorizatigh of

over the integers and the coefficients of its expansion in various bases for the polynonifgttifdext we prove

that the characteristic polynomial of any Weyl hyperplane arrangement can be expressed in terms of an Ehrf
quasi-polynomial for its affine Weyl chamber. Note that our first result deals with all subspace arrangemen
embedded B, while the second deals with all finite Weyl groups but only their hyperplane arrangements.

Keywords: Weyl group, hyperplane arrangement, subspace arrangemebitdfunction, characteristic poly-
nomial, Ehrhart polynomial

1. Introduction and background

An arrangements a finite set
A={Ky, ..., Ky} (1)

of proper subspaces of Euclidean sp&fe All the subspaces we consider will be linear
and so go through the origin. If ea&h has dimension — 1, thenA is called ahyperplane
arrangement We sometimes refer to general arrangementsuaispace arrangements
emphasize that they need not be hyperplane arrangements. We udtéor the set-
theoretic union of the subspacesdpi.e., |, Ki.

The theory of hyperplane arrangements is a beautiful area of mathematics which brin:
together ideas from topology, algebra, and combinatorics. Its roots go back to the end
the 19th century but it is also an active area of research today. The recent book [15]
Orlik and Terao covers both classical work and recent developments in the field. Subspa
arrangements, on the other hand, have received relatively little attention yet, as was notec
the recent survey article of Bffier [2]. Itisimportantto emphasize thatin most casesibis
easy to generalize results from the hyperplane case to the subspace case. Particularly ni
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behaved hyperplane arrangements are those which are associated with finite Weyl gro
(see, e.g., [14]). We wish to study these arrangements and certain subspace arrangem
related to them. We begin by establishing some notation and terminology.

Let A be an arrangement as in (1) above, and assume, for simplicity, that there are |
containments among thg. LetL = L(.A) be the setofall intersections of these subspaces,
ordered by reverse inclusion, called fhéersection lattice (Concepts from lattice theory
that are not explained here can be found in Stanley’s text [17].) Notd_thas a unique
minimal elemen® corresponding t®", an atom corresponding to eakl, and a unique
maximal elementl corresponding tcﬂm=1 Ki. If A is a hyperplane arrangement then
L(A) is a geometric lattice, but in general it is not even ranked4 Hnd 3 are subspace
arrangements such thdtC L(B), i.e., all the subspaces.hare intersections of subspaces
in B, then we say thatl is embeddedh 5.

Given an arrangemety, let u(X) = M(f), X) denote thevidbius functiorof the lattice
L (A); itis uniquely defined by

DY) =854

Y<X

whered;  is the Kronecker delta. The &bius function is one of the fundamental invari-
ants of any partially ordered set; see the seminal article of Rota [16].cA&mcteristic
polynomialof A is

XA D= Y pxotimx, )

XeL(A)

Since the characteristic polynomial is just the generating function for tigilg function,

it is also of prime importance. Our results in this paper give a combinatorial interpretatio
for the characteristic polynomials of hyperplane arrangements associated to Weyl grou
and subspace arrangements embedded in some of these Weyl arrangements.

For any finite Weyl groupyV, there is a corresponding hyperplane arrangeiénthose
elements are the reflecting hyperplanedhaf Initially we shall be interested in the case
whereW comes from one of the three infinite familiég, B,, D,. (The arrangement for
C, is clearly the same as that f&,.) In terms of the coordinate functions, ..., X, in
R", the associated hyperplane arrangements can be defined as

An={xi=x; : 1<i<]j<n}
Dh=AnU{X=—X; : 1<i<j<n}
By=DaU{xi=0:1<i<n}

so thatA, C D, C B,. Note thatn here refers to the dimension of the space, not the
number of fundamental reflections (whichnis- 1 for A, andn for the other two).

2. Arrangements embedded in3,

We shall now give our first main result: a combinatorial interpretation for the characteristit
polynomial of any subspace arrangement embedded in one of the three infinite families
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Weyl hyperplane arrangements. It was obtained in an attempt to generalize Zaslavsk
beautiful theory of signed graph coloring [23—-25]. Given integeks s, we let |r, ] =
{r,r+1,...,s}. Notethatiff = —sthent = |[—s, s]| is odd, wherg- | denotes cardinality.
Note also thatfs, s]" is just the cube of points id" centered at the origin withpoints

on a side. Sots, s|™\ | A is the set of points oZ" that are in this cube but not on any
subspace fromd.

