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Abstract. We study paths between maximal chains, or “flags,” in finite rank semimodular lattices. Two flags are
adjacent if they differ on at most one rank. A path is a sequence of flags in which consecutive flags are adjacent.
We study the union of all flags on at least one minimum length path connecting two flags in the lattice. This is
a subposet of the original lattice. If the lattice is modular, the subposet is equal to the sublattice generated by
the flags. It is a distributive lattice which is determined by the “Jordatdét”permutation” between the flags.

The minimal paths correspond to all reduced decompositions of this permutation. In a semimodular lattice, the
subposet is not uniquely determined by the Jordatder permutation for the flags. However, itis a join sublattice

of the distributive lattice corresponding to this permutation. It is semimodular, unlike the lattice generated by
the two flags, which may not be ranked. The minimal paths correspond to some reduced decompositions of
the permutation, though not necessarily all. We classify the possible lattices which can arise in this way, and
characterize all possibilities for the set of shortest paths between two flags in a semimodular lattice.
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1. Introduction

In this paper, we study relationships between maximal chainflags in a finite rank
semimodular lattice. We develop a generalization to semimodular lattices of the sublattice
generated by two flags of a modular lattice. We consider the JordéaeHfunction for

two flagsX andY in a semimodular lattice as developed by Stanley in [11] and [12] and by
Bjorner in [4], and show that this gives a permutation in the symmetric ggpuwheren

is the rank of the lattice. It is commonly known that in a modular lattice, this permutation
determines the lattice structure of the lattice generated by theXlagglY, and that this
lattice is a finite distributive lattice.

For semimodular lattices the situation is more complex. In Section 4, we give an example
of a finite rank semimodular lattice in which two flags generate a sublattice which is not
ranked; hence, it cannot be semimodular.

Our main object of study is a join sublattice of the original semimodular lattice and of
the lattice generated by the two flags. It is a semimodular lattice which is related to the
Jordan-Hblder permutation (though not determined by it). The lattice we obtain from the
flagsX andY can be embedded as a join sublattice into the distributive lattice corresponding

*This work was completed while the author was at the Naval Postgraduate School, Mathematics Department,
Monterey, CA 93943.
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to the permutation when the underlying lattice is modular, and we classify the lattices which
occur as one of these join sublattices.

We say two flags are-adjacentif they agree except possibly at level This notion is
related to the Jordanétder permutationX andY are distinci -adjacent flags if and only
if the permutation is the adjacent transpositipa= (i i + 1). WhenX andY are arbitrary
flags in the lattice, we definegath from X to Yas a sequence of flags beginning wih
and ending withY such that consecutive flags in the sequence are adjacent. We call the
path aminimal path from X to ¥f no path fromX to Y has shorter length. We study the
collection of minimal paths between two flags.

For modular lattices, it is known that the points on a flag on some minimal paths between
X andY are precisely those points in the sublattice generated by the flags. For semimodular
lattices, the points on minim&{-Y paths are still in the sublattice generatedXwpndY,
but there may be points in the sublattice which are not on a minimal path. As we noted, the
sublattice need not be ranked, whereas the subposet of points on reduced paths clearly i
ranked, since every point in the subposet is on a flag of the original lattice that is contained
in the subposet.

We contend that this subposet, the union of all flags on reduced pathsftor, is the
natural semimodular analog of the sublattice generateXidgdY in a modular lattice. We
show that it is a join sublattice of the distributive lattice which corresponds to the Jordan-
Holder permutation when the underlying lattice is modular. We also give examples to show
that the sublattice generated byandY in a semimodular lattice is not as appropriate a
generalization as one might expect.

The minimal paths can be representeddguced decompositiord the Jordan-ldider
permutation, or expressions of this permutation as a minimal length product of adjacent
transpositions. In a modular lattice, it is known that there is a one-to-one correspondence
between minimal paths and reduced decompositions. We classify the collection of paths
which can occur between two flags in a semimodular lattice by classifying the set of reduced
decompositions which correspond to these paths.

Many of these results correspond to results of Abels in [1] and [2], though he approached
these problems from a more geometric viewpoint. He considers semimodular lattices from
the point of view of chamber systems, since the notidnradjacency makes a semimodular
lattice into a chamber system. The paper [8] considers axioms which define a building, and
uses similar axioms involving chamber systems to define many classes of semimodular
lattices.

The remainder of this paper is structured as follows: in Section 2, we present the results
for modular lattices. In Section 3, we give some preliminary notions and results for the
semimodular case. In Section 4, we show that our poset is a join sublattice of the lattice
generated by two flags, and in Section 5, we develop the concept of the label of a point with
respect to a flag, and use this to derive an explicit lattice expression for every point in the
poset we study. In Section 6, we show that this poset is a join sublattice of the distributive
lattice determined by Jordanelttier permutation. In Section 7, we classify the sets reduced
decompositions which can correspond to paths between two flags in a semimodular lattice,
and in Section 8, we use our results to derive the corresponding results in the modular case
presented in Section 2.
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2. Modular lattices and Jordan-Holder permutations

In this section, we present some commonly known results concerning the sublattice gener-
ated by two maximal chains, dlags in a rankn modular lattice. Although these results
are well known, the only references this author has been able to locate for them are Abels’
papers [1] and [2]. In this paper we use these results to develop a generalization to semi-
modular lattices of the lattice generated by two flags in a modular lattice. We also compare
our generalization to the lattice generated by two flags in a semimodular lattice.

In this sectionX, Y, andZ represent flags in a modular or a semimodular lattice xand
yj, andzy represent the rank j, andk points on the flag, Y, andZ respectively. For
two flagsX andY, we discuss the lattice generatedX¥wndY, i.e., the lattice of all meets
and joins of points orX andY. We letL (X, Y) denote this lattice. In a modular lattice,
L(X,Y) is determined by a permutation called tfedan-Hbdlder permutation We define
this function for semimodular lattices and prove that it is a permutation.

Definition If X andY are two flags in a rank semimodular lattice, thdordan-Hlder
function of Y relative to Xrom [n] = {1, 2, ..., n} to itself is denoted byr (X, Y) and is
given by:

(X, Y)(j) =min{i 1 y; <x Vyj_a}=minfi 1 x Vyj_1=X VYl

Proposition 2.1 For all flags X and Y in a rank n semimodular lattice(X, Y) is a
permutation. Its inverse i (Y, X).

