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Abstract. The centered difference of principally specialized Schur functions

sλ̃(1, q, . . . , qn) − qnsλ(1, q, . . . , qn)

is shown to be a symmetric, unimodal polynomial inq with non-negative coefficients for certain choices ofλ̃, λ,
andn, in which λ̃ is always obtained fromλ by adding two cells, andn is chosen to be odd or even depending on
λ̃, λ. The basic technique is to find an injection of representations for the symplectic or orthogonal Lie algebras,
and interpret the above difference as the principal specialization of the formal character of the quotient. As a
special case, a difference ofq-binomial coefficients is shown to be unimodal.
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1. Introduction

It is well known [25, Theorem 13] that the principal specialization of a Schur function,

sλ(1, q, . . . , qn−1),

is a symmetric, unimodal polynomial inq with non-negative coefficients. Ifλ = 1k is a
single column, we have

s1k(1, q, . . . , qn−1) = q
k(k−1)

2

[
n
k

]
q

.

Forλ = k a single row,

sk(1, q, . . . , qn−1) =
[

n + k − 1
k

]
q

.

thus proving theq-binomial coefficient is a symmetric unimodal polynomial inq. In this
paper we prove (Theorems 1, 5, 8) that certain differences of principal specializations of

∗This work was supported by NSF Postdoctoral Research Fellowship DMS-9206371 and NSF grant DMS-
9400510.
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Schur functions

sλ̃(1, q, . . . , qn) − qnsλ(1, q, . . . , qn)

are symmetric and unimodal. Our basic technique is to realize the differences as principal
specializations of formal characters of representations of the symplectic or orthogonal Lie
algebras.

We consider two special cases ofλ, λ̃ related to some interesting posets in Sections 2
and 3, and consider more generalλ, λ̃ in Section 4. Some poset conjectures are given in
Sections 2 and 3, while unimodality conjectures are given in Section 5. All notation is taken
from Macdonald [18].

2. The motivating special case

Empirically, the following theorem was discovered.

Theorem 1 If n is an odd positive integer and2k ≤ n + 1, then[
n
k

]
q

−
[

n
k − 1

]
q

is a symmetric, unimodal polynomial in q with non-negative coefficients.

The first main goal of this section is to prove Theorem 1. It is straightforward to check
that the above difference is symmetric as a polynomial inq, and Andrews [5] and Fishel [9]
gave explicit sets of partitions for which the difference in Theorem 1 is the generating
function, thus proving non-negativity. Moreover, the difference is known [6] to be theKostka
polynomial K(n−k,k),1n(q) [18, p. 130], which has non-negative coefficients. However, none
of these results gives unimodality.

First we note that one can rewrite the above difference using theq-Pascal’s triangle
recurrences (see [5, p. 21]) as[

n
k

]
q

−
[

n
k − 1

]
q

= qk

([
n − 1

k

]
q

− qn−2k+1

[
n − 1
k − 2

]
q

)
. (2.1)

The advantage to this rewriting is that the two terms inside the parentheses on the right-
hand side of (2.1) are now not only symmetric, but also centered at the same power ofq.
This suggests an algebraic interpretation as thesl2-character of some quotient module,
and we will construct such ansl2-module as theprincipal specializationof the irreducible
representation ofspm corresponding to itskth fundamental weight. Our construction of
these representations follows [4, Chap. VIII, Section 13] (see [10], Sections 17.3 and 24.2
for a discussion of these same representations in adualizedform usingWeyl’s construction).

Setm = n − 1, which is an even number, and letm = 2l . Let V be anm-dimensional
C-vector space with asymplecticform 〈·, ·〉, i.e.,〈·, ·〉 is a non-degenerate skew-symmetric
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bilinear form onV . Let Sp(V) be thesymplectic groupinside ofGL(V) which consists
of all invertible transformations preserving〈·, ·〉, andspm its Lie algebra. ThenSp(V) and
spm act onV , and hence on the exterior powers∧kV with formal character

charspm
(∧kV) = ek

(
xl , xl−1, . . . , x2, x1, x−1

1 , x−1
2 , . . . , x−1

l−1, x−1
l

)
whereek(z1, . . . , zm) is thekth elementary symmetric functionin the variablesz1, . . . , zm.
Inside spm is a distinguished subalgebra isomorphic tosl2 known as aprincipal three-
dimensional subalgebra(TDS), which is unique up to conjugacy (see [22]). Restricting a
representation ofspm to this TDS yields ansl2-module whose formal character is obtained
from charspm

by the specializationxi = q2i −1, so for∧kV we obtain

charsl2(∧kV) = ek(q
2l−1, q2l−3, . . . , q3−2l , q1−2l )

= qk(k−m)

[
m
k

]
q2

.