Theorem 2.1 If A C L(By) thenforanyt=2s+1

x(A D) = ‘[—s, s]”\ UA‘ .

Note that the hypothesis of the theorem does not preclude the possibility thay also
be embedded itf,, or D,,, as these are embeddedin Let us give a concrete example of
this result before proving it. Let

AZBZ:{X:O,VIO,X=)/,X=—Y}-

Also lets = 2 so thatt = 5. Then [-2, 2]? and 3, are shown in figure 1. Removing the
lines of B, from the cube leaves 8 lattice points. On the other hand it is well known that
x(Ba,t) = (t — D(t — 3); see Eq. (3). Sq(B,,5) =4-2 =8 as expected.

Proof of Theorem 2.1: We construct two functions$, g: L (A) — Z by defining for each
X e LA

FX) = IXN[-s, 9],

(X U Y) N[-s,s]"

Y>X

9(Xx) =

Recallthat_ (A) is ordered byeverséanclusion so thal J,._ x Y C X. In particularg(R") =
I[=s, s]"\ U Al. Note also thaX N [—s, s]" is combinatorially just a cube of dimension
dim X and sidet so thatf (X) = t9mX_ Finally, f(X) = >_v=x 9(Y) so by the Mbius

Figure 1L The lattice points of {2, 2]2\ | Ba.
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Inversion Theorem [16]

=s.s"\ U 4| = 90

= ) u)fx)

XeL(A)
_ Z M(X)tdimx
XelL(A)

= x(A )
which is the desired result. O

In the proof of Theorem 2.1, it was crucial that each of the subspdagsder consid-
eration had exactly™™ points in [-s, s]". In fact, theonly subspaces dR" with this
property are those ih(8,). So the method of proof of Theorem 2.1 cannot be applied
directly to other arrangements.

We should also mention how our theorem is related to Zaslavsky's theory of signe
graphs. Zaslavsky assigns to each hyperplane arrange#neontained (as a subset) in
Bn a signed grapi 4. The graph has vertices 2, ..., n with a positive (respectively,
negative) edge from verteixto vertex j iff x; = x; (respectivelyx; = —x;) is in A.

The graphG 4 also has a half-edge at vertexff x; = 0 is in . A. He then defines a
chromatic polynomiaP (G, t) for signed graphs (generalizing the one for ordinary graphs)
and showstha® (G4, t) = x (A, t). Ifonethinks ofthe vertices & 4 as being coordinates,
then a proper coloring 06 4 in Zaslavsky’s sense turns out to be just an element of
[—s, s]"\ | J A. The advantages of our viewpoint are that it applies to subspace arrangemer
embedded iiB,, (not just hyperplane embeddings) and that it admits an analog for all Wey
hyperplane arrangements as we shall see in our second main theorem. We should men
that Stanley [18] has independently formulated a version of Theorem 2.1 for arrangemer
embedded imd,, using hypergraphs and symmetric functions.

3. Examples

First, let us show how Theorem 2.1 can be used to compute the well-known characteris
polynomials for the three infinite families of Weyl hyperplane arrangements. In thetype
case we see that a point 6f$, s]"\ |J A, must have all coordinates different. So there are
t = 2s + 1 choices for the first coordinate; 1 for the second, etc. This gives a total of

Xx(An ) =tt =1 - (t—n+1).

It will be useful to have a notation for this falling factorial, so we will 14, =
tt—21)---(t—n+1).

For B, the points in the cube minus the arrangement must all have different absolu
values and must be nonzero. The first coordinate can be chosen Inways since zero
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is not allowed. The second coordinate can be anything except zero and plus or minus t
value of the first, giving — 3 possibilities. Continuing in this way we see that

xBn ) =t -D(t—-3)---(t—-2n+1). ®3)

We will let ((t))y = t(t —2)--- (t — 2n + 2) so thaty (Bn, t) = (({t — 1))p.

For the third family, note that any point off, s]"\ | Dn can have at most one zero
coordinate. The points with no zero coordinate were counted ilBthease. For those
with one zero, there ameways to pick this coordinate and the remaining nonzero ones are
accounted for as i8,_1. The total is thus

XDn,t) = xBn, ) + Ny B, H =t -t -3 ---t—=2n+3)(t —n+1).