Proof: If 7(X,Y)(j) =i, we have the inequality
Xi—1VVYj—1 <X-1VYj <X VY] =X VYj, 1)

sincei is the smallest number such thatv y;_1=x v y;. Now by semimodularity,
Xi VYj_1 coversxi_1VYyj_1. Therefore,x_1Vvy;=x Vvy; in (1), but xi_1Vvy;_1<
Xi V Yj_1. In other words, | is the smallest number such that ;v y; =X Vyj, so
(Y, X)(i)=j. O

We now define the latticd(r). This lattice is isomorphic th (X, Y) whenX andY are
flags in a modular lattice and= 7 (X, Y).

Definition Givent, let J(r) be the subsets ofi] with the following property: for all
andj in[n],ifi < jandz(i) < =(j), then every set idd(r) which includest(j) also
includesr (i). If these sets are ordered by inclusidrir) is a distributive lattice; joins and
meets correspond to unions and intersections, respectively. In this lattice, XetetY
be the flags given by

x =[i1=1{L2....i}
Y =t([(iD ={r(@D), 7@, ....z (D}



20 HERSCOVICI

1234

123 124 134
(3,3) (4,2) :

(1,4) X 1 e Y
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P(4132)

J(4132)

Figure L P(r) andJ(z) for T = (4132.

Alternatively, we could defind®(t) as the set of point®(t) = {(i, 7(i))} ordered by
(i, z()) < (j,r(j)ifi < jandt(i) < 7(j), and letd(r) be the lattice of order ideals of
P(z). For example, Figure 1 show’(r) and J(t) for t = (4132 in one line notation,
(i,e.,t() =4,t(2 =1, t(3) = 3andr(4) = 2), and Figure 2 does the same forall
in . In our examples, when a lattice consists of a collection of sets, we eliminate the set
brackets and commas to label the sets; for example, in Figure 1, we write 124 for the subset
{1, 2,4} C [4].

Theorem 2.2 Suppose X and Y are flags in a modular lattice with= 7 (X, Y). Then
L(X,Y) is isomorphic to dr) via an isomorphism which mapsto[i] and y to z([j])
for everyi and j.

Definition Two flagsin afinite rank lattice areadjacentfthey are equal except (possibly)
at ranki. They areadjacentif they arei-adjacent for some. A path of length n from X
to Yis a sequence of flagX = Xg, X1, Xo, ..., Xy = Y) such that consecutive flags are
adjacent. Such a path isainimal X-Y pathf its length is minimal.

Theorem 2.3 relates miniml-Y paths to reduced decompositions of the Jordaider”
permutationz (X, Y). Thus, we define reduced decompositions.

Definition A simple reflectionn S, is a permutation of the form = (i i + 1). We also
call these permutatioredjacent transpositionsA decompositiorof a permutatiorr is an
expression ot as a product of simple reflections, i.e.= S - - - k. The decomposition
is reducedf every decomposition of has at least simple reflections. In this case, we say
k is thelengthof =, and we write/(r) = k. We generally write; for the simple reflection
which switches andi + 1, ands; for an arbitrary simple reflection.
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Figure2 P(r)andJ(r)forall rin Ss.

Theorem 2.3 In a finite rank modular latticeminimal X-Y paths are related te(X, Y)

and L(X,Y) as follows.

(i) The point z is on a minimal X-Y patmore preciselyz is on a flag which is on a
minimal X-Y pathif and only if z is in L(X, Y).

(i) There is a natural one-to-one correspondence between minimal X-Y paths and re-
duced decompositions af(X, Y). A step between i-adjacent flags in a minimal path
corresponds to an occurrence ¢fin the corresponding reduced decomposition.

For example, consider the lattidg€4132 (see Figure 1). The minimal paths froito Y
are the following.

X =1{0,1,121231234 X ={¢, 1,12 1231234 X = {0, 1,12 123 1234

(7,1,12, 124, 1234
{9, 1,14, 124, 1234
{9, 1,14, 134, 1234

(7, 1,12 124, 1234
(0,1, 14,124, 1234
(0, 4,14, 124, 1234

(%, 1,13 123 1234
{4, 1,13, 134 1234
{0, 1,14, 134, 1234

Y ={0,4,14, 134 1234 Y = {#}, 4, 14,134 1234 Y = {0, 4, 14, 134, 1234

For (i), note that every point af(7) is listed in at least one of these sets. As for (ii), note
that in the first path listed, we change the rank 3 point, then the rank 2 point, then the rank
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3 point, and finally the rank 1 point. The corresponding reduced decompositiomsof
thereforer = rarorar;. The other paths give = rarorirg andt = rorarory, respectively.
These are the only reduced decompositions.dfor another example, we have listed the
reduced decompositions of permutationsirin Figure 2.

3. Reduced decomposition paths in semimodular lattices

To generalize Theorems 2.2 and 2.3 to semimodular lattices, we relate minimal paths
between two flags in a semimodular lattice to reduced decompositions of the Jastier-H™
permutation between the flags. The flags along a minimal path are related wedhke
Bruhat orderon S,. This partial order on permutations & is also related to the notion of
inversions We now define these concepts.

Definition If T andt’ are permutations %, with t = t’rj, then we define < 7’ if
£(t) < £(t’). Theweak Bruhat ordeis the transitive closure of this relation. Equivalently,
we havep < o in the weak Bruhat order if some reduced decomposition bégins with
a reduced decomposition pf An inversion int is a pair(z(i), 7(j)) such thai < j but

(i) > 1(j).

Proposition 3.1 is a standard result which relates inversions to the weak Bruhat order and
to length of a permutation. We use this result to give an alternate characterizafi¢n) of

Proposition 3.1 In a reduced decomposition of each simple reflection adds one inver-
sion to the permutation. Hence, we have t in the weak Bruhat order if and only if every
inversion inp is also an inversion in. Furthermore £(t) equals the number of inversions
int.

Corollary 3.2  J(t) = {p([K]) : 0 < k < nandp < t in the weak Bruhat ordér

Proof: Supposer < 1 in the weak Bruhat order. Then every inversiorpirs also int.
Hence, ifi < j andz(i) < t(j), then(z(j), =(i)) cannot be an inversion in. Therefore,
7(i) precedeg (j) in the one-line expression far. Thus if p([K]) includesz (j), it also
includest (i), so everyp([K]) isin J(t).
Conversely, leSbe a set in] () with cardinalityk. Let p be the permutation in which

p (1) throughp (k) are the elements @in increasing order, ana(k + 1) throughp(n) are
the remaining elements in increasing order. Tt&s; p([k]). To show thap < 7 in the
weak Bruhat order, suppose(j), t(i)) is an inversion irp. From the definition op, this
can only happen if(j) isin Sandz (i) is not. But sinceSisin J(r) andz (i) < 7(j), we
cannot haveé < j. Hence(z(j), =(i)) is also an inversion im. O

We now relate these notions to arbitrary semimodular lattices.