This then suggests that perhaps one could prove Theorem 1 by demonstrating an
spm-equivariant injectionφ : ∧k−2V → ∧kV , so that the quotient∧kV/φ(∧k−2V) would
have formal characters

charspm
(∧kV/φ(∧k−2V)) = ek

(
xl , xl−1, . . . , x−1

l−1, x−1
l

)
− ek−2

(
xl , xl−1, . . . , x−1

l−1, x−1
l

)
charsl2(∧kV/φ(∧k−2V)) = qk(k−m)

[
n − 1

k

]
q2

− q(k−2)(k−2−m)

[
n − 1
k − 2

]
q2

= qk(k−m)

([
m
k

]
q2

− (q2)n−2k+1

[
m

k − 2

]
q2

)

= qk(k−m)

([
n
k

]
q2

−
[

n
k − 1

]
q2

)
.

Since suchsl2-characters are known to be symmetric, unimodal Laurent polynomials inq
centered aboutq0 (see [25], Theorem 15), this would imply that the difference in Theorem 1
is symmetric and unimodal as a polynomial inq.

In [4, Chap VIII, Section 13, no. 3], such a mapφ is constructed by identifying the skew-
symmetric form〈·, ·〉 with a skew-symmetric 2-tensorw ∈ ∧2(V), and lettingφ(v) = v∧w.
The fact thatφ is spm-equivariant is immediate from the fact thatSp(V) preserves〈·, ·〉
and hencespm annihilatesw. Injectivity of φ is guaranteed by the following proposition
(essentially proven in [4, p. 203]) whose statement we include here for later use in Section 4.

Proposition 2 Let V be a m-dimensional vector space overC. Fix w ∈ ∧2(V), fix k,
2k ≤ m+ 2, and defineφ(v) = w ∧ v. Thenφ is an injection from∧k−2V to∧kV, if, and
only if, w corresponds to a non-degenerate(skew-symmetric) bilinear form.



               
P1: PMR

Journal of Algebraic Combinatorics KL507-06-Reiner November 7, 1997 9:20

94 REINER AND STANTON

This completes the proof of Theorem 1. We note that Bourbaki also proves that the
spm-representation∧kV/φ(∧k−2V) is irreducible and corresponds to thekth fundamental
weight ω1 + · · · + ωk of spm. As such, one could compute a product formula for the
difference in Theorem 1 using theq-Weyl dimension formula (see e.g., [22]), however, this
yields no more in this case than the formula one gets by combining common factors in the
product formulas for the individualq-binomial coefficients. Hughes [12] gave a different
combinatorial formula for charsl2(∧kV/φ(∧k−2V)) based upon Freudenthal’s multiplicity
formula.

In the remainder of this section we wish to discuss how the partitions considered by
Andrews in [5] naturally index a basis for the quotient space∧kV/φ(∧k−2V). We will
explain how this basis coincides with another known basis for the irreducible representations
of spm corresponding to fundamental weights.

There is an obvious bijection between partitionsµ whose Ferrers diagrams fit inside a
k × (m − k) rectangle and a basis for∧kV . Namely, considerµ as a multiset of sizek of
integers in{0, 1, . . . , m−k}, and addi to thei th smallest element ofµ, to obtain ak-subset
Sof {1, . . . , m}. These subsets become basis elements under the identification

vS =
∧
i ∈S

vi

where{v1, . . . , vm} is a basis forV .
The quotient space∧kV/φ(∧k−2V) hassl2-character equal to the left-hand side of (2.1),

up to rescaling. Andrews [5] gave an explicit set of partitions inside ak× (m−k) rectangle
whose generating function is given by (2.1) (NB: one might expect these partitions to lie
inside ak × (n− k) rectangle, but in fact they lie in the smallerk × (m− k) rectangle). His
description uses theFrobenius notationfor a partitionµ (see [5]): if the Durfee square of
µ has sizer 2, let ai = µi − i , bi = µ′

i − i , and

µ =
(

a1a2 · · · ar

b1b2 · · · br

)
.

Proposition 3 (Andrews) The generating function for all partitionsλ whose Frobenius
notation satisfies a1 ≤ m − k − 1, b1 ≤ k − 1, and ai − bi ≤ m − 2k is

q−k

([
n
k

]
q

−
[

n
k − 1

]
q

)
=

[
m
k

]
q

− qm−2k+2

[
m

k − 2

]
q

.

If a partitionµ inside ak× (m−k) rectangle satisfies the conditions of Proposition 3, we
will say µ (or its corresponding subsetS or its corresponding basis vectorvS) is Andrews
and otherwise that it isnon-Andrews.

Theorem 4 If m is even and2k ≤ m+ 2, then the images of the Andrews partitions form
a basis for the quotient∧kV/φ(∧k−2V).
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Proof: We originally had a direct proof of this, similar to the proof of Theorem 6, using
as a key lemma a result of independent interest which we have relegated to the Appendix.
We later found out that the theorem can be deduced from work of Berele [3], as we now
explain.

