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Abstract. The centered difference of principally specialized Schur functions

s54d,....90—a"s(L,q,....,9"

is shown to be a symmetric, unimodal polynomiatjimith non-negative coefficients for certain choices.of.,

andn, in which X is always obtained fror by adding two cells, and is chosen to be odd or even depending on

X, . The basic technique is to find an injection of representations for the symplectic or orthogonal Lie algebras,
and interpret the above difference as the principal specialization of the formal character of the quotient. As a
special case, a difference gfbinomial coefficients is shown to be unimodal.
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1. Introduction
It is well known [25, Theorem 13] that the principal specialization of a Schur function,

S)\(l, q9 LR qnil)a

is a symmetric, unimodal polynomial i with non-negative coefficients. i = 1¥is a
single column, we have

slk(l,q,--.,q“)=qk(k2h[ﬂ ’
q
For A = k a single row,

k—1
s<(1,q,...,q“‘1)=[n+k } .
q

thus proving theg-binomial coefficient is a symmetric unimodal polynomialgn In this
paper we prove (Theorems 1, 5, 8) that certain differences of principal specializations of

*This work was supported by NSF Postdoctoral Research Fellowship DMS-9206371 and NSF grant DMS-
9400510.
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Schur functions

s(L,q,....9" —-q"s(L,q,...,9"

are symmetric and unimodal. Our basic technique is to realize the differences as principal
specializations of formal characters of representations of the symplectic or orthogonal Lie
algebras.

We consider two special casesfi related to some interesting posets in Sections 2
and 3, and consider more genexal in Section 4. Some poset conjectures are given in
Sections 2 and 3, while unimodality conjectures are given in Section 5. All notation is taken
from Macdonald [18].

2. The motivating special case
Empirically, the following theorem was discovered.

Theorem 1 If n is an odd positive integer arzk < n + 1, then

KL

is a symmetricunimodal polynomial in g with non-negative coefficients.

The first main goal of this section is to prove Theorem 1. It is straightforward to check
that the above difference is symmetric as a polynomigl ind Andrews [5] and Fishel [9]
gave explicit sets of partitions for which the difference in Theorem 1 is the generating
function, thus proving non-negativity. Moreover, the difference is known [6] to biédhtka
polynomial Kn_i k.10 (Q) [18, p. 130], which has non-negative coefficients. However, none
of these results gives unimodality.

First we note that one can rewrite the above difference usingjtRascal’s triangle
recurrences (see [5, p. 21]) as

[E]q_[kil}q:qkqnil}q—q“2”1[E:;L>- 2.1)

The advantage to this rewriting is that the two terms inside the parentheses on the right-
hand side of (2.1) are now not only symmetric, but also centered at the same payver of
This suggests an algebraic interpretation asdheharacter of some quotient module,
and we will construct such asl-module as therincipal specializatiorof the irreducible
representation o$p, corresponding to it&th fundamental weight. Our construction of
these representations follows [4, Chap. VIII, Section 13] (see [10], Sections 17.3 and 24.2
for a discussion of these same representationdirafizedform usingWeyl s constructioi

Setm = n — 1, which is an even number, and lat= 2|. LetV be anm-dimensional
C-vector space with aymplectidorm (-, -), i.e.,{-, -) is a non-degenerate skew-symmetric
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bilinear form onV. Let Sp(V) be thesymplectic groupnside of GL(V) which consists
of all invertible transformations preservirig -), andsp,, its Lie algebra. Thesp(V) and
sp, act onV, and hence on the exterior power$V with formal character

k -1 -1 -1 -1
chagg (AV) = e(Xi, X1, .oy Xo, X0, Xg 5 X5 5y, Xg, XY)

wheree(zs, . .., zy) is thekth elementary symmetric functi@mthe variableszs, . . ., zq.
Inside sp,, is a distinguished subalgebra isomorphicstp known as aprincipal three-
dimensional subalgebr@ DS), which is unique up to conjugacy (see [22]). Restricting a
representation adp,, to this TDS yields arsl,-module whose formal character is obtained
from chagg by the specialization; = g%, so for AKV we obtain

chag,(A*V) = a@® % g?73,....q

_ qkk—m) | M
=[]
q

This then suggests that perhaps one could prove Theorem 1 by demonstrating ar
sp,-equivariant injectiony : AK"2V — AKXV, so that the quotiem*V /¢ (A¥—2V) would
have formal characters

3-2 41-2
)

9

chagy (A*V/¢(A2V)) = ec(xi, X1 ... % 5, x7h)