Lemma 3.3 Let X and Y be two flags in a finite rank semimodular lattice with-
w(X,Y). Thenif(z(j), T(j + 1)) is not an inversionwe have

Yi = (Xe() V Yj-1) A Yjs1.
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Proof: Leta=<t(j)andb=17(j+1). Nowy; <XaVYj_1, sincea=1(j). Therefore,
(Xa V Yj-1) A Yj+1 equals eithery; or yj.1, but sincea < b = 7(j + 1), we have
Yi+1 £ Xo-1 V Y}, SOYj41 £ Xa V ¥j—1. Hence, the meet ig;. a

Proposition 3.4 Suppose XY, and Y are flags in a finite rank semimodular lattice with
t=n(X,Y)andt = 7 (X, Y’), and suppose Y and dre i-adjacent. Then either = ¢’

or t = t'rj. Furthermore if (z(i), (i + 1)) is not an inversionthent = ¢’ if and only if
Y=Y.

Proof: SinceY andY’ arei-adjacent, we havgy =y, andyi_1=Y,_; for k#i and
k#£i+1. Thus,t73(k) = /%K) fork £ i andk # i + 1, sor =t/ ort = 7'r;.
From Lemma 3.3, it = ¢’ and(z(i), =(i + 1)) is not an inversion, theg; = (X v
Vict) AYier = Xey VYi_) AV =Y, s0Y =Y. O

We want some terminology to discuss the relationship of a reduced decomposition to the
path to which it corresponds.

Definition We say the decompositiags; - - - s, takes X to Yalong the path(X = Z,
Z1,...,.Zm=Y)if (X, Zx) = 9% - - & for all k. If the decomposition is reduced, we
call the path aeduced decomposition path from X toof simply areduced X-Y path

Corollary 3.5 If X and Y are flags in a semimodular lattice with= 7 (X, Y), then
every path from X to Y is at least as long &%). Furthermore if a path is the same
length ast(z), it is a reduced decomposition path. For every flag Z on a reduced ffath
p =m(X, Z), thenp < 7 inthe weak Bruhat order.

Proof: Let (X = Zo, Z1,...,Zn = Y) be a path fromX to Y. By Proposition 3.4,
eithern (X, Zy) = w(X, Zx_1) ormw (X, Zy) = w(X, Zx_1)s for some simple reflectios.
Thereforer = n (X, Zy) can be expressed as a productobr fewer simple reflections,
andé(t) < m. If £(r) = mthen everys is included in the product for and this product
is a reduced decomposition. In this cagéX, Zy) = 9%+ & < % -Sn = T inthe
weak Bruhat order. O

Corollary 3.5 shows that if there is a reduced path feérto Y in a semimodular lattice,
then every minimal path is areduced path. Theorem 3.6 shows that this applies to every pair
of flags in every semimodular lattice. In [1] (proof of Theorem 3.3), Abels constructed the
path and showed that its length is the samé(asg X, Y)) without referring to the reduced
decomposition. He also showed that the entire path constructed in this manner is containec
in the join sublatticeX v Y = {x Vv y;}.

Theorem 3.6 For every pair of flags X and Y in a semimodular lattiseme reduced
decomposition of = (X, Y) takes X to Y. Furthermoreéf | is the largest number such
thatzr; < r, we can choose a decomposition ending wijth r
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Proof: It suffices to find a flay” such that’ = n (X, Y') = zr; < randmz (Y, Y) =r;j,
since by induction on the length of we may assume some reduced decompositiari of
takesX to Y’, and appending; to this decomposition gives a reduced decomposition of
which takesX to Y (throughY”).

Sincerrj < r, we haver(j +1) < 7(j), and sincg is the largest such number, we find
1(j+1) <1(j+2) <--- < t(n). Thus, letting = t(j+1) gives| —1] < r([j —1]) =
Ix(Yj—1), SOXi_1 < yj—1. Similarly, we haves; £ y;, butx, < yj 1.

By semimodularity, the point; = X v yj_1 coversx—1Vyj-1 = Yj-1, soyj hasrankj.
Sincex; < Yji1, we havey; < yj41. HenceY' ={0=yo <y1 <--- <Yyj1 <Yyj <
Yi+1 < --- < ¥a = 1} is awell defined flag. Now" is j-adjacent tor, so eitherr’ = t or
' = trj, wheret’ = 7(X,Y’). Sinceyj £ Xi—1VYj-1 = Yj-1, buty} =X VYj_1, we
find thatw (X, Y)(j) =i = ©(j + 1); thus,r’ = tr;, as desired. a

4. R(X,Y)andL(X,Y)

We now begin generalizing Theorems 2.2 and 2.3 to semimodular lattices. We study
the subposeR(X, Y), defined below, and give a detailed comparison of this poset to the
sublatticeL (X, Y).

Definition If X andY are two flags in a semimodular lattice, theaX, Y) is the subposet
of all points on at least one reduc&dY path.

In amodular latticeR(X, Y) = L(X, Y) by Theorem 2.3. In a semimodular lattice, they
need not be equal. We wish to generalize to semimodular lattices the descrigtiog,of )
for modular lattices. In a modular lattice( X, Y) is finite and distributive, even when the
original lattice is not. Thus, constructirgX, Y) produces a lattice with more restrictive
conditions than the original lattice. The examples of this section showLtatY) can
lose some properties of the original semimodular lattice, including semimodularity. We do
not know whethet_ (X, Y) must be finite for a semimodular lattice. Therefore, we contend
that R(X, Y) is a more appropriate generalization tHa(X, Y).

Furthermore, through the notion bfadjacency, we can view the flags of a finite rank
semimodular lattice as elements of a chamber system. Abels did this in [1] and [2], and
this idea is also explored in [8]. In this conteR(X, Y) is a natural concept, arld(X, Y)
appears meaningless, especially if it is not ranked. Thus, in several Ré}syY) is a
more natural generalization to semimodular latticek O, Y) from modular lattices than
L(X,Y).

We begin with an example, in whicR(X,Y) # L(X,Y). This example was also
discovered by Abels ([2], Remark 3.13). LétandY be theflagX = {#, 1, 12 123 1234
andY = {0, 4,42, 423 4231} in the semimodular lattice on the left in Figure 3. In this
case, we have = (X, Y) = (423)) in one-line notation. The point 3is in(X, Y); itis
the meet of 123 and 234. We show ti(tX, Y) does not contain the point 3.