Directly translating the condition for a partitionµ to be non-Andrews via the correspon-
dence with subsets, one can check that ak-subsetS′ is non-Andrews if and only if there
exists somei for which thei th largest elementa in S′ and thei th smallest elementb in
{1, 2, . . . , m} − S′ satisfya > b anda + b > m + 1. Now biject{1, 2, . . . , m} with

[±l ] := {−1, −2, . . . ,−(l − 1), −l , l , l − 1, . . . , 2, 1}

by matching up the corresponding entries of these sets in the order that they are listed.
Under this correspondence, one can check that the non-Andrews partitions are exactly the
subsetsS ⊆ [±l ] for which there is somei so that|S∩ [±i ]| > i . In the terminology of
Sheats [24], a subset ofS ⊆ [±l ] corresponds to acircle diagram, and the non-Andrews
condition is the same as the circle diagram beingnon-admissible. Sheats explains how
the admissible circle diagrams are the same as thesymplectic tableauxof King [14] and
DeConcini [7] indexing the weights of the irreducible representations ofspm, in the case
where the representations are fundamental. Furthermore, Berele [3] showed how to con-
struct the irreducible representations ofspm in such a way that King’s symplectic tableaux
index a basis, and hence in the case of the fundamental representations, the basis is indexed
by admissible circle diagrams or Andrews partitions. It is easy to check that in the case of the
fundamental representations, Berele’s construction is exactly the same as our construction
following Bourbaki, i.e.,∧kV/φ(∧k−2V). 2

We also wish to discuss a natural poset structure on the Andrews partitions. Recall
that theGaussian poset L(k, m − k) is the distributive lattice formed by all partitions
inside ank × (m − k) box, ordered by inclusion of their Ferrers diagrams. It has rank
generating function [mk ]q, and the proof of its rank-unimodality using the action of a principal
TDS inside ofglm also proves that this poset isPeckby showing that the action of the element
e in sl2 gives rise to anorder-raising operatoron the poset (see [20] for definitions of Peck
and order-raising operator).

Similarly, one can easily check that the subset of Andrews partitions insideL(k, m− k)

form a distributive sublattice which we will callAndrews(k, m − k). One can also easily
check that the self-duality onL(k, m − k) given by complementing a partition within
the k × (m − k) box restricts toAndrews(k, m − k), so it is also self-dual. A picture of
Andrews(3, 3) inside ofL(3, 3) is shown in Figure 1(a).

Theorem 4 shows that not only isAndrews(k, m−k) rank-symmetric and rank-unimodal
for m even with 2k ≤ m + 2, but that its elements naturally index the basis for the
spm-module (and hencesl2-module)∧kV/φ(∧k−2V). Thus one would hope that the ele-
mente in the principal TDS would give rise to anorder-raising operatoron∧kV/φ(∧k−2V)

with respect to the orderAndrews(k, m − k), and hence prove this poset is Peck. This is
false, however, already fork = 2 andm ≥ 6. Nevertheless, we had conjectured that the
posetAndrews(k, m−k) is Peck ifm is even and 2k ≤ m+2, and this has been proven very
recently by Donnelly [8]. Donnelly constructs the fundamental irreducible representations
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Figure 1. (a) The Gaussian posetL(3, 3) with the elements ofAndrews(3, 3) shown circled, (b) The Gaussian
posetL(3, 2) with the elements ofGood(3, 2) shown circled.

of spm with a basis indexed by admissible circle diagrams, in such a way that the principal
TDS has its raising operator acting as an order-raising operator with respect to the partial
order on the circle diagrams isomorphic toAndrews(k, m − k).

There is also a well-known open problem to determine whether the Gaussian poset
L(k, m− k) has asymmetric chain decomposition(see [21] for definition and some discus-
sion of this problem). Theorem 4 suggest a natural extension of this problem:

Question Does there exist a symmetric chain decomposition for L(k, m − k) which re-
stricts to Andrews(k, m − k) for m even?

If such a symmetric chain decomposition exists, it would by necessity also give a sym-
metric chain decomposition for the subposetNonAndrews(k, m − k) of non-Andrews par-
titions insideL(k, m − k). Strangely, this posetNonAndrews(k, m − k) is not isomorphic
to the smaller Gaussian posetL(k − 2, m+ 2− k), even though they share the same rank-
generating function. In factNonAndrews(k, m−k) is not even a distributive lattice fork ≥ 4!
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3. Another special case

In this section we prove analogous results involving Sym∗V and the orthogonal Lie algebra,
rather than∧∗V and the symplectic Lie algebra. This case also leads to a conjecture that
another self-dual, rank-unimodal subposet of the Gaussian poset is Peck.

Theorem 5 If n is an odd positive integer, then[
n + k − 1

k

]
q

− qn−1

[
n + k − 3

k − 2

]
q

is a symmetric, unimodal polynomial with non-negative coefficients.

Proof: In fact, we will show that this difference is, up to rescaling, thesl2-character for
the principal TDS inside of the orthogonal Lie algebrason acting in a certain representation.