—&2(X, X1, - X X )

cha, (AKV /¢ (A<-2V)) = gt n-1( ql-2k-2-m) n—-1
: K g k-2],,

_oakk=m) [ | M on-okg1| M
-4 <|:k:|q2 @) ' |:k_2:|q2>
k(k—m n n
= g« )<[k}2_[k—1}2>'
q q

Since suctsl,-characters are known to be symmetric, unimodal Laurent polynomig|s in
centered about® (see [25], Theorem 15), this would imply that the difference in Theorem 1
is symmetric and unimodal as a polynomiabjn

In [4, Chap VIII, Section 13, no. 3], such a maps constructed by identifying the skew-
symmetric form(-, -) with a skew-symmetric 2-tensar € A%(V), and lettingp (v) = vAw.
The fact thatp is sp,,-equivariant is immediate from the fact th&p(V) preservey., -)
and hencesp,, annihilatesw. Injectivity of ¢ is guaranteed by the following proposition
(essentially provenin [4, p. 203]) whose statement we include here for later use in Section 4.

Proposition 2 Let V be a m-dimensional vector space oGerFix w € A2(V), fix k,
2k < m+ 2, and defingp (v) = w A v. Theng is an injection fromnk—2V to AKV, if, and
only if, w corresponds to a non-degeneratkew-symmetrjcilinear form.
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This completes the proof of Theorem 1. We note that Bourbaki also proves that the
sp,-representationkV /¢ (A¥~2V) is irreducible and corresponds to tkiéa fundamental
weight w1 + - -+ + wk of sp,,. As such, one could compute a product formula for the
difference in Theorem 1 using tleeWeyl dimension formula (see e.g., [22]), however, this
yields no more in this case than the formula one gets by combining common factors in the
product formulas for the individual-binomial coefficients. Hughes [12] gave a different
combinatorial formula for chag(AXV /¢ (A¥=2V)) based upon Freudenthal’s multiplicity
formula.

In the remainder of this section we wish to discuss how the partitions considered by
Andrews in [5] naturally index a basis for the quotient spa&¥ /¢ (A2V). We will
explain how this basis coincides with another known basis for the irreducible representations
of sp,, corresponding to fundamental weights.

There is an obvious bijection between partitignsvhose Ferrers diagrams fit inside a
k x (m — k) rectangle and a basis fo¥V. Namely, considep as a multiset of siz& of

integersin0, 1, ..., m—k}, and add to theith smallest element qf, to obtain &-subset
Sof {1, ..., m}. These subsets become basis elements under the identification
Vg = /\ Vi
ieS
where{vy, ..., vm} is a basis fov.

The quotient space®V /¢ (AK—2V) hassl-character equal to the left-hand side of (2.1),
up to rescaling. Andrews [5] gave an explicit set of partitions insikle &m — k) rectangle
whose generating function is given by (2.1) (NB: one might expect these partitions to lie
inside ak x (n — k) rectangle, but in fact they lie in the smallex (m — k) rectangle). His
description uses therobenius notatiorfor a partitionu (see [5]): if the Durfee square of
n has size?, letay = i —i, b =/ —1i, and

_ Quan---a
=\, )
Proposition 3 (Andrews) The generating function for all partitions whose Frobenius
notation satisfiesp<m—-k—1,b; <k—-1,andg — b <m-—2kis

ot (8] -[na]) - [0, - ),

If a partitionu inside ak x (m — k) rectangle satisfies the conditions of Proposition 3, we
will say u (or its corresponding subsg&tor its corresponding basis vectos) is Andrews
and otherwise that it ison-Andrews

Theorem 4 If mis even an@k < m+ 2, then the images of the Andrews patrtitions form
a basis for the quotient®V /¢ (A*=2V).



UNIMODALITY OF DIFFERENCES OF SPECIALIZED SCHUR FUNCTIONS 95

Proof: We originally had a direct proof of this, similar to the proof of Theorem 6, using
as a key lemma a result of independent interest which we have relegated to the Appendix
We later found out that the theorem can be deduced from work of Berele [3], as we now
explain.