Let Z be a flag in this lattice which contains 3, andget 7 (X, Z). By definition of the
Jordan-Hblder permutationp (1) = 3 (sincezy = ), s0(3, 2) is an inversion irp, but not
in 7. Hence, by Proposition 3., £ t in the weak Bruhat order. Therefore, no reduced
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123 124 234

12 14 24

[ 9

Figure3 L(X,Y) # R(X,Y).

decomposition that takeX to Y goes throughZz, and so 3 is not an element B{(X, Y).
R(X,Y) is on the right in Figure 3L (X, Y) is the entire lattice on the left.

We might also look for conditions on the lattice under whiRtX, Y) andL (X, Y) must
be equal. Since semimodularity places a bound on the join of two points in a lattice, a
natural attempt would be requiring every point in the lattice to be the join of rank 1 points,
oratoms Such a lattice is calleatomic orgeometric These lattices can also be viewed as
the lattice of flats (or closed sets) of a matroid (see [5] for more details). For our examples
of matroids, we limit ourselves to faces of three-dimensional complexes.

However, geometric lattices do not necessarily sati&i¢, Y) = L (X, Y). Consider the
lattice in Figure 4. As a matroid, this lattice can be represented as the faces of the pyramid
in Figure 4; if we let a face be denoted by its vertices, the faces in this diagram are all subsets
of {A, B, C, D, E} which obey the condition that if any three points{éf, B, D, E} are
in a subset, then all four points are included, since the plane determined by the three points
includes the whole square. LEtandY be the flagsX = {#, A, AB, ABC, ABCDE} and
Y ={0,E, DE,CDE, ABCDE}. ThenL(X, Y) isthe bold part of the lattice in Figure 4;
it is isomorphic to the lattice on the left in Figure 3, aRdX, Y) is isomorphic toR(X, Y)
from the example in Figure 3 R(X, Y) # L(X,Y).

In [2] (Proposition 3.11, part (ii)), Abels proved that for every pair of flags in a semi-
modular lattice R(X, Y) is a join sublattice of the original lattice. He did this by proving
a more general result for evecpnvexset of flags.

Definition A setF of flags in a semimodular lattice nvexf wheneverX andY are
in F, every flag on a minimaK-Y path is also inF.



26 HERSCOVICI

ABCDE

Figure 4 A geometric lattice wheré (X, Y) # R(X,Y).

Proposition 4.1 (Abels) LetF be a convex set of flags in a semimodular lattice. Then the
collection of all points on some flag if forms a join sublattice of the original lattice. In
particular, if we apply this to the convex hull of X andte smallest convex set containing
X and), we may conclude that@X, Y) is a join sublattice of the original lattice for every
pair of flags X and Y.

Combining Proposition 4.1 with Lemma 3.3, we obtain the following.

Corollary 4.2 If X and Y are two flags in a semimodular lattigen R'X, Y) is a join
sublattice of I(X, Y).

Proof: By Proposition 4.1, it suffices to show that X, Y) is a subposet df (X, Y). For
anyzin R(X,Y), let X = Zy, Z4, ..., Zn = Y be a reduced decomposition path frotn
to Y in which at least one flag contaizs By Lemma 3.3, every point od_; is in the
lattice generated b} andZ, and so by descending induction knevery point inZy_; is
in L(X, Y). In particular,zis in L(X, Y). |

Another corollary of Proposition 4.1 is th&(X, Y) is semimodular.
Corollary 4.3 R(X,Y) is a semimodular lattice.

Proof: R(X,Y) is clearly ranked, and the rank of everyn R(X, Y) is the same as its
rank in the original lattice, sinceis on some flag of the original lattice which is contained
in R(X,Y). SinceR(X,Y) is a join sublattice of the original lattice, the join of any two
points iNR(X, Y) is the same as their join in the original lattice. Although the original meet
may not be inR(X, Y), this only means that the rank of the meeR@X, Y) may be lower
than in the original lattice, and this does not alter semimodularity. O
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Figure 5 L(X,Y) is unranked.

We could apply the same proof to show th&iX, Y) is a semimodular latticié L (X, Y)
is ranked However, this need not be the case. Consider the lattice of all subsets of
{1, 2, 3, 4} except{2}, ordered by inclusion. The lattice is drawn on the left in Figure 5.
LetX ={ <1 <12 < 123 < 1234 and letY = {# < 4 < 24 < 234 < 1234. The
point 23 is the intersection of 123 and 234, so 23 i€ (X, Y). However, the point 3 is
notinL (X, Y). Thisis because every point in eithéror Y which contains 3 also contains
a 2, so the only way we could get to 3 is by taking a meet of points which contain 23. But
the intersection of every such pair of sets also contains 23, and every set with 23 is in the
original lattice.L (X, Y) is drawn on the right in Figure 5.

5. Labeling functions for a semimodular lattice

In Section 4, we showed th&(X, Y) is a join sublattice ol (X, Y) wheneverX andY
are flags in a semimodular lattice. We now show tReX, Y) can be embedded as a join
sublattice intoJ (x (X, Y)). We also obtain an explicit lattice expression for every point in
R(X,Y). This expression is independent of the reduled path that contains the point.
The embedding is given By, the labeling function for a lattice with respect to a flég
Stanley defined this function in [11] and [12], andbBjér developed it further in [4]. We
now define this function, and derive some properties which relate it to the JomldesH"
permutation.
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Definition If X is a flag in a rankh semimodular lattice, we define thabeling function
with respect to Xrom points in the lattice to subsets ai][as follows:

Ix(@={ie[n:x <x_1vz={ie[n:xVvz=x_1VZz.

The imagd x (2) is called theX -label of z

Proposition 5.1 Suppose X and Y are flags in a semimodular lattice with 7 (X, Y),
and let y < yi be points on Y. Then the labeling functignhas the following properties.
(i) The element i is ind(y;) if and only if i = ¢(m) for some m< j, i.e, Ix(y;) =

{t(D),...,t())} = t([jD. Thus the cardinality of k (z) equals the rank of z for all z.
(i) We have(y;) C Ix(yk), so Ix is strictly monotonic. Thughe labels on every flag
form a strictly ascending chain of subsetq .
(iii) The containmerfi] < Ix(y;) holds if and only if x < y;.

Proof: We havei inIx(yj) ifand only if xi v y; = Xi_1 Vv yj, or equivalently,r ~1(i)
=nx(Y,X)(i) < j. Lettingm = t=%(i) proves (). For (i), we havéx(y;) = t([j])
C t([K]) = Ix(y«). To show (iii), note thati[] < Ix(y;) ifand only if X; vV y; = Xi_1 V Y;
= ... =X VYj =Y;j, or equivalentlyx, <y;. |

We now give a criterion to determine whether a flag is on a redc&dpath from the
X-andY-labels of its points.