Let n = 2l + 1. Choose〈·, ·〉 a non-degenerate symmetric form on ann-dimensional
C-vector space, and let the special orthogonal groupSO(V) be the subgroup ofGL(V)

consisting of transformations which have determinant 1 and preserve〈·, ·〉. ThenSO(V)

and its Lie algebrason act onV , and hence on SymkV with character

charson(SymkV) = hk
(
xl , xl−1, . . . , x2, x1, 1, x−1

1 , x−1
2 , . . . , x−1

l−1, x−1
l

)
wherehk is thekth (complete) homogeneous symmetric function. The principal TDS inside
of son therefore acts on SymkV with character

charsl2(SymkV) = hk(q
n−1, qn−3, . . . , q4, q2, 1, q−2, q−4, . . . , q3−n, q1−n)

= qk(1−n)

[
n + k − 1

k

]
q2

and hence

charsl2(SymkV) − charsl2(Symk−2V)

= qk(1−n)

([
n + k − 1

k

]
q2

− (q2)n−1

[
n + k − 3

k − 2

]
q2

)
. (3.1)

Defineφ : Symk−2V → SymkV to be multiplication by the symmetric 2-tensorw ∈ Sym2V
corresponding to〈·, ·〉. “Multiplication” by w means the following composite

Symk−2V ↪→ Symk−2V ⊗ Sym2V → SymkV
v 7→ v ⊗ w 7→ v · w

where the second map in the sequence is the shuffle (symmetrization) product.
The mapφ is son-equivariant as before since〈·, ·〉 is preserved bySO(V), sow is anni-

hilated bysl2. The mapφ is an injection, since under the isomorphism of the symmetric
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algebra Sym∗V and the polynomial ringC[x1, . . . , xn], the mapφ corresponds to multi-
plying the polynomials of degreek − 2 by a non-zero polynomial of degree 2.

Therefore, the expression on the right-hand side of Eq. (3.1) is thesl2-character of the
quotient module SymkV/φ(Symk−2V), and hence is unimodal. 2

Remark Empirically it appears that the assertion of Theorem 5 is also true ifk is odd and
n > 2 is arbitrary, but we have no proof of this for evenn.

It can be shown that theson representation SymkV/φ(Symk−2V) appearing in the proof
of Theorem 5 is irreducible, although it does not correspond to a fundamental representation
of son (see the discussion after the proof of Theorem 6). We now prove that there is again a
natural set of partitions which index a basis for this quotient, deferring a discussion of their
relation to knownorthogonal tableauxuntil after the proof.

Firstly, note that a partitionλ inside ak × (n − 1) rectangle can be thought of as the
k-multisetS of its parts in{0, 1, . . . , n − 1}, and also can be identified with a product of
the basis vectors{v0, . . . , vn−1} of V ,

vλ =
∏
i ∈S

vi

where here again the product is the commutative symmetrization product in Sym∗V . Thus
the set of all such partitions naturally indexes the monomial basis of SymkV .

We wish to identify an appropriate subset of these partitions which will index a basis for
our quotient module. Again using one of theq-Pascal’s triangle recursions, we have[

n + k − 1
k

]
q

− qn−1

[
n + k − 3

k − 2

]
q

=
[

n + k − 3
k − 1

]
q

+ qk

[
n + k − 2

k

]
q

,

whose right-hand side suggests the set of partitionsλ inside in ak × (n − 1) rectangle
which satisfy one of these two mutually exclusive conditions: eitherλi ≤ n−2 for all i and
λk = 0 (i.e.,λ fits inside a(k − 1) × (n − 2) “corner” of the box) orλk > 0 (so removing
the full first column ofλ gives a partition inside ak × (n − 2) box). Say that a partition
inside ak × (n − 1) box (or its corresponding multiset or its corresponding basis vector in
SymkV) satisfying either of these two conditions isgood, else it isbad.

Theorem 6 For n odd, the images of the good basis vectors inSymkV form a basis for
SymkV/φ(Symk−2V).

Proof: Identifyingφ with its (
n+k−3

k−2 ) × (
n+k−1

k ) matrix relative to the multiset bases, we

will show that the( n+k−3
k−2 ) × (

n+k−3
k−2 ) square submatrixφ′ of φ obtained by restricting to

the bad columns is non-singular, and hence that the images of the good basis vectors form
a basis for the quotient SymkV/φ(Symk−2V).

Directly translating the condition for a partitionλ to be bad via the correspondence with
multisets, one can check that ak-multisetS′ is bad if and only if it contains a copy of the
pair {0, n − 1}.
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By the canonical forms for symmetric non-degenerate bilinear forms overC, we can
assumew is given by

w =
l∑

i =0

vi · vn−1−i .

After identifying basis elements of Symk−2V, SymkV with (k − 2)-multisets,k-multisets,
respectively,φ sends a basis(k − 2)-multisetS to the sum of allk-multisetsS′ obtained by
adjoining anew copyof the pair{i, n − 1 − i } to S.