Notice that in all three of these examplgsfactors over the integers. In fact for any
Weyl hyperplane arrangement it is well known that the roots are just the exponents of tt
corresponding group [22]. The characteristic polynomial of a subspace arrang&ment
embedded in a Weyl hyperplane arrangenféptfrom one of the three infinite families
does not always have integral roots. But it can happen that it factors partially and is i
fact divisible by the polynomial for a hyperplane arrangenfépt m < n. Further, when
one expandg (S, t) in terms of the basi$x (H;,t): ] > 0} for R[t] the coefficients
vanish for smallj, thus explaining the divisibility relation since for typk and B we
havex (H;j, t) | x (Hj+1, t). Finally, the coefficients in the basis expansion turn out to be
nonnegative integers having a nice combinatorial interpretation which makes it obviot
when they are zero. The next few results will illustrate this point. Other examples can b
found in [7, 26] and are being pursued by Sagan.

To describe the subspace arrangements that we will consider, it is convenient to ha
some notation. Letr]] = {1,...,n}. If I ={i, j,...,k} C [n] then letx, stand for the
equationx; = x; = --- = Xx. Sox; = 0 is the system of equations = 0 for alli € I.

Also let£x, represent the set of all equations of the form

eiXi :...:Ekxk

fore, ..., e € {£1}. In each case we use the same symbol to denote the correspondir
subspace(s). The-equalandk, h-equalsubspace arrangements are defined by

Ank =1{xi : | S [nJand|l| =k},
Do = {£x 1 | S[n]and|l| =k},
Bnknh =DhkU{X; =0:J C[n]and|J| = h}.

The A,k arrangement first appeared in the work obBjér et al. [3], motivated by its
relevance to a certain problem in computational complexity. Its study has been continu
by these authors and Linusson, Sundaram, Wachs and Welker in various combinations [4-
8, 13, 20, 21]. Th&3,kn andD, k were introduced by Bjfner and Sagan in a paper [7]
about their combinatorial and homological properties. Note that each of these subspa
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arrangements is embedded in the hyperplane arrangement of the corresponding type
therefore inB3;,.

Consider thék-equal arrangemend, x embedded ind, with x (An) = (t)n. It will be
convenient to leg (n, j) denote the number of partitions of arelement set intg subsets
each of which is of size at mokt Thus these are generalizations of the Stirling numbers
of the second kind.

Theorem 3.1 We have the expansion

X(Ani ) =Y Scan, ) 4
j

and the divisibility relation

O nyk=01 | X (Ank, D). %)

Proof: To get the expansion, consider an arbitrary pa&irt[—s, s]"\ | An k. SOX can
have at mosk — 1 of its coordinates equal. Consider tkis with exactlyj different coor-
dinates. Then there a®_1(n, j) ways to distribute thg values among the coordinates
with at mostk — 1 equal. We can then choose which values to usg)inways. Summing
over all j gives the desired equation.

For the divisibility result, note tha®_1(n, j) = 0if j < [n/(k — 1)] becausg sets
of at mostk — 1 objects can partition a set of size of at most j (k — 1). Plugging this
into (4) finishes the proof. |

We should note that expansion (4) was derived bgrBg¢i and Loasz [4] and by
Sundaram [19] using formal power series techniques. Analogs of this expansion f& type
andD can be found in a paper of &jrier and Sagan [7] while applications to the Boolean
algebra are in Zhang’s thesis [26].

Theorem 3.2 Let.A be a subspace arrangement.
(a) If Ais embedded itd, and we write

XA D =D aj(t); 6)
j=0

theng e Z-gforall j, 0 < j < n. Furthermore if m is the largest index such that
am = Othen

(Omea | X (A D).

(b) If Ais embedded i, and we write

XA ) = byj{(t — 1)),
j=0

J
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thenh € Z-oforall j, 1 < j < n. Furthermore if m is the largest index such that
bm = 0then

(t = msa | x (A D).

Proof: We will do part (a) as (b) is similar. Consider akye L(A,) and defineX® =
X\ Uy.x Y)N[=s, s]" whereY € L(Ay). Thenwe havex® C |J Aif X € K for some
K € A. On the other hand we haw’ C [—s, s]"\ | A if there is no suctK containing
X. It follows that

[—s, s]”\ UA = H—J X0
X

where the disjoint union is over a not contained in any subspacef Taking cardinal-
ities on both side of this equation and using the fact [X8t = (t)qimx Shows that they
in (6) are nonnegative integers.