Proposition 5.2 Lett = (X, Y). The flag Z is on a reduced X-Y path if and only if
Ix(z¢) = t(lv(z)), and Ix(zy) is in J(z) for each z in Z.

Proof: Letp =7n(X, 2),0c =n(Z,Y),andlett = 5% - - - Sy, be a reduced decomposi-
tion taking X to Y throughZ,i.e.,p = s ---§ forsome, ando = §,1 - - - Sn. Therefore,
t = po, andlx(z) = p(K) = (o H(K) = (@ (Y, 2)(KD) = t(y(z)). Since
p < t inthe weak Bruhat ordeg([K]) is in J(r) by Corollary 3.2.

Conversely, leto = #(X,2) = s---5, ando = n(Z,Y) = t;---ty be reduced
decompositions takink to Z andZ to Y, respectively. Thenid(z), these decompositions
also takeX to Z andZ to Y, since the labels give the same permutatiod (n) as in the
semimodular lattice. Thus, = s;---St;-- -ty is reduced, since it takes to Z to Y in
J(r) along a minimal path with respect to paths throughand Z is on a reduced path
in J(7). O

Proposition 5.2 only applies when the labels of all points on a flag obey its conditions.
Havinglx(z«) = t(ly(z)) andlx(z«) in J(t) does not insure tha is in R(X, Y). For a
counterexample, we refer back to the lattice on the left in Figure 5. The poiat23 has
Ix(z2) = {2, 3} = t(ly(z2)), and this label is ird (r). However, a flag through 23 must also
containz; = 3, andlx(z;) = {3}. This label is not inJ(z) since(3, 2) is not an inversion
in . Alternatively, we could note that 3 cannot beRiiX, Y) because itis notih (X, Y).
Since no reduceX-Y path includes 3, none can include 23; thus, 23 is n®R(KX, Y).

Proposition 5.2 shows thég takes points irR(X, Y) to J(w (X, Y)). To show thatyx
embedsR(X, Y) as a join sublattice of (= (X, Y)), we need to show that it is an injective
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function, and thalty (wk Vv zm) = I x(wk) Ulx(zm) whenevenw, andz, are inR(X, Y). We
first show that the join of any point iR(X, Y) with a point in eitherX orY has the proper
label.

Proposition 5.3 If zc is R(X,Y), then lk(xi v z)) = [i] Ulx(z), and Ix(y; v z) =
t([jD Ulx(zo).

Proof: LetZ beaflagthatcontairg, andisonareduced-Y path. Also, lep =7 (X, Z).
From Theorem 3.6, we can choose a redu¥ed path whose reduced decomposition ends
with rj, wherej is the largest number such that; < p. If j > k, we may replac& by
the flag before the;. Applying this inductively, we may assumehas the property that
pri > pforall j > k. Thus,p(j) < p(j +1) for j > k, and so labels are added in
increasing order above raikk We claim that this flag is

W=2<z1 < <ZA<XQVZ - <X VZ=[n]}

There are two cases. If][ C Ix(z) thenx; v zx = zx which is onZ by definition.
Otherwise, letz’ be the lowest point o such that every label added ab@/és greater
thani. Nowlx(Z) = [i] Ulx(z). Thereforex < Z, andz < Z sincez isonZ. But
the label of every upper bound gf andz, contains{] U lx(z) soZ is an upper bound of
minimal rank. Hencez' = x; Vv z.

As fory; v z, we havdy (y; v z) = [j] U ly(z), and so by Proposition 5.2, we find

Ix(yj v zo) = tdv(y; v zo) =t([j]Ulv(z)
t([jD YU tdv(z)) = t([jD Ulx(zo). O

Corollary 5.4 Foreveryzin RX,Y), z<x vyjifandonly ifIx(2) C Ix(x vV y)) =
[[JUziD.

Proof: IfIx(z) Cli]uz([jD,thenlx(zvx vy)) =Ix@Ulilut(jD =T[i]uz(jD.
by Proposition 5.3. Since Vv y; < zV X Vv Yy; and both points have the same label, and
hence the same rank, we hayev y; = zV X V Y}, 0rz < X VY;j. |

Proposition 5.5 gives an explicit lattice expression for an arbitrary poifR(i, Y).
Since the order relations iR(X, Y) andL (X, Y) are inherited from the original lattice,
this shows thaR(X, Y) € L(X,Y). Corollaries 5.6 and 5.7 show that is an injective
function onR(X, Y).

Proposition 5.5 If X and Y are flags in a finite rank semimodular lattice with=
w(X,Y), thenforall zin RX, Y), we can write z as the following meet

zZ= /\ Xi VY= /\ Xi VY. (2

Ix@<lilut(jD Z=Xi VYj

Proof: LetZ be the meetin (2). Clearlg, < Z, sinceZ is the meet of points above
Now supposé = 7(j) is inlx(Z). Thenlx(z) Z [i —1JU t([j —1]), SOXi_1 V yj_1is
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not in the meet foe'. Thus, there is some(k) inlx(z2) withk > j andt(k) > i = 7(j).
Butlx(2) isin J(7); therefore, ifr (K) isinlx(z), theni = 7(j) isinlx(z) as well. Hence,
Ix(Z) Clx(2),andz = 7. |

Corollary 5.6 Ifzand Zare in R(X, Y), thenlk(2) Clx(Z) ifandonly if z< 7.

Corollary 5.7 Labels in RX, Y) are unique—that isfor all points z and zin R(X, Y),
Ix(2) =1x(Z) ifand only if z= Z'. Hence | is an injection of RX, Y) into J(t).

Proof of Corollaries 5.6 and 5.7: If Ix(2) € Ix(Z), thenz’ < x; vy impliesz < x; v y;.
Hence, every point in the meet faris also in the meet foz, soz < Z in Corollary 5.6,
andz < 7 < zin Corollary 5.7. O

By contrast, labels need not be uniqueligX, Y), even when the underlying lattice
is geometric. For an example, consider Figure 6. In this latticeXlahdY be the flags
X =1{4, A, AB, ABC, ABCDE andY = {#, E, DE, CDE, ABCDE}. Thenthe points
CE=(X3AYy3) VyirandDE =y, are both inL (X, Y), butlx(CE) =1x(DE) = {3, 4}.

Besides showing that Corollaries 5.6 and 5.7 cannot apply(%, Y), this example
also shows that points ih (X, Y) need not obey Corollary 5.4 or the label criterion of
Proposition 5.5. The labels @ E and DE are identical. Since their join is above both
of them, the label of the join contains more than the union of the labels. Furthermore,
CE £ DE = y», even though itX-label is contained iy (DE). However, we note that
ly(DE) = {1, 2} sincey, = DE, butly(CE) = {1, 3}. This suggests the following analog
of Corollaries 5.6 and 5.7, which is an open question.