We now decompose the matrixφ into a certain block form. Call the subsets of the form
{i, n − 1 − i } pairs, and note that any subsetS can be decomposed uniquelyS = P ∪ U
where P is a union of some pairs, andU consists of the unpaired elements (eitheri or
n − 1 − i ) within S. For example, ifn = 7 and S = {0, 0, 1, 2, 2, 3, 5, 6, 6, 6}, then
P = {0, 0, 1, 5, 6, 6}, U = {2, 2, 3, 6}. Note that ifφ(S) contains some multisetS′ with
non-zero coefficient, thenS′ must have the same multiset of unpaired elementsU as S,
and it must contain exactly one more pair{i, n − 1 − i } thanS did. Therefore, if we fix a
possible multiset of unpaired elementsU (that is, any multiset on{0, 1, . . . , n − 1} which
contains at most one element from{i, n − 1− i } for all i ), and letSU ,S ′

U be the collection
of (k − 2)-multisets,k-multisets on{0, 1, . . . , n − 1} whose unpaired elements are exactly
U , thenφ will be block diagonal, with each non-zero block representing the map from
subspace spanned bySU into that spanned byS ′

U . Let φU be the restriction ofφ to the
spaces spanned bySU ,S ′

U , andφ′
U the restriction ofφU to its bad columns. It remains to

show that eachφ′
U is square and non-singular.

Trivially, we can reduce to the case whereU is empty, since removing the unpaired
elements fromS, S′ does not affect the matrix entryφU (S, S′), and does not affect whether
S′ is good or bad. WhenU is empty, sinceS, S′ are unions of pairs{i, n − 1 − i }, we lose
no information if we replaceS, S′ by the multisetsT, T ′ of {0, 1, . . . , (n − 1)/2} obtained
by replacing each pair{i, n − 1 − i } with the smaller of the two numbers in the pair. We
will have

φU (S, S′) =
{

1 if T ⊂ T ′

0 else

andS′ is bad if and only if 0∈ T ′.
Thus it only remains to observe the following: For any positive integersm, r , let M be

the inclusion incidence matrix with rows, columns indexed by(r − 1) andr -multisets on
{0, 1, . . . , m} respectively. LetM ′ be its restriction to the columns indexed by multisets
containing 0. ThenM ′ is square and invertible. To see this, note that if we order the rows
and columns by lexicographic order on multisets with 0 coming first, 1 next, etc., then this
matrix is upper unitriangular. 2

It follows from Littlewood’s branching rules for restricting irreduciblegln-characters
to son-characters [17], that the representation SymkV/φ(Symk−2V) is an irreducible
son-representation and corresponds to the partition(k) having a single part of sizek.
Orthogonal tableauxindexing the weights of these irreducible representations have been
given by King [14], Koike and Terada [16], Proctor [23], and Sundaram [26]. It is easy to
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check in the case of the irreducible corresponding to the partition(k) that each of these sets
of orthogonal tableaux reduces to the disjoint union of two sets, consisting of allk-multisets
and all(k − 1)-multisets on an (n − 1)-set, respectively. This is easily seen to correspond
bijectively with the two kinds of good partitions in Theorem 6. We are not aware, however,
of any explicit construction of the irreducible representations ofsom which coincides with
our construction SymkV/φ(Symk−2V) in this special case, and hence which would imply
Theorem 6 in the way that Berele’s construction implied Theorem 4.

As in the previous section, one can consider a natural partial order on the good partitions.
Theq-binomial coefficient [n+k−1

k ]q is the rank generating function for the Gaussian poset
L(k, n − 1), and one can easily check that the subset of good partitions insideL(k, n − 1)

form a distributive sublattice which we will callGood(k, n − 1). One can also check that
the self-duality onL(k, n − 1) given by complementing a partition within thek × (n − 1)

box restricts toGood(k, n − 1), so it is also self-dual. A picture ofGood(3, 2) is shown in
Figure 1(b). Theorem 6 shows that not only isGood(k, n − 1) rank-symmetric and rank-
unimodal forn odd, but that its elements naturally index the basis for ansl2-module. Thus
one would again hope that the elemente in sl2 would give rise to anorder-raising operator
on Good(k, n − 1), and hence prove that it is Peck. This hope is again false, already for
k = 2 andn ≥ 5. Nevertheless, we still make the following conjecture.

Conjecture 7 The poset Good(k, n − 1) is Peck for n odd.

It would be interesting to see if the methods of Donnelly mentioned in the previous section
can be modified to prove this.

As in the discussion at the end of the previous section, it is natural to extend the question
of whether there is a symmetric chain decomposition of the Gaussian posetL(k, n − 1)

to ask whether there is one which restricts toGood(k, n − 1). In contrast to the case of
Andrews(k, m − k), the question seems more hopeful in this case because the subposet
Bad(k, n−1) consisting of the bad partitions inL(k, n−1) is easily seen to be isomorphic
to the smaller Gaussian posetL(k − 2, n − 1). Therefore, one could hope for existence
of a symmetric chain decomposition defined recursively onL(k − 2, n − 1), which then
extends overGood(k, n − 1) to the rest ofL(k, n − 1).

4. Schur functions

We now generalize Theorems 1 and 5 by proving a unimodality result for certain differences
of principally specialized Schur functions. For a partitionλ, we letsλ(x1, . . . , xn) denote the
Schur functionin the variablesx1, . . . , xn associated toλ [18]. Theprincipal specialization
of sλ is sλ(1, q, q2, . . . , qn−1), and is known to be a symmetric, unimodal polynomial inq
with non-negative coefficients [25, Theorem 13].