For the divisibility relation, it suffices to prove that = O impliesa;_; = 0. Buta; = 0
implies that everyX € L(Ap) of dimensionj is contained in som& e A. Thus any
Y > XisinaK anda;_; = 0. O

4. Weyl hyperplane arrangements

In this section we confine our attention to hyperplane arrangements that consist of tl
reflecting hyperplanes of a Weyl group. For background information on Weyl groups
including any concepts that we use without explanation, see the book of Humphreys [11
whose notation we endeavor to follow. We shall obtain a combinatorial characterization c
the characteristic polynomial of such an arrangement. In rough outline, the characterizati
is similar to Theorem 2.1, but the lattiZ® will be replaced with another lattice, the cube
of side & + 1 will be replaced with another polytope, and the restriction to odd values of
will be replaced with other congruences imposed.on

Unfortunately, both of the (mathematical) meanings of “lattice”—a poset in which finite
subsets have joins and meets, and a discrete subgrdRp-eére relevant to the present
discussion. We rely on the context to make it clear which is meant.

Let W be a finite Weyl group, determined by a root systénspanningR". The hy-
perplanes orthogonal to the roots constituteWeyl arrangementV associated t&V, and
the reflections in these hyperplanes geneYdte Throughout this section, we follow the
convention of naming a Weyl arrangement by the script letter corresponding to the nan
of the Weyl group. This agrees with the notation in the preceding sectioii, fandD,,,
but what we now calld, is the restriction, to the hyperplang + X + - - - + X1 = 0, Of
what was previously called 1.

Let Z(®) be the lattice ifR" consisting of those vectossthat satisfy(«, x) € Z for all
rootsa € ®. This is the coweight lattice associated®pand it will play the role thaZ"
played in Theorem 2.1.
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Our analog of the cube-s, s]" of lattice points is
P(®)={xe Z(®)| (a,X) <tforalla € ®}.

Of course we will be interested in counting the lattice point®ied)\ [J W.
Fix a simple system

Az{al""van}

in ®. Thus,A is a basis for the vector spa®, and, when any roct € @ is written as a
linear combination,

A= ici (Moi,
i—1

of A, the coefficients; (A) are integers and are either alD or all <0. The fact that the

coefficients are integers implies that, if a vectosatisfies(a, x) € Z for all @ € A, then

it automatically satisfies the same for alle ® and therefore belongs #(®). In other

words, in defining the coweight lattice, we could have restricted attention to simple roots
If @ is irreducible then among all the roots there isighestone, &, characterized by

the fact that, for all rootg. and alli € [n], ¢ (&) > ¢ (A). We shall write simplyc; for

¢ (@). One final ingredient for our theorem is thmelex of connectionf , which we define

for irreducible root systems as

|W]
f=—"—"7-—. 7
n'-ci---Cy 0

For an arbitrary root systent, is defined as the product of the indices of connection for
each irreducible component. (Humphreys defifigd 1, p. 40] as the index of the coroot
lattice as a subgroup of the coweight lattice and derives (7) as his Proposition 4.9. Sin
this formula is all we need to know abofit we take it as the definition.)

Theorem 4.1 Let® be aroot system for a finite Weyl group with associated arrangement
W. Lett be a positive integer relatively prime to all the coefficients-«;j (@). Then

xov.n = 7[R\ Jw].

Proof: We may as well assume thétis irreducible since if it is not then both sides of
the given equation decompose into a product of factors, one for each of the irreducib
components. We begin by representing vectors in a form convenient for counting the poin
in P (®)\ [JW. Foranyx € R", letx* be then-tuple consisting of the inner productsof
with the simple roots, i.ex* = (0i, X). Sox € Z(®) if and only if x* € Z". Also, x lies

in the open fundamental chambi@mof W if and only if x* lies in the open positive orthant
(R>O)n-
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SinceP; (®) and)V are both invariant under the action of the gralfpwe can count the
points of P, (®)\ [ W by first counting the ones i@ and then multiplying by the number
of chambers (which equals the group’s orddf|). To do the counting irC, we count
instead the corresponding pointsin the positive orthant GZ" subject to the requirement
x € P(®). Note that since* is in theopenpositive orthantx is automatically notity J W.
Forx* in Z" the requirement that € P;(®) is equivalent to the fact that, for all roats

t>(0nx) =Y clX.