Question 1 If zand Zare in L(X,Y), and ifIx(2) C Ix(Z) and ly(2) C Iy(Z), must we
have z< Z?If I x(2) = Ix(Z) and k (2) = Iy (Z), must z= Z?

We proved Corollaries 5.6 and 5.7 via Proposition 5.5; similarly, question 1 would follow
as a corollary to the following question.

ABCDE

Figure 6 A geometric lattice with duplicate¥-labels inL (X, Y).
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Question 2 If z is a point in L(X, Y), can we write always write z as the meet

Z= /\ Xi Vy?

Z=Xi VYj

Finally, we note thaR(X, Y) is finite, since it is a sublattice af (z) which is finite. We
do not know whether the same holds fofX, Y). Thus, we are led to ask:

Question 3 Is it possible to construct a finite rank semimodular lattice such tha¢,LY)
is arbitrarily large for some flags X and?%

Obviously, an affirmative answer to question 3 would imply a negative answer to questions 1
and 2.

6. R(X,Y)andJ(7)

Theorem 6.1 We have} (wk V zm) = Ix(wk) Ulx(zm). Hence the labeling functiony
embeds RX, Y) into J(t) as a join sublattice.

Proof:  We havd x (wk) U lx(zm) € Ix(wk Vv zm) by Proposition 5.1(ii). Now assume by
induction onk thatlx (wx_1 V zm) = Ix(wk_1) U lx(zm) for all m. By semimodularity,
eitherwy Vv zy, coverswg_1 V zy or the points are equal. If they are equal, thgawy v
Zm) = Ix(wk_1 V Zm) = Ix(wk_1) Ulx(zm) < Ix(wy) Ulx(zm). Otherwise, we have
I'x(wk) € Ix(wk_1V Zm), by Corollary 5.6, sincevx £ (wk_1V Zm), and both points are in
R(X,Y). Hence]x(wy) Ulx(zm) has at least one more element thatwy_1 V zy). But
I'x (wk V zy) has exactly one more element tHattwy_1 Vv zy), since the first point covers
the second. Since

[x(Wk—1 V Zm) = Ix(wk—1) Ulx(Zm) C Ix(wi) Ulx(Zm) < Ix(wk V Zm)

and the last set has exactly one more element than the first, we must hayeJ | x (zy) =
Ix (Wi V Zm). O

We can also derive a converse to Theorem 6.1.

Proposition 6.2 Every ranked join sublattice of (#) which contains its distinguished
flags X and Y occurs as(R, Y) for some semimodular lattice.

Proof: Let M be a join sublattice ofl(r). The proof of Corollary 4.3 shows that if a
ranked join sublattice of a semimodular lattice has the same rank as the original lattice,
the join sublattice is semimodular. Hendé,is semimodular, and it suffices to show that
R(X,Y) = M in M. Since the labeling functiorlg andly are determined by joins, and
sinceM is a join sublattice ofl (), the X- andY-labels of a point inM is the same as

the corresponding labels i(t). As every flag is on a reduced pathJiir), we also have

Ix(z) = t(ly(2)) for everyzin M, and so, by Proposition 5.2, every flagm is on a
reducedX-Y path. ThusR(X, Y) = M. ]
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7. Classification of reduced paths in semimodular lattices

In this section, we classify the sets of reduced decompositions of a permutatibith
can correspond to a set of reduckdy paths in some semimodular lattice. We begin by
defining the monoid of all decompositions of permutation§;n

Definition Let M be the free monoid on generatdrs, r», ..., r,_1}, where we multiply
elements oM by concatenating thepand the identity i), the empty product. Then for
f in M, we definef to be the image of in S,. In particular f is a decomposition of ;
fg = f@§; andd is the identity inS,.

Proposition 7.1 Let S be the set of reduced decompositionswhich take X to Y in a

semimodular lattice. Then S is nonempty and has the properties

R1. If frirjhisin S andyand r; commutethen frrihisin S.

R2. If fririyirihisin Sthen firaririgihisin S.

R3. If fhand fh arein S andf < f’in weak Bruhat orderthen some decomposition
in S has the form fgh

Proof: Sis nonempty by Theorem 3.6. #f= rir; and the reflections commute, we have
Y=(0<xXi< - <X 1<VYi<Xij1< - <Xj1<Yj<Xjj1< - -- <X =1},

and we can go fronx; to y; either before or after going from; to y;, so S contains
both decompositions. ¥ = rjri,iri, then by Theorem 3.6;;,1riri;1 takesX to Y,
so this decomposition must be 8 For longer permutations, ifrirjh (or fririzarih,
respectively) is a decomposition 8 applying the above comments lettixg be the flag
reached after traversinandY’ be the flag reached aftér;r; (or frir; 1ri, respectively)
proves R1 and R2.

As for R3, letX’ be the flag inR(X, Y) in position f, andY’ be the flag in position
f’ from the path ending with’. By uniqueness of labels iR(X, Y), these flags are well
defined. SinceR(X, Y) is semimodular, Theorem 3.6 gives a reduced decompodgition
which takesX’ to Y’ in R(X, Y). The decompositioigh’ takesX to X’toY'toY in J(7).
Furthermore, this is a reducextyY path inJ(t), sincef < f’ < t in the weak Bruhat
order. But we can follow the same stepsRiX, Y) as we do inJ(z), and this gives a
reducedX-Y path in the original lattice as well. O

For the remainder of this section, we prove the conditions in Proposition 7.1 are sufficient
aswell, i.e., forany nonempty s8of reduced decompositions which obey these conditions,
we construct a semimodular latti¢q S) with two distinguished flag¥X andY such that
the decompositions which také to Y in R(S) are precisely those is. For notational
convenience, we make the following definition.

Definition Let S be a set of reduced decompositions of som@ S,. ThenSis an
R-set oft, or simply anR-set if Sis nonempty and obeys conditions R1, R2, and R3 in
Proposition 7.1.
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Theorem 7.2 The R-sets are in one to one correspondence with the isomorphism classes
of R(X,Y)’'s.