The main result of this section is the following theorem.

Theorem 8 Under the following conditions onλ, λ̃ and the parity of n, the centered
difference of principal specializations

sλ̃(1, q, q2, . . . , qn−1) − qn−1sλ(1, q, q2, . . . , qn−1)
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is the principal specialization of an spn-character(n even) or son-character(n odd), and
hence a symmetric, unimodal polynomial in q with non-negative coefficients:
(1) λ̃ is obtained fromλ by adding two cells to the first row, and n is odd.
(2) λ̃ is obtained fromλ by adding a new part of size2, n is odd, and n > a + b where

a, b are the lengths of the first two columns ofλ.
(3) λ̃ is obtained fromλ by adding two cells to the first column, n is even, and n ≥

2(l (λ) + 1) where l(λ) is the number of parts ofλ.
(4) λ̃ is obtained fromλ by adding a new column of size2, n is even, and n≥ 2.

Before giving the proof of each case of the theorem, we give a sketch of the basic
idea underlying all four cases. Our first step is to interpretsλ(x1, . . . , xn) as the formal
character of an explicitly constructed irreducible representation ofGL(V), whereV is an
n-dimensionalC-vector space as usual. To this end, recall that for ann-dimensional vector
spaceV overC, the Schur module(or co-Schur module) SλV constructs the irreducible
representation ofGL(V) corresponding toλ, and the formal character issλ(x1, . . . , xn)

(see [2] for definitions and details about (co-)Schur modules). Because we are working
overC, the Schur module and co-Schur module are isomorphic asGL(V)-representations,
so we will abuse notation and useSλV for both. By choosing a non-degenerate symmetric
(resp. skew-symmetric) form〈·, ·〉 onV whenn is odd (resp. even), and lettingSO(V), son

(resp.Sp(V), spn) be the classical simple Lie group and Lie algebra associated to the form
〈·, ·〉, the Schur moduleSλV is also a representation forson (resp. spn) whose formal
character is

charson SλV = sλ

(
xl , xl−1, . . . , x1, 1, x−1

1 , . . . , x−1
l−1, x−1

l

)
charspn

SλV = sλ

(
xl , xl−1, . . . , x1, x−1

1 , . . . , x−1
l−1, x−1

l

)
and whosesl2-character when restricted to the principal TDS inside ofson or spn is

charsl2 SλV = sλ(q
1−n, q3−n, . . . , qn−3, qn−1)

= q(1−n)|λ|sλ

(
1, q2, q4, . . . , q2(n−1)

)
where|λ| is the sum of the parts ofλ. It therefore suffices to prove (for each case asserted
in the theorem) that there exists anson or spn-equivariant injection

φ : SλV ↪→ S̃λV.

This implies that the difference of principal specializations will be (up to a shift by a power
of q, and the substitutionq 7→ q2) thesl2-character for the quotientS̃λV/φ(SλV), and then
symmetry, unimodality and non-negativity of the coefficients follow as before from [25,
Theorem 15].

The injectionφ may be uniformly described in each case as the following composite of
three maps:

SλV → SλV ⊗ (V ⊗ V) →
⊕
λ ⊂ λ̃

|λ̃|=|λ|+2

S̃λV → S̃λV
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Here the first map is simply tensoring withw, the symmetric or skew-symmetric 2-tensor
in V ⊗ V which corresponds to the form〈·, ·〉, and which is annihilated byson or spn. The
second map comes from the Pieri formula for Schur modules or Schur functions ([19], [18],
p. 42), and the third map is just the canonical projection onto a summand in the direct sum.

It is clear thatφ is son or spn-equivariant as before sincew is annihilated byson or spn.
It only remains to check that in each case asserted by the theorem,φ is injective. While the
composite “Pieri map”

SλV ⊗ (V ⊗ V) → S̃λV

is somewhat complicated to describe explicitly for generalλ̃, λ (see [19]), in each of the
cases asserted in the theorem we have a simple description, which allows us to conclude
thatφ is injective.

Proof of Theorem 8: From the previous discussion, we only need to show in each case
of the theorem how to describe the mapφ explicitly, and check that it is injective. We
will use the fact that the (co-)Schur functor construction may be applied for any skew
Ferrers diagramD, i.e.,D need not necessarily correspond to a partition. We introduce the
following terminology: for a non-negative integerm, Row(m) denotes a Ferrers diagram
consisting of a single row withm cells, and Col(m) is a single column withm cells. Given
two skew diagramsD andD′, let D ∗ D′ denote the skew diagram obtained by placingD′

strictly north and east ofD so that they have no cells in the same row or column. We will
use without further mention the facts that

SRow(m)V ∼= SymmV

SCol(m)V ∼= ∧mV.