Directly translating the condition for a partitipnto be non-Andrews via the correspon-
dence with subsets, one can check thitsaibsetS' is non-Andrews if and only if there
exists some for which theith largest elemerd in S and theith smallest elemertt in
{1,2,...,m} — S satisfya > banda + b > m+ 1. Now biject{1, 2, ..., m} with

[H]:={-1,-2,...,—(1 =1, —1,1,1 —1,...,2,1}

by matching up the corresponding entries of these sets in the order that they are listed
Under this correspondence, one can check that the non-Andrews partitions are exactly th
subsetsS C [+l] for which there is some so that|]SN [£i]| > i. In the terminology of
Sheats [24], a subset & C [+I] corresponds to aircle diagram and the non-Andrews
condition is the same as the circle diagram beiog-admissible Sheats explains how

the admissible circle diagrams are the same asyheplectic tableaurf King [14] and
DeConcini [7] indexing the weights of the irreducible representatiorspgf in the case
where the representations are fundamental. Furthermore, Berele [3] showed how to con
struct the irreducible representationssgf, in such a way that King's symplectic tableaux
index a basis, and hence in the case of the fundamental representations, the basis is index
by admissible circle diagrams or Andrews partitions. Itis easyto checkthatinthe case of the
fundamental representations, Berele’s construction is exactly the same as our constructio
following Bourbaki, i.e. AKV /¢ (AK—2V). ]

We also wish to discuss a natural poset structure on the Andrews partitions. Recall
that theGaussian poset (k, m — k) is the distributive lattice formed by all partitions
inside ank x (m — k) box, ordered by inclusion of their Ferrers diagrams. It has rank
generating function’I]q, and the proof of its rank-unimodality using the action of a principal
TDS inside ofl,,, also proves that this posefsckby showing that the action of the element
ein sl, gives rise to amrder-raising operatoion the poset (see [20] for definitions of Peck
and order-raising operator).

Similarly, one can easily check that the subset of Andrews partitions ihgidem — k)
form a distributive sublattice which we will cafindrewsgk, m — k). One can also easily
check that the self-duality oh(k, m — k) given by complementing a partition within
thek x (m — k) box restricts toAndrewsgk, m — k), so it is also self-dual. A picture of
Andrews3, 3) inside ofL (3, 3) is shown in Figure 1(a).

Theorem 4 shows that not onlyAsxdrewsk, m — k) rank-symmetric and rank-unimodal
for m even with X < m + 2, but that its elements naturally index the basis for the
sp,-module (and hencsl,-module)AXV /¢ (A¥=2V). Thus one would hope that the ele-
mentein the principal TDS would give rise to ander-raising operatoon AKV /¢ (AK-2V)
with respect to the ordekndrewsgk, m — k), and hence prove this poset is Peck. This is
false, however, already fdr = 2 andm > 6. Nevertheless, we had conjectured that the
posetAndrewsgk, m—K) is Peck ifmis even and R < m+ 2, and this has been proven very
recently by Donnelly [8]. Donnelly constructs the fundamental irreducible representations
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(a) (b)

Figure L (a) The Gaussian posk(3, 3) with the elements oAndrews3, 3) shown circled, (b) The Gaussian
posetL (3, 2) with the elements oBood3, 2) shown circled.

of sp,, with a basis indexed by admissible circle diagrams, in such a way that the principal
TDS has its raising operator acting as an order-raising operator with respect to the partial
order on the circle diagrams isomorphicAodrewsk, m — k).

There is also a well-known open problem to determine whether the Gaussian poset
L (k, m — k) has asymmetric chain decompositi¢eee [21] for definition and some discus-
sion of this problem). Theorem 4 suggest a natural extension of this problem:

Question Does there exist a symmetric chain decomposition fig, m — k) which re-
stricts to Andrew&, m — k) for m ever?

If such a symmetric chain decomposition exists, it would by necessity also give a sym-
metric chain decomposition for the subposlenAndrewg, m — k) of non-Andrews par-
titions insideL (k, m — k). Strangely, this posélonAndrewé, m — k) is notisomorphic
to the smaller Gaussian podetk — 2, m+ 2 — k), even though they share the same rank-
generating function. InfadonAndrewék, m—K) is not even a distributive lattice far> 4!
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3. Another special case

In this section we prove analogous results involving Syrand the orthogonal Lie algebra,
rather thama*V and the symplectic Lie algebra. This case also leads to a conjecture that
another self-dual, rank-unimodal subposet of the Gaussian poset is Peck.

Theorem 5 If n is an odd positive integethen

n+k—-1] 1| n+k-3
k], q k-2 |,

is a symmetricunimodal polynomial with non-negative coefficients.