We constructR(S) as follows: for each decompositioh = $15,...5yin S, let f; =
S ...Sj, and letfj be the subset_j ([K]) € [n]. The idea is that iff is to represent a path
from X to Y, we need a flag at each step of the pathZ jlfis the flag at thg th step, then
7(X, Zj) = f_j,andlx(zk) would befjk. Thus, we defin®k(S) = {fjx: f € S} ordered by
inclusion. TherR(S) is contained inJ(t) since everyfj. is p([K]) for somep < t in the
weak Bruhat order, and andY are inR(S) sinceX = { fo« = fo([K]) = #([k]) = [K]} and
Y = {fmk = fm([K]) = z([K])} forany f in S. Also, by construction, every decomposition
of StakesX to Y in R(S). We call a reduced path froid to Y in R(S) an S-pathif the
corresponding decomposition is 8 and we say any flag on éhpath is anS-flag

We want to show that every reduc&dY path is anS-path, and every flag iR(S) is an
Sflag, soR(X,Y) = R(S). To do this, we showR(S) has several properties analogous
to those ofR(X, Y) that we proved in previous sections. We use these properties to show
R(S) is a join sublattice ofl (z) and the only reduced decompositions which taxke Y
are those irS. For example, Lemma 7.3 corresponds to Theorem 3.6.

Lemma 7.3 Let S be an R-set with fh in S. Letji, k, and m be the largest numbers
such thatr; f < f, fr; < f, rh < h, andhry, < h. Then there are decompositions
in S of the formirf’h, f"rjh, freh', and fH'ry,. ConditionsR1andR2 are sufficient to
guarantee the conclusions.

Proof: We first supposh = ¢, the empty decomposition, and use induction on the length
of f to prove the statement for Let f = §5,---Sy, and letS be the set of reduced
decompositionsf* of s, f < f such thats; f* is in S. ThenS is nonempty (since is

in S) and obeys conditions R1 and R2. New= r, for somep < i by definition ofi.

If p <i— 1, we may assume by induction on the lengthfahats, = r;, sincei is the
largest number such thgss, f <s; f, and we may exchange andr; by condition R1.

If p=i—1,thenri_1f<fandrif<f,sof(i—1>f(@)>f@+1). Now by
induction, we assunm® = r; ands; = r;j_;. Using R2, we replace the initigl_yr;r; _; with
riri_iri to get a decomposition beginning with Similarly, we can find a decomposition
frjin S.

If h # ¢, we letS* be the set of reduced decompositidiisof f such thatf *h is in S.
As before,S* is nonempty, and conditions R1 and R2 hold$byso by the above argument,
we can find an appropriate decompositionSinand appending gives the decomposition
in S. Similarly, we can finch’ andh”. a

Lemma 7.4 corresponds to Proposition 5.3.

Lemma 7.4 Suppose Z{# C zz C --- C zy} is an S-flag. Then for all kwe have
S-flags of the form

Zy=WcCcnc---Ccx<zxUllc--- Sz U[n}
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and
Zy=Wcnc---cx<zxUrt(d) < - Sz U(n) = [n]}.
Furthermore we haver (X, Z,) < n(X, Z) < n (X, Z))) in the weak Bruhat order.

Proof: Choosefh in Ssuch thatf = s;---s, takesX to Z andh takesZ to Y. By
Lemma 7.3, we may assursg is the largest; such thatfr; < f. Ifi > k, we suppose
by induction on the length of that the lemma holds faz*, the flag immediately before
thesy. But Z* is identical toZ at rankk and below, s&Z; = (Z*),, which is anS-flag by
induction, andz; = (Z*), < Z* < Z. If i <k, then the element§ ([m + 1))\ f([m]) are
in increasing order fom > k. Therefore, for all we havez, U [i] = z,, for somem, and
Z, = Z. Tofind Z, use the same argument and induction on the length of O

In R(X,Y), if wyx andz, both coverwy A z, thenwy v z, coverswy andz, by semimod-
ularity. We would like to show the same property holds RilS). Lemma 7.5 is a partial
result in that direction. It applies when there &#ags throughwy andz such that the
two flags agree at all levels beldw

Lemma 7.5 Let W and Z be S-flagand let k be the smallest rank such that £ z.
Then there is an S-path through k-adjacent flagsavd Z with the property thatu} = wj
and 4 = z; for j < k. In particular, wx U z is in R(S) and it coverswy and %.

Proof: We first show that we can choo¥¢ and Z so thatz (X, W) < 7 (X, 2) in the
weak Bruhat order (or vice versa, in which case we reverse the rol¥saoidZ). Then we
let f, h, f’, andh’ be reduced paths froxd toW, WtoY, Xto Z,andZ to Y, so fh and
f’h’ are decompositions iStaking X to Y in R(S) throughW andZ, respectively. Since
f < f’, condition R3 gives a reduced decompositighi in Swhich takesX to W to Z to
Y. Finally, we show that we can choose avith exactly oney in it. (Note thatg cannot
have arr; with j < k sinceW and Z are equal below levet.) The flags immediately
before and after the in the correspondin@-path areW’ andZ’, respectively.

We writep = (X, W), 0 = 7 (X, Z), andt = 7(X, Y). To choosaV andZ such that
p ando are related in the Bruhat order, Eeandb be the lone elements 6fvy \ wx_1) and
(z« \ z«_1), respectively. Without loss of generality, suppase b (otherwise, we switch
W andZ). By Lemma7.4,we mayassurié = {/ C w; C--- C wx S wxU[1l] C--- C
wgU[n}andZ = {# C wy C --- C w1 C Zx € z U T[] € --- € z U t[n]}.
We show that every inversion ip is also ino, sop < o in weak Bruhat order by
Proposition 3.1. Clearly, every inversion pfwhich involvesp(j) for j < k is also
ino,sincep([j]) = o([j]). The only other inversions ininvolve p (k) = a. Butif (a, &)
is an inversion inp, it is also an inversion in by Proposition 3.1. Nowa’ # b, since
a’ < a < b=o0(k), but the labels above rarkkin Z are added in the same order that they
appear int. Hence, if(a, &) is an inversion in, it is also an inversion iw. Therefore,
p < o, and condition R3 applies.

To chooseay with only onery, take the givery, and look at the first occurrence of a string of
the formryreya - - - rm. Ifthis string is at the end af we have only one, and there is nothing
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to prove. Otherwise, lat, be the simple reflection following this string. We cannot have
p = msince the decomposition is reducedpl& m+1, we replacen by m+1 and use the
longer string. Ifp > m+ 1, we apply condition R1 repeatedly to replagg.1 - - - rmfp by
Mplklket- < Im. If p < m, we replac&riis -« rmlfp DY Mlkg1 - Fp—1lpl psalpfp2 - m
using condition R1, then replace this By 1 - - - M p—1r p+1F pl p+1l p+2 - - - 'm USing condi-
tion R2, and replace this withy(1rr+1 - - -rm by condition R1 again. In each of these
cases, we move the string closer to the end.ofVhen it gets there, we have a decom-
position fgh' in S with only onery in g, so we can choos®/' and Z’ as explained
above. O

The requirement in Lemma 7.5 that tBdlags be equal up to the points in question can
be rather cumbersome. Lemma 7.6 allows us to sidestep the difficulties, and to complete
the proof of Theorem 7.2.