For case 1, consider the following commutative diagram of maps

Sλ
i1→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)

⊗w↓ ↓⊗w

Sλ∗Row(2)
i2→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)∗Row(2)

π̂↓ ↓π

S̃λ

i3→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1+2)

(4.1)

where hereSD denotes the Schur module construction (as opposed to the co-Schur module)
applied toV . The horizontal mapsi1, i2, i3 are inclusions which come from the definition of
a Schur moduleSDV as the image of a certain map into Symµ1V ⊗ Symµ2V · · ·⊗Symµl V ,
whereµi is the size of thei th row of the skew diagramD. Also the maps⊗w from the
first row to the second row are defined becausew is a symmetric 2-tensor, i.e., it is in
SRow(2)V , becausen is odd. The mapπ is defined byπ = id ⊗ · · · ⊗ id ⊗ g, whereg is the
symmetrization mapg : Symλ1V ⊗ Sym2V → Symλ1+2V . The mapπ̂ is defined because
the compositeπ ◦ i2 happens to factor throughS̃λ, as is easy to check from the definition
of the Schur module.
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The compositeπ ◦ (⊗w) of the two maps in the right column is injective, because it is
id ⊗ · · ·⊗ id ⊗ h, whereh is the same map which was shown to be injective in the proof of
Theorem 5. Sincei1 is an injection, this implies that our mapφ = π̂ ◦ (⊗w) is an injection,
as desired.

For case 3, one does the “transpose” of the argument just given, replacing Schur mod-
ules with co-Schur modules, and rows by columns. In the second-to-last sentence of the
argument, one uses Proposition 2.

For case 4, consider the following commutative diagram

Sλ
i1→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)

⊗w↓ ↓⊗w

Sλ∗Row(1)∗Row(1)
i2→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)∗Row(1)∗Row(1)

π̂↓ ↓π

S̃λ

i3→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2+1)∗Row(λ1+1)

(4.2)

where hereSD denotes the Schur module construction applied toV . The horizontal maps
i1, i2, i3 are the Schur modules’ defining inclusions as before. The mapπ is defined by
π = id ⊗ · · · ⊗ id ⊗ g1 ⊗ g2, whereg1, g2 are the symmetrization maps

g1 : Symλ1V ⊗ V → Symλ1+1V

g2 : Symλ2V ⊗ V → Symλ2+1V

The mapπ̂ is defined because the compositeπ ◦ i2 happens to factor throughS̃λ, as is
easy to check from the definition of the co-Schur module, using the fact thatw is already a
skew-symmetric 2-tensor (sincen is even).

Sincei1 is an injection, our composite mapφ = π̂ ◦ (⊗w) in the first column will be an
injection, as long as we can show that the compositeπ◦(⊗w) in the right column is injective.
But this map isid ⊗· · ·⊗ id ⊗h, whereh is the same map in the case where there are only 2
rows inλ. Thus we need a lemma which says that ifw is a non-degenerate skew-symmetric
2-tensor,n ≥ 2, andλ has only 2 rows, then the composite map(g1⊗g2)◦(⊗w) is injective.
This is easy to prove using the same sort of block-diagonal decomposition technique used
to prove injectivity of the map in Theorem 6, so we will omit the details.

For case 2, one does the “transpose” of the argument just given, replacing Schur mod-
ules with co-Schur modules, and rows by columns. In the second-to-last sentence of the
argument, one needs to show that ifa ≥ b with n > a + b, andw is a non-degenerate
symmetric 2-tensor, then the following composite map is injective:

SCol(a)∗Col(b) → SCol(a)∗Col(b)∗Col(1)∗Col(1) → SCol(a+1)∗Col(b+1)
⊗w g1⊗g2

whereg1, g2 are the antisymmetrization maps

g1 : ∧aV ⊗ V → ∧a+1V

g2 : ∧bV ⊗ V → ∧b+1V

Again this is easy to prove using the same block-diagonal decomposition technique used
to prove injectivity of the map in Theorem 6, and we omit the details. 2
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Remarks

1. It is not hard to give combinatorial injections proving that in all of the cases (1)–(4), the
appropriate differences

sλ̃

(
xl , xl−1, . . . , x1, 1, x−1

1 , . . . , x−1
l−1, x−1

l

)
− sλ

(
xl , xl−1, . . . , x1, 1, x−1

1 , . . . , x−1
l−1, x−1

l

)
or

sλ̃

(
xl , xl−1, . . . , x1, x−1

1 , . . . , x−1
l−1, x−1

l

)
− sλ

(
xl , xl−1, . . . , x1, x−1

1 , . . . , x−1
l−1, x−1

l

)
wherel = b n

2c have non-negative coefficients as a Laurent polynomial inx1, . . . , xl ,
regardless of the parity of n. However, these differences will not always have meaning
asson or spn-characters, and unimodality of their principal specializations requires the
parity conditions stated in each case.

2. There is an alternative proof of Theorem 8 relying on Littlewood’s identities [17] giving
the branching rules for decomposing into irreducibles the restriction of an irreducible
gln-representationSλV to son or spn. In the alternative proof, one shows that when
λ, λ̃, n satisfy the hypotheses of the theorem, the decomposition coefficients forλ̃ always
dominate those ofλ, so that there must be an injection of representations. Such a program
would not be hard to carry out, but we feel that such a proof is somewhat less illuminating
than actually constructing the injections as above.