But since thec* are all positive, these inequalities for ale ® follow from the one with the

largest coefficients, namely the one foe= &. So our task is to count the numbgrt) of

pointsx* € (Z.o)" that satisfy the one linear inequaliy ¢ x* < t. Thisy (t) is known as

the Ehrhart quasi-polynomiabf the open simplex bounded by the coordinate hyperplanes

and the hyperplan®’; ¢;x* = 1; see [17], page 235ff. It is also interesting to note that

P, (®) | cis just the fundamental chamber for the affine Weyl group correspondivg to
Getting back to the task at hand, we must prove thd - |W| = f - (W, t) whent

is relatively prime to alk;. Using our definition (7) off we see that this is equivalent to

showing

XV, =y®-nt]a

for the appropriate values bfand this is the form that we shall use in practice.
To computey (t), we use its generating functionz) = Y, v (t) - Z'. Itis easy to see
that the generating function fortuplesx* of positive integers witty _ ¢ x* equal tot is

n n Zci
Ci 2C; _

l_!(z +z +---)-]‘!1_zci.

1= 1=

To get the generating function for, ¢; x* strictly smaller thart, one just multiplies this by
z+ 7+ 22 + - - -, obtaining

z yal
2) = . .
(@ 1-z illl—zQ

If we letm be the least common multiple of tiegs, then all the fractions in this product
can be written with denominator 1 z™. It follows, by the general theory of rational
generating functions (cf., [17], Chapter 4), thiatt) is, for positivet, a quasi-polynomial
with quasi-periodn and degree. This means that, when restricted to values$ of any
one congruence class modulp v is a polynomial of degree.

From here on, the proof is computational. One inserts into the formulg ¢or the
coefficients; appropriate for a particulap (cf., page 98 of [11]), one obtains a polynomial
formula for ¢+ on each congruence class moduafo(either by direct calculation or by
computing enough values @f to uniquely interpolate polynomials of the right degree),
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and one verifies that, for the congruence classes primg(tw equivalently prime to all the
Gi), the polynomial so obtained, when multiplied|by|/ f , yields the (known) characteristic
polynomial ofWW. Here are some of the computations.

For A,, theg; are all 1, so

Zn+1

Here the coefficients of the expansion are well known, and we findtligt = (tgl).
Multiplying by n! T]; ¢ = n! we get(t — 1),, the characteristic polynomial of,. (This
differs from the characteristic polynomial gf, in the preceding section because what was
there calledA, is the currentd,,_; with all dimensions increased by 1.)

For By, thec; are all 2 except for a single 1, $6s odd. The generating function is

2 — z 2 \"' 2 1+ 2)?
re=1"7\1-2 1—z (1—2z)m1

Here the expansion afl — z%)~"~! contains every even powef< of z with coefficient
(k:”) (and of course contains no odd powergpfSo, sincd is odd, the coefficient af!
iny(2)is

L (=12
w(t)_2-< . )

Multiplying by n! [T, ¢ = 2"~n!, we get
2" ((t = 1)/2)n = {{t — L),

the characteristic polynomial df,. We note that whenhis even a similar calculation gives
27yt =t -2t —4)---t—2n+2) - (t—n) = x(Dy, t —1).

We do not know any reason for this coincidence.

The computations fo€,, D,, and the exceptional root systems follow the same pattern
as those foA, andB,,. The necessary information can be found in the following table. In
it, the ¢; are listed using the notatiod™, . .., n™ which means that the valugappears
with multiplicity m;. Also for brevity x (W, t) is expressed by listing its roots which are
just the exponents oiV. |



CHARACTERISTIC AND EHRHART POLYNOMIALS 125

w Roots ofy W, t) y(2) Gi

An 1,2,....n % n
Bn/Cn 1,3...,2n—1 Thiizs 1,201
Dn 13...2n-3n-1 s 13,203
Ee 1,4,5,7.8.11 T 12,233
= 1,5,7,9,11, 13 17 e 1,28, 3.4
Es 1,7,111317,19.2329 oo oo ob s 234256
Fa 1,5,7,11 ——— 22,34
G2 1.5 z 2.3

1-2(1-22)(1-23)

We should mention that Haiman [10, Section 7.4] independently discovered this thec
rem and gave a proof which is more uniform but less elementary. Very recently Christc
Athanasiadis [1] has given another uniform demonstration. His main tool is the following
result of Crapo and Rota [9] which is similar in statement and proof to Theorem 2.1 bu
replaces s, s]" by ]F’,‘) whereF, is the finite field withp elements p prime.

Theorem 4.2 (Crapo and Rota) Let.A be any subspace arrangemenfifi defined over
the integers and hence ov@p. Then for large enough primes p we have

]F"‘)\UA’ O

Itis interesting to note that this result can also be obtained from results of Lehrer [12] abo
the I-adic cohomology of hyperplane complementsth In fact Lehrer has ah-adic
cohomological interpretation of the characteristic polynomial in the equivariant case. Thi
suggests the problem of trying to find versions of our two main theorems when there is ¢
automorphisnyg of C" stabilizing.4 and one considers the poset of all elementk )

fixed byg.