Lemma 7.6 Suppose W and Z are S-flags such that= z fori < k andwyy1 = Zx41.
Then{) C wy Cwy C--- Cwk_1 C Z C wkp1 C --- C wy}is an S-flag.

Proof: Leta andb be the lone elements @fvk \ wk_1) and(zx\ wk_1), respectively. If
a<bweassum& ={# CzgC -+ CZ1 S ZxaUT[l] € -+ C 21 U t[N]}, Since
this is anS-flag by Lemma 7.4, and the points dfabovez, ; are irrelevant for this lemma.
Now every inversionim (X, W) isalso int (X, Z), sor (X, W) < 7 (X, Z) inweak Bruhat
order. Thus, condition R3 implies the existence of a decompodgioim Swhich takesX
toWto Z to Y. The decompositiog from W to Z has exactly onex and no other;’s for

i <k+1,sinceW andZ agree up to levek + 1 except at levet. By condition R1, we may
assume the is the first reflection ig. The S-flag in positionfr, is the S-flag asserted in
thelemma. Ifa > b,weassum& = {# Cz3 C -+~ Z1 € 1 U[1] € --- € z 1 U[N]}
and note thatr (X, Z) < 7 (X, W) in weak Bruhat order. We now assume the lop@ g
(which is now the decomposition fro to W) is at the end of), so the flag in position
fgry is the asserted flag. O

Proposition 7.7 shows th&(S) is a join sublattice ofl(r), and also allows us to prove
that every flag oR(S) is anS-lag.

Proposition 7.7 Suppose W and Z are S-flags. Then for evetlgére is an S-flag
U=CwiC---Cwi CwjUz; C--- Cw Uz}
Hence R(S) is a join sublattice of Jr).

Proof: SinceUg = Z, we assume by induction that _; is an S-flag. We first use
Lemma 7.5 and induction onto extend

U_yj=PCcwrC---Cwi—1 Cwj_1Uzg C--- Cwi—1UZ € wi Uz}
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to an Sflag, and then we use descending inductiork@nd Lemma 7.6 to show there is
an Sflag

Vik =0Cwi C---Cwi-1 Cwi1Uz1 - - Cwi_1Uz Cw Uz
Cwi Uz ©--- Cwj Uzpl.

For the induction on, we note that); _; o can be extended W. Applying Lemma 7.5to
Ui_1 and theS-flag which results from extending; _; ;1 gives anS-flag containindJ;_1 j,
completing the induction. We also find &flag containindJ;_1 j_1 and the pointy; U z;.
We will use this flag in the descending inductionlanWe first note thaVi, = Uj_1.n, SO
Vin is anSflag. Fork < n, we apply Lemma 7.6 t¥, x and theS-flag from the induction
on j which containdJ; _1 x_1 andw; U z,. We find thatV; x_1 is anS-flag. SincdJ; = V, o,
this completes the original induction on O

Corollary 7.8 Every flag in RS) is an S-flag.

Proof: Let W be a flag inR(S) and suppose by induction thii C wy C --- C wy}
can be extended to e®flag W. Now wy1 is on someS-flag Z, since it is inR(S), so
applying Proposition 7.7 t@Vj’ and Z gives the flaghy, ;, completing the induction. O

Proof of Theorem 7.2: Proposition 7.1 shows that the set of decompositions taking
to Y in a semimodular lattice form an R-set. Conversely, Proposition 7.7 shows that for
every R-setS, R(S) is a join sublattice ofl (1), i.e., a poset isomorphic to son& X, Y)

for two flags X andY in a semimodular lattice. To complete the proof, we must show
that every reduced decomposition which tak€do Y in R(S) isin S, i.e., if 5;--- sy

is a reduced decomposition which takésto Y in R(S), then this decomposition is in

S. Thus, suppose by induction that some decompositio8 loegins withs; - - - 5. By
Corollary 7.8, there must be &flag Z in R(S) suchthatr (X, Z) = 5 -~ 51, SO there is
another decompositidn - - -t in Ssuch thaty - - t1 = 5 S1. Now applying R3 to
f=s5---sandh’ =t --tm, weseethad; - - - Sy 1tki2 - - -ty isin S, and by induction,
S1---SpisinS. O

8. Proofs of Theorems 2.2 and 2.3

We note that Theorems 2.2 and 2.3 follow from our results on semimodular lattices. We
prove Theorem 2.3 first.

Proof of Theorem 2.3: From Proposition 4.2, we know that in an upper semimodular
lattice, R(X, Y) is a join sublattice of. (X, Y). By duality, in a lower semimodular lattice,
R(X,Y) is a meet sublattice df (X, Y). Hence, if the original lattice is modulaR(X, Y)
must be a sublattice af(X, Y). ButL (X, Y) is the smallest sublattice of the original lattice
that containsX andY, soR(X, Y) = L(X, Y). This proves Theorem 2.3(i).

As for Theorem 2.3(ii), Proposition 7.1 applies to lower semimodular lattices, except
that we must replace condition R2 by condition R2

R2. If friyaririyihisin Sthenfriri,arihisin S.
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For a modular lattice, this condition becomes
R2'. If either friri irih or friyaririp1his in Sthen both decompositions are $a

But by a standard result (see, for example [9], Theorem 2.11) we can transform any reduced
decomposition of into any other reduced decompositiorrdify a sequence of replacements
allowed by conditions R1 and R2SinceSis nonemptyS must therefore consist efvery
reduced decomposition af(X, Y). This proves Theorem 2.3(ii). O

Proof of Theorem 2.2: We show that in a modular lattice, the labeling functigris an
isomorphism betweeR(X, Y) andJ(r) whent = 7 (X,Y). SinceR(X,Y) = L(X,Y)
by Theorem 2.3(i), and sindg (x;) = [i] andlx(y;) = t([j]), this is sufficient.

By Theorem 6.1R(X, Y) can be embedded as a join sublatticeJéf). Conversely,
choosep < 7 in the weak Bruhat order. By definition of the weak Bruhat order, some
reduced decomposition ofbegins with a reduced decompositioneofBy Theorem 2.3(ii),
this decomposition takes to Y. Thus, some flag along this path has = 7 (X, Z). The
X-label of rankk point of this flag idx (z«) = p([K]). Therefore, every label of the form
p([K]) with p < 7 in the weak Bruhat order occurs. By Corollary 3.2,is a surjection,

and so by Corollary 5.7, it is an isomorphism. O
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