Proof: In fact, we will show that this difference is, up to rescaling, sfyecharacter for
the principal TDS inside of the orthogonal Lie algebmg acting in a certain representation.
Letn = 2 + 1. Choose(,, ) a nhon-degenerate symmetric form onradimensional
C-vector space, and let the special orthogonal gr8@V) be the subgroup oBL(V)
consisting of transformations which have determinant 1 and preserye ThenSO(V)

and its Lie algebraa, act onV, and hence on Syfv with character

chagq, (SymV) = (X, X1, -+, Xo, X0, L X0 5 X5 o X, XY

wherehy is thekth (complete) homogeneous symmetric function. The principal TDS inside
of sa, therefore acts on Syfv with character

chag, (SymtV) = he(@" %, g"3,...,9% d%. 1,972,974 ..., " g'™"

_ k(1—n) n+k-1
e

and hence

chag, (SynfV) — chag, (Synf—2V)
= gft-n ([“E_l} SGein Bl ) 3
q? q?

Defineg : Synt—2V — Synt'V to be multiplication by the symmetric 2-tensore Syn?V
corresponding tg-, -). “Multiplication” by w means the following composite

Symf~2V < Symt—2V @ SynfV — SynV
v = VR w = v-w

where the second map in the sequence is the shuffle (symmetrization) product.
The mapyp is so,-equivariant as before singe -) is preserved bys O(V), sow is anni-
hilated bysl,. The mapg is an injection, since under the isomorphism of the symmetric
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algebra Sy and the polynomial ringC[Xy, ..., X,], the map¢ corresponds to multi-

plying the polynomials of degrde— 2 by a non-zero polynomial of degree 2.
Therefore, the expression on the right-hand side of Eq. (3.1) isltkgharacter of the

quotient module Sy#V /¢ (Sym~2V), and hence is unimodal. i

Remark Empirically it appears that the assertion of Theorem 5 is also ttuisiddd and
n > 2 is arbitrary, but we have no proof of this for even

It can be shown that then, representation Syfv /¢ (Synt—2V) appearing in the proof
of Theorem 5is irreducible, although it does not correspond to a fundamental representatior
of s, (see the discussion after the proof of Theorem 6). We now prove that there is again a
natural set of partitions which index a basis for this quotient, deferring a discussion of their
relation to knowrorthogonal tableauxintil after the proof.

Firstly, note that a partition inside ak x (n — 1) rectangle can be thought of as the

k-multiset S of its parts in{0, 1, ..., n — 1}, and also can be identified with a product of
the basis vectorfy, ..., vh_1} of V,
V), = 1_[ Vj
ieS

where here again the product is the commutative symmetrization product ifVSyrhus
the set of all such partitions naturally indexes the monomial basis of 8ym

We wish to identify an appropriate subset of these partitions which will index a basis for
our quotient module. Again using one of thdPascal’s triangle recursions, we have

n+k—1 | N+k=3] [n+k-3 k[n+k—-2
[ K L_q [ K—2 ]q—[ k—1 ]q“‘ ko

whose right-hand side suggests the set of partitioisside in ak x (n — 1) rectangle
which satisfy one of these two mutually exclusive conditions: either n— 2 for alli and

Ak = 0 (i.e., A fits inside atk — 1) x (n — 2) “corner” of the box) ok > 0 (so removing

the full first column ofi gives a partition inside & x (n — 2) box). Say that a partition
inside ak x (n — 1) box (or its corresponding multiset or its corresponding basis vector in
SyntV) satisfying either of these two conditionsgeod else it isbad

Theorem 6 For n odd the images of the good basis vectorsSynV form a basis for
SymiV /¢ (Synmk—2V).

Proof: Identifying ¢ with its (”*k‘a) X (n+t_l) matrix relative to the multiset bases, we

k-2
n+k—-3 n+k—3

will show that the(™,"5°) x (", ",7) square submatri®’ of ¢ obtained by restricting to
the bad columns is non-singular, and hence that the images of the good basis vectors forr
a basis for the quotient Sy /¢ (Sym—2V).

Directly translating the condition for a partitionto be bad via the correspondence with
multisets, one can check thakamultisetS' is bad if and only if it contains a copy of the
pair {0, n — 1}.
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By the canonical forms for symmetric non-degenerate bilinear forms @yeve can
assumaew is given by

|
w = Zvi s Un—1—j-
i=0

After identifying basis elements of SYfPV, SyntV with (k — 2)-multisets k-multisets,
respectivelyp sends a basi&k — 2)-multisetSto the sum of alk-multisetsS obtained by
adjoining anew copyof the pair{i,n—1—i}to S
We now decompose the matkxinto a certain block form. Call the subsets of the form