XA, p) =

Acknowledgments

We would like to thank John Stembridge who suggested using the affine Weyl chamb
to obtain the the set of points counted in Theorem 4.1. In addition, we thank Christo
Athanasiadis and Arun Ram for interesting discussions and relevant references as well
the referees for helpful suggestions.

References

1. C.A. Athanasiadis, “Characteristic polynomials of subspace arrangements and finite Adldsfi Math.
122(1996), 193-233.



126 BLASS AND SAGAN

2.

3.

4.

[ee]

10.
11.
12.
13.
14.
15.
16.

17.
18.

19.
20.
21.
22.
23.
24.

25.
26.

A. Bjorner, “Subspace arrangements,Hroc. 1st European Congress MafParis, 1992, A. Joseph and R.
Rentschler (Eds.Rrogress in Math.Birkhauser, Boston, MA, 1994, \ol. 122, pp. 321-370.

A. Bjorner, L. Lowdsz, and A. Yao, “Linear decision trees: Volume estimates and topological bounds,”

Proceedings 24th ACM Symp. on Theory of Compu#@M Press, New York, NY, 1992, pp. 170-177.
A. Bjorner and L. Lo@sz, “Linear decision trees, subspace arrangements ahiubfunctions,”J. Amer.
Math. Soc7 (1994), 667—-706.

. A. Bjorner and V. Welker, “The homology ok*equal” manifolds and related partition lattice&gdv. in Math.

110(1995), 277-313.

. A. Bjorner and M. Wachs, “Shellable nonpure complexes and posdtahs. Amer. Math. So848(1996),

1299-1327.

. A. Bjorner and B. Sagan, “Subspace arrangements ofBymndDyp,” J. Algebraic Combin.submitted.
. A. Bjorner and M. Wachs, “Shellable nonpure complexes and pose®sahs. Amer. Math. Sado appear.
. H. Crapo and G.-C. Rot&n the Foundations of Combinatorial Theory: Combinatorial GeomethNesT.

Press, Cambridge, MA, 1970.

M. Haiman, “Conjectures on the quotient ring of diagonal invariadt3}lg. Combin3 (1994), 17-76.

J. HumphreyReflection Groups and Coxeter Groy@ambridge Univ. Press, Cambridge, England, 1990.
G. Lehrer, “Thé-adic cohomology of hyperplane complemenByjil. London Math. So@24(1992), 76-82.
S. Linusson, “Partitions with restricted block sizeghWis functions and thke-of-each problem,SIAM J.
Discrete Math, to appear.

P. Orlik and L. Solomon, “Coxeter arrangemenBgc. Symp. Pure MathAmer. Math. Soc., Providence,
RI, 1983, Vol. 40, Part 2, pp. 269-291.

P. Orlik and H. TeracArrangements of Hyperplane&rundlehren 300, Springer-Verlag, New York, NY,
1992.

G.-C. Rota, “On the foundations of combinatorial theory I. Theory obM$ functions,”Z. Wahrschein-
lichkeitstheorie2 (1964), 340-368.

R.P. Stanle\enumerative Combinatoric¥/adsworth and Brooks/Cole, Pacific Grove, CA, Vol. 1, 1986.
R.P. Stanley, “Graph colorings and related symmetric functions: Ideas and applicddisosgte Math, to
appear.

S. Sundaram, “Applications of the Hopf trace formula to computing homology representa@onsgmp.
Math.178(1994), 277-309.

S. Sundaram and M. Wachs, “The homology representations &felgeal partition lattice, Trans. Amer.
Math. Soc,to appear.

S. Sundaram and V. Welker, “Group actions on linear subspace arrangements and applications to configura

spaces,Trans. Amer. Math. Sodo appear.

H. Terao, “Generalized exponents of a free arrangement of hyperplanes and the Shepherd-Todd-Briesk

formula,” Invent. Math63(1981), 159-179.

T. Zaslavsky, “The geometry of root systems and signed graphsst. Math. Monthi\88 (1981), 88—105.
T. Zaslavsky, “Signed graph colorindjiscrete Math39 (1982), 215-228.

T. Zaslavsky, “Chromatic invariants of signed grapbsscrete Math42 (1982), 287-312.

P. Zhang, “Subposets of Boolean Algebras,” Ph.D. thesis, Michigan State University, 1994.