3. One might hope that for anyλ̃obtained fromλby adding two cells, the centered difference
considered in Theorem 8 is unimodal (it will trivially be symmetric) under some parity
conditions onn. However, this is false in general. For example, ifλ, λ̃ = (3, 1), (3, 3)

then the difference is not unimodal forn = 4, 5, 6, 8, if λ, λ̃ = (2, 1, 1), (2, 2, 2)

then the difference is not unimodal forn = 5, 6, 7, and if λ, λ̃ = (3, 2, 1), (3, 3, 2)

then the difference is not unimodal forn = 5, 6. Interestingly, in each of these exam-
ples, the difference does appear to be unimodal forn sufficiently large, regardless of its
parity!

4. One might also ask whether there is a generalization of Theorems 4 and 6, and Con-
jecture 7 about posets. There is a good candidate to replace the Gaussian posetL(k, n),
namely the posetL(λ, n) consisting of all column-strict tableaux of shapeλ ordered
entry-wise, which was conjectured to be Peck by Stanley, and proven usingsl2-repre-
sentations in [21]. Unfortunately, we do not know of good candidates for the analogues
of the subposets of Andrews and good partitions in Sections 2 and 3, which would index
basis elements in the quotientS̃λV/φ(SλV).

5. A strange conjecture

The KOH identity [28] writes aq-binomial coefficient as[
m
k

]
q

=
∑

ν

Gν(q),
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whereν ranges over all partitions ofk, andGν(q) is a certain shifted product ofq-binomial
coefficients, which are all symmetric and centered at the same power ofq. Similarly the
generalization of KOH to Schur functions of Kirillov [15] is

sλ(1, q, . . . , qm−1) =
∑

Eν
GEν(q),

where hereEν ranges over certain sequences of partitions, calledconfigurations, andGEν(q)

is another shifted product ofq-binomial coefficients. Therefore, one might try to prove a
refinement of Theorem 8, namely, that the centered difference

GẼν(q) − qm−1GEν(q)

is symmetric, unimodal with non-negative coefficients, under some natural conditions on
m, Ẽν, Eν.

In case (3) of Theorem 8 we have such a conjecture. The new configurationẼν is obtained
by adding two cells to the first column of each partition ofEν, and appending 11 and 1 as
new partitions toEν. Here,m is even,m ≥ 2(l (Eν1) + 1). We cannot even verify that for
q = 1 the integer representing this difference is non-negative.

By considering an iterate of theEν = (1k−2, 0, 0, . . .) term of the above conjecture, we
conjecture the following generalization of Theorem 1.

Conjecture 9 If n is odd, and r and k are non-negative integers with n≥ 2rk − 4r + 3,

then [
n − 1

k

]
q

− qn−2rk+1+4(r −1)

[
n − 1 + 4(r − 1)

k − 2

]
q

is a symmetric, unimodal polynomial in q with non-negative coefficients.

Appendix: A lemma on the canonical matching

There is a well-known matching in the incidence graph for the inclusion relation between
the(r − 1) andr -subsets of ann-element set, which has been discovered and rediscovered
by many authors in various guises [1, 11, 27]. For this reason we call itthe canonical
matching. Our original proof of Theorem 4 (before we were aware of Berele’s work [3])
relied on a decomposition of the matrix for the mapφ : ∧k−2 V → ∧kV into rectangular
blocks, very similar to the proof of Theorem 6. It was shown that in each rectangular
block the non-Andrews partitions naturally indexed a set of columns which selected out
an invertible square submatrix, and hence that the Andrews partitions formed a basis for
the quotient∧kV/φ(∧k−2V). The crucial lemma in this proof was the following statement
about the canonical matching, which we think is of independent interest.

Lemma 10 Assume2r ≤ n + 1 and let M(n, r ) be the(
n

r −1) × (
n

r −1) incidence matrix
obtained by restricting the inclusion incidence matrix between(r − 1) and r-subsets of
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an n-set to the columns indexed by those r-subsets which are matched in the canonical
matching. Then M(n, r ) is square and invertible.

Proof: Let θn,r : T 7→ T ′ be the canonical matching. From any of the descriptions ofθ

[1, 11, 27] the following two properties ofθ are easy to check,assuming r≤ d n
2e:

(1) If n 6∈ T thenn 6∈ θn,r (T).
(2) If n ∈ T thenn ∈ θn,r (T) and

θn,r (T) = θn−1,r −1(T − {n}) ∪ {n}

From this it follows that reordering both the rows and columns ofM(n, r ) so that the subsets
not containingn come first, produces a block upper-triangular form forM(n, r ):

M(n, r ) =
(

M(n − 1, r ) ∗
0 M(n − 1, r − 1)

)
.

Thus by induction onr + n it only remains to show thatM(2r − 1, r ) is invertible. But
M(2r −1, r ) is theentireinclusion incidence matrix between the middle ranks in a Boolean
algebra of odd rank, which is known to be invertible [13]. 2
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