{i,n—1—i} pairs, and note that any subsstcan be decomposed uniquely= P U U
where P is a union of some pairs, and consists of the unpaired elements (either
n—1-—1i)within S. For example, ilh = 7 andS = {0,0,1, 2,2, 3,5, 6, 6, 6}, then
P=1{0,015,6,6}, U = {2 2,3,6}. Note that if¢ (S) contains some multise&® with
non-zero coefficient, the® must have the same multiset of unpaired eleméhtss S,
and it must contain exactly one more péiirn — 1 — i} than S did. Therefore, if we fix a

possible multiset of unpaired elemehtgthat is, any multiset of0, 1, ..., n — 1} which
contains at most one element frgmn — 1 —i} for all i), and letSy, S, be the collection
of (k — 2)-multisets k-multisets on{0, 1, ..., n — 1} whose unpaired elements are exactly

U, theng will be block diagonal, with each non-zero block representing the map from
subspace spanned By, into that spanned bg,. Let¢y be the restriction o$ to the
spaces spanned I8, S, and¢{, the restriction oy to its bad columns. It remains to
show that eackp|, is square and non-singular.

Trivially, we can reduce to the case wheideis empty, since removing the unpaired
elements frons, S does not affect the matrix entgy; (S, S), and does not affect whether
S is good or bad. Whebl is empty, sinceS, S are unions of pair§i,n — 1 —i}, we lose
no information if we replac&, S by the multisetsT, T’ of {0, 1, ..., (n — 1)/2} obtained
by replacing each pafi, n — 1 — i} with the smaller of the two numbers in the pair. We
will have

1 fTcT
0 else

¢U(S’ S/) = {

andS is bad if and only if O T'.

Thus it only remains to observe the following: For any positive integens, let M be
the inclusion incidence matrix with rows, columns indexediby- 1) andr-multisets on
{0,1, ..., m} respectively. LetM’ be its restriction to the columns indexed by multisets
containing 0. TherM’ is square and invertible. To see this, note that if we order the rows
and columns by lexicographic order on multisets with 0 coming first, 1 next, etc., then this
matrix is upper unitriangular. a

It follows from Littlewood’s branching rules for restricting irreducitdé,-characters
to sq,-characters [17], that the representation 8y (Synt—2V) is an irreducible
sq,-representation and corresponds to the partitionhaving a single part of sizk.
Orthogonal tableauxndexing the weights of these irreducible representations have been
given by King [14], Koike and Terada [16], Proctor [23], and Sundaram [26]. It is easy to
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check in the case of the irreducible corresponding to the partikiptihat each of these sets

of orthogonal tableaux reduces to the disjoint union of two sets, consisting@ifralltisets

and all(k — 1)-multisets on anr{ — 1)-set, respectively. This is easily seen to correspond
bijectively with the two kinds of good partitions in Theorem 6. We are not aware, however,
of any explicit construction of the irreducible representationsggfwhich coincides with

our construction SyiV /¢ (Symt—2V) in this special case, and hence which would imply
Theorem 6 in the way that Berele’s construction implied Theorem 4.

As in the previous section, one can consider a natural partial order on the good patrtitions.
Theqg-binomial coefficient [‘J’I‘:‘l]q is the rank generating function for the Gaussian poset
L(k, n — 1), and one can easily check that the subset of good partitions ihgside — 1)
form a distributive sublattice which we will caboodk, n — 1). One can also check that
the self-duality orL (k, n — 1) given by complementing a partition within thex (n — 1)
box restricts taGoodk, n — 1), so it is also self-dual. A picture @ood3, 2) is shown in
Figure 1(b). Theorem 6 shows that not onlydsodk, n — 1) rank-symmetric and rank-
unimodal forn odd, but that its elements naturally index the basis faslamodule. Thus
one would again hope that the elemeint sl, would give rise to amrder-raising operator
on Goodk, n — 1), and hence prove that it is Peck. This hope is again false, already for
k = 2 andn > 5. Nevertheless, we still make the following conjecture.

Conjecture 7 The poset Goaogk, n — 1) is Peck for n odd.

It would be interesting to see if the methods of Donnelly mentioned in the previous section
can be modified to prove this.

As in the discussion at the end of the previous section, it is natural to extend the question
of whether there is a symmetric chain decomposition of the Gaussian Ipdset — 1)
to ask whether there is one which restricts<doodk, n — 1). In contrast to the case of
Andrewgk, m — k), the question seems more hopeful in this case because the subposet
Bad(k, n—1) consisting of the bad partitions In(k, n — 1) is easily seen to be isomorphic
to the smaller Gaussian podetk — 2, n — 1). Therefore, one could hope for existence
of a symmetric chain decomposition defined recursivelLdk — 2, n — 1), which then
extends oveGoodk, n — 1) to the rest ofL (k, n — 1).

4. Schur functions

We now generalize Theorems 1 and 5 by proving a unimodality result for certain differences
of principally specialized Schur functions. For a partitigamve lets, (xy, . . ., X,) denote the
Schur functionn the variablex,, . . ., X, associated ta [18]. Theprincipal specialization
ofs, iss. (1,9, 0% ...,9" 1), and is known to be a symmetric, unimodal polynomiadjin
with non-negative coefficients [25, Theorem 13].

The main result of this section is the following theorem.

Theorem 8 Under the following conditions o, A and the parity of nthe centered
difference of principal specializations

sAa.d....q"H-g""s(La.d ..., 9"
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is the principal specialization of an sgcharacter(n even or sg,-character(n odd), and

hence a symmetriainimodal polynomial in g with non-negative coefficients

(1) ):L is obtained from. by adding two cells to the first rqvand n is odd.

(2) A is obtained from by adding a new part of siz2 n is odd and n > a + b where
a, b are the lengths of the first two columnsiof

(3) A is obtained from\ by adding two cells to the first columm is even and n >
2(1(») + 1) where k1) is the number of parts of.

(4) A is obtained fronm. by adding a new column of si2en is evepand n> 2.

Before giving the proof of each case of the theorem, we give a sketch of the basic
idea underlying all four cases. Our first step is to intergféx,, ..., X,) as the formal
character of an explicitly constructed irreducible representatidalofV), whereV is an
n-dimensionalC-vector space as usual. To this end, recall that far-dimensional vector
spaceV over C, the Schur modulgor co-Schur moduleS,V constructs the irreducible
representation o6 L(V) corresponding to., and the formal character & (X, ..., Xn)

(see [2] for definitions and details about (co-)Schur modules). Because we are working
overC, the Schur module and co-Schur module are isomorph&lad/)-representations,
so we will abuse notation and usgV for both. By choosing a non-degenerate symmetric
(resp. skew-symmetric) forfn, -) onV whennis odd (resp. even), and letti®Q(V), s,
(resp.Sp(V), sp,) be the classical simple Lie group and Lie algebra associated to the form
(-,), the Schur modul&s,V is also a representation fen, (resp. sp,) whose formal
character is

chag, SV = si(x, Xi—1, .., X Lxgh oo X %)

chagy SV = S (X, X1, -y X0, X0 ooy X0 X 0)
and whosssl,-character when restricted to the principal TDS insidsafor sp, is

chag,SV =s@ ™" ¢*", ....q" 3 q" %)
_ q(lfn)'“s,\(l, @ qt ... q2(n71))

where|| is the sum of the parts of. It therefore suffices to prove (for each case asserted
in the theorem) that there exists sy or sp,-equivariant injection

¢:SV < SV.

This implies that the difference of principal specializations will be (up to a shift by a power
of g, and the substitutiog — g?) thesl,-character for the quotiei® V /¢ (S, V), and then
symmetry, unimodality and non-negativity of the coefficients follow as before from [25,
Theorem 15].

The injectiong may be uniformly described in each case as the following composite of
three maps:

SV-sveveV)—> @ sV sV
|2\1\CA?+2
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Here the first map is simply tensoring witty the symmetric or skew-symmetric 2-tensor

in V ® V which corresponds to the forfn ), and which is annihilated bsq, or sp,. The

second map comes from the Pieri formula for Schur modules or Schur functions ([19], [18],

p. 42), and the third map is just the canonical projection onto a summand in the direct sum.
Itis clear thatp is sq, or sp,-equivariant as before sineeis annihilated bysq, or sp,.

It only remains to check that in each case asserted by the thegrierimjective. While the

composite “Pieri map”

SVeVeV)—» SV

is somewhat complicated to describe explicitly for genéral (see [19]), in each of the
cases asserted in the theorem we have a simple description, which allows us to conclud
that¢ is injective.

Proof of Theorem 8: From the previous discussion, we only need to show in each case
of the theorem how to describe the mapexplicitly, and check that it is injective. We
will use the fact that the (co-)Schur functor construction may be applied for any skew
Ferrers diagranb, i.e., D need not necessarily correspond to a partition. We introduce the
following terminology: for a non-negative integer, Row(m) denotes a Ferrers diagram
consisting of a single row with cells, and Cdlm) is a single column wittm cells. Given

two skew diagram® andD’, let D x D’ denote the skew diagram obtained by pladbig
strictly north and east dD so that they have no cells in the same row or column. We will
use without further mention the facts that

Sym"v
ATV,

EhmMnuv
smmmV

111

For case 1, consider the following commutative diagram of maps

i1
S i SQow(Ak)*Row(Ak,l)*---*Rovv(kz)*Row(Al)

Qw Jow
i2
SROW2) = SROW(A)*ROW(_1)%---+ROW(r2) *ROW(L1 ) xROW() (4.1)
ﬁi in

S 3 SRoW()FROW(u_1)s++ROW(A2) xROW(A1 +2)
where here&sp denotes the Schur module construction (as opposed to the co-Schur module)
applied toV. The horizontal mapis, i, i3 are inclusions which come from the definition of
a Schur modulé&p V as the image of a certain map into S ® Synt2V - - - Sym“V,
wherep; is the size of théth row of the skew diagranD. Also the mapsRw from the
first row to the second row are defined becauses a symmetric 2-tensor, i.e., it is in
SRow2)V, becausa is odd. The mapr is defined byr = id® - - - ® id ® g, whereg is the
symmetrization mayg : SymV ® SynfV — Symti+2V. The mapr is defined because
the compositer o i, happens to factor throug8, as is easy to check from the definition
of the Schur module.
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The compositer o (9w) of the two maps in the right column is injective, because it is
id® ---®id ® h, whereh is the same map which was shown to be injective in the proof of
Theorem 5. Sincg is an injection, this implies that our map= 7 o (Qw) is an injection,
as desired.

For case 3, one does the “transpose” of the argument just given, replacing Schur mod-
ules with co-Schur modules, and rows by columns. In the second-to-last sentence of the
argument, one uses Proposition 2.

For case 4, consider the following commutative diagram

i1

S - SROW(M)*ROW_1)%---+ROW(A2) ROW(A1)

Qw Jow
iz
SROWD*ROML) = SROW(L)FROW(Ak_1)-++ROW(A2) *ROW(A1) ROW(L) *ROW(L) (4.2)

7 \L \er
i3

S - SROW(A)*ROW(hk_1) -+ ROW(A g+ 1) ROW(A1+1)

where heresy denotes the Schur module construction applied torhe horizontal maps
i1,i9, i3 are the Schur modules’ defining inclusions as before. The mapdefined by
7T=id®- --®id ® g1 ® g2, Wwhereg;, g, are the symmetrization maps

g1 : SyntV @ V. — Sym+tly
g : Sym'2V @ V. — Synf2tly

The mapr is defined because the composite> i, happens to factor throug§;, as is
easy to check from the definition of the co-Schur module, using the facittsdlready a
skew-symmetric 2-tensor (sincds even).

Sincei; is an injection, our composite ma@p= 7 o (w) in the first column will be an
injection, as long as we can show that the compasitéd w) in the right column s injective.
Butthismapidd® - - - ®id ® h, whereh is the same map in the case where there are only 2
rows inA. Thus we need a lemma which says that i a non-degenerate skew-symmetric
2-tensorn > 2, andx has only 2 rows, then the composite nigp® gz) o (Rw) is injective.

This is easy to prove using the same sort of block-diagonal decomposition technique usec
to prove injectivity of the map in Theorem 6, so we will omit the details.

For case 2, one does the “transpose” of the argument just given, replacing Schur mod-
ules with co-Schur modules, and rows by columns. In the second-to-last sentence of the
argument, one needs to show thaaif> b with n > a + b, andw is a non-degenerate
symmetric 2-tensor, then the following composite map is injective:

Scol@)«Colthy —> Scol(a)«Colb)«Col(+Coll) —>  Scol(a+1)+Colb+1)
Rw 01 ®02

wheregs, g, are the antisymmetrization maps
0 AV RV — ARty
02 APV @V — APV

Again this is easy to prove using the same block-diagonal decomposition technique usec
to prove injectivity of the map in Theorem 6, and we omit the details. |
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Remarks

1. Itis not hard to give combinatorial injections proving that in all of the cases (1)—(4), the
appropriate differences

-1 -1 -1
S (X, X—1y o X, L X X T X )

-1 -1 -1
=S (X, X1, X, L X X T X )

or

—1 1 -1
S; (X, X1y e XL X e X X )

— S (X X—1 e X X X XY
wherel = L%J have non-negative coefficients as a Laurent polynomiaijn. ., xi,
regardless of the parity of.nHowever, these differences will not always have meaning
assaq, or sp,-characters, and unimodality of their principal specializations requires the
parity conditions stated in each case.

2. There is an alternative proof of Theorem 8 relying on Littlewood’s identities [17] giving
the branching rules for decomposing into irreducibles the restriction of an irreducible
gl,-representatiors, V to saq, or sp,. In the alternative proof, one shows that when
A, A, n satisfy the hypotheses of the theorem, the decomposition coefficientalfeays
dominate those df, so that there must be an injection of representations. Such a program
would not be hard to carry out, but we feel that such a proof is somewhat less illuminating
than actually constructing the injections as above.

3. One might hope that for amyobtained from. by adding two cells, the centered difference
considered in Theorem 8 is unimodal (it will trivially be symmetric) under some parity
conditions om. However, this is false in general. For example,.if. = (3, 1), (3, 3)
then the difference is not unimodal for = 4,5,6,8, if A,A = (2,1,1), (2,2, 2)
then the difference is not unimodal far= 5, 6,7, and ifx, A = (3,2, 1), (3,3, 2)
then the difference is not unimodal far=5, 6. Interestingly, in each of these exam-
ples, the difference does appear to be unimodah feufficiently large, regardless of its
parity!

4. One might also ask whether there is a generalization of Theorems 4 and 6, and Con:
jecture 7 about posets. There is a good candidate to replace the Gaussidn(posgt
namely the poset (1, n) consisting of all column-strict tableaux of shaperdered
entry-wise, which was conjectured to be Peck by Stanley, and proven slsirepre-
sentations in [21]. Unfortunately, we do not know of good candidates for the analogues
of the subposets of Andrews and good partitions in Sections 2 and 3, which would index
basis elements in the quotieBtV /¢ (S.\V).

5. A strange conjecture

The KOH identity [28] writes a-binomial coefficient as

['ﬂ =Y G.@,
q v
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wherev ranges over all partitions & andG, (q) is a certain shifted product gfbinomial
coefficients, which are all symmetric and centered at the same poveer ®imilarly the
generalization of KOH to Schur functions of Kirillov [15] is

$(Lq,....q" ™ =" Gs(0),

where heré ranges over certain sequences of partitions, calbedigurationsandG;(q)
is another shifted product af-binomial coefficients. Therefore, one might try to prove a
refinement of Theorem 8, namely, that the centered difference

G:(q) — 4™ 'Gs(q)

is symmetric, unimodal with non-negative coefficients, under some natural conditions on
m, v, b. i

In case (3) of Theorem 8 we have such a conjecture. The new configurasiobtained
by adding two cells to the first column of each partitionvpfand appending 11 and 1 as
new partitions tov. Here,mis even,m > 2(I(v;) + 1). We cannot even verify that for
g = 1 the integer representing this difference is non-negative.

By considering an iterate of the= (172, 0, 0, ...) term of the above conjecture, we
conjecture the following generalization of Theorem 1.

Conjecture 9 If nis odd and r and k are non-negative integers withen2rk — 4r + 3,
then

n-11 _ -k LHA-D) n—14+4(r -1
k1 k—2 .

is a symmetricunimodal polynomial in g with non-negative coefficients.

Appendix: A lemma on the canonical matching

There is a well-known matching in the incidence graph for the inclusion relation between
the(r — 1) andr-subsets of an-element set, which has been discovered and rediscovered
by many authors in various guises [1, 11, 27]. For this reason we d¢hi itanonical
matching Our original proof of Theorem 4 (before we were aware of Berele’s work [3])
relied on a decomposition of the matrix for the map A¥-2V — AKV into rectangular
blocks, very similar to the proof of Theorem 6. It was shown that in each rectangular
block the non-Andrews partitions naturally indexed a set of columns which selected out
an invertible square submatrix, and hence that the Andrews patrtitions formed a basis for
the quotientA®V /¢ (A¥~2V). The crucial lemma in this proof was the following statement
about the canonical matching, which we think is of independent interest.

Lemma 10 Assume < n+1and let M(n,r) be the(,",) x (,",) incidence matrix
obtained by restricting the inclusion incidence matrix betwéer 1) and r-subsets of
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an n-set to the columns indexed by those r-subsets which are matched in the canonica
matching. Then Nh, r) is square and invertible.

Proof: Let6,, : T — T’ be the canonical matching. From any of the descriptiorts of
[1, 11, 27] the following two properties @fare easy to checlassuming r< [51:

(1) fn & T thenn & 0, (T).
(2) fneT thenn € 6,,(T) and

en,r (T) = en—l,r—l(T - {n}) ) {n}

From this it follows that reordering both the rows and columniglén, r) so that the subsets
not containingh come first, produces a block upper-triangular formNbm, r):

_(Mnh-1r) *
Mm’”‘( 0 M(n—l,r—l))'

Thus by induction om + n it only remains to show tha¥1(2r — 1,r) is invertible. But

M (2r — 1, r) is theentireinclusion incidence matrix between the middle ranks in a Boolean
algebra of odd rank, which is known to be invertible [13]. m]
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