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Abstract. In a ranked lattice, we consider two maximal chains, or “flags” ta-béjacent if they are equal
except possibly on rank Thus, a finite rank lattice is a chamber system. If the lattice is semimodular, as noted
in [9], there is a “Jordan-blder permutation” between any two flags. This permutation has the properties of
an S;-distance function on the chamber system of flags. Using these notions, we défisemibuilding as a
chamber system with certain additional properties similar to properties Tits used to characterize buildings. We
show that finite rank semimodular lattices form &yisemibuilding, and develop a flag-based axiomatization of
semimodular lattices. We refine these properties to axiomatize geometric, modular and distributive lattices as
well, and to reprove Tits’ result th&,-buildings correspond to relatively complemented modular lattices (see
[16], Section 6.1.5).
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1. Introduction

The paper [9] studies relationships between maximal chairflagsin finite rank semi-
modular lattices. We say two flags aradjacent if they agree on all ranks except, possibly,
ranki. Thus, the flags of the lattice form a chamber system, as used in the study of Coxeter
groups and buildings. Furthermore, the Jordanddi function as developed by Stanley in

[13] and [14] and by Bjtner in [4] has many properties in common with $adistance
function. In this paper, we develop that analogy. The results here are related to results
of Abels in [2]. He developed his own characterizations of the relationships between two
flags in a semimodular lattice, and also used the Jordaldef permutation extensively to
prove his results. However, his approach is more geometric than the lattice-based viewpoint
adopted here.

We define asemibuildingover a Coxeter groupV as a chamber system with \&-
distance function and with some additional properties similar to those used by Tits to define
W-buildings in [17]. We define ampper semibuildingas anS,-semibuilding with an
additional property that is obeyed by the flags of a semimodular lattice. (We do not define
upperW-semibuildings foW # §,.)

Upper semibuildings are closely related to upper semimodular lattices. From the results
in [9], we show that the chamber system formed by the flags of a semimodular lattice under
the relation of -adjacency is an upper semibuilding. The Jordaddi’permutation is the

*This work was completed while the author was at the Naval Postgraduate School, Mathematics Department,
Monterey, CA 93943.
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requiredS,-distance function. Conversely, for &rsemibuildingB, we construct aranked
lattice whose flags form a chamber system isomorphiB.tdNVe show that the lattice is
semimodular if and only iB is an upper semibuilding. By performing this construction on
the upper semibuilding given by the flags of a semimodular lattice, we obtain the original
lattice. Thus, we have a flag-based axiomatization of finite rank semimodular lattices:
a poset is a rank semimodular lattice if and only if its maximal chains form an upper
semibuilding.

We also show how to add extra constraints to upper semibuildings to determine when
they correspond to modular and distributive lattices, and we also give a condition which
determines when the lattice for &rsemibuilding (not necessarily an upper semibuilding) is
relatively complemented. This enables us to prove Tits’ result3hatildings correspond
to finite rank, relatively complemented modular lattices, and also allows us to characterize
finite rank geometric lattices, since a geometric lattice is simply a relatively complemented
semimodular lattice (see [12], Proposition 3.3.3).

We review the pertinent definitions and results from the study of buildings and from [9] in
Section 2, and in Section 3, we define semibuildings and relate them to semimodular lattices.

2. Preliminaries

We wish to relate the concepts from the paper [9] to the study of buildings. We first recall
the definitions concerning buildings, and then present the results from [9].

2.1. Coxeter groups and buildings

To define buildings, we need two sets of preliminary definitions; one set for Coxeter groups,
and another for chamber systems.

Definitions for Coxeter groups The groupW is a Coxeter groupif W is generated by
a set of involutiongr; : i € I} whose only relations are of the fortnir;))™ = 1, the
identity in W. The generating involutions are callsiinple reflectionsFor examples, is
generated by the adjacent transpositionss (i i + 1), so these are the simple reflections.
A decompositiorof ¢ in W is an expression of as a product of simple reflections. The
decomposition igeducedif there is no shorter decomposition ef Finally, theweak
Bruhat order on Wis given byp < 7 if some reduced decomposition ofbegins with a
decomposition op.

Definitions for chamber systemsA chamber systeris a collection of elements called
chamberstogether with an equivalence relation calleddjacencyon the chambers for
eachi in some indexing set. We say the chamber system Haste rankif the setl

is finite. A gallery of type r,ri, - - - ri,, between the chambed$ andY is a sequence of
chambersX = Zy, Z3, ..., Zn = Y) such thatzy andZy, 1 areigx-adjacent for eack.

Remark The more usual terminology for what we call a gallery of type;, ---r;_ is
“a gallery of type(iy, i, ..., im).” We have adopted this alternate notation for consistency
with the notation of Section 7 in [9].
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The following definition of a building can be found in [17] and elsewhere.

Definition A W -buildingis a chamber systemy over the indexing selt with a function
3 A x A — W (called aw -distance functionsuch thats (X, Y) = r; if and only if X
andY are distinct and-adjacent, and such that obeys the following conditions.

BO. Every chamber is-adjacent to at least one other chamber for éaohl .

Bl. If §(X,Y) = 7, ands(Y,Y’) = rj, then eithers(X,Y’) = 7 or §(X,Y’) = zrj.
Furthermore, ift < tr; in the weak Bruhat order, thedi X, Y’) = tr;.

B2. Foreveryreduced decompositibrof §(X, Y), there exists a gallery of typebetween
X andY. Such a gallery is calledminimal gallery

2.2.  Minimal paths between flags in semimodular lattices

In [9] finite rank semimodular lattices were studied by considering their maximal chains,
orflags and the adjacency relationships between the flags. Two flagsadjacentif they
agree on all ranks except possibly rankrom this point of view, the flags of a semimodular
lattice form a chamber system. pathfrom X to Y is a gallery betweetX andY, and a
reduced pattis a minimal gallery fromX to Y. Finally, if a minimal gallery has typé,
we say the decompositiohtakes X to Yalong the path.

Two useful tools for studying these relationships were the Jordadedpermutation and
the labeling functions as developed by Stanley in [13] and [14]. We recall the definitions
of these concepts.

Definitions If X andY are two flags in a semimodular lattice, we defingX, Y), the
Jordan-Hblder function of Y relative to Xrom [n] = {1, 2, ..., n} to itself by:

(X, Y)() =min{i 1y; <X Vyj_1} =min{i 1 X Vyj_1=X VYyj}

Thelabeling function with respect to ¥ a function from points in the lattice to subsets of
[n]. Itis defined as follows:

Ix(@={ie[n:x <x_1vz={ie[n:xVvz=x_1VZz. 8
We calll x (z) the X-label of z

The properties in Proposition 2.1 of the Jordaoldé¢r permutation and of labels were
proved separately in [9].

Proposition 2.1 If X, Y and Y are flags in a semimodular lattice with = 7 (X,Y)
andt’ = (X, Y’), then the following properties hold for the labeling function and the
Jordan-Hblder function.
(i) The functiong andt’ are permutations in S
(i) IfY and Y are j-adjacent then either’ = t or ¢’ = trj. Furthermorgif Y # Y’
andt < trj in the weak Bruhat ordetthent’ = zrj.
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(i) The element i is inyd(y;) if and only if i = t(k) for some k< j, i.e, Ix(yj) =
([jD ={rQ), ..., t(j)}, so the cardinality of} (z) equals the rank of z for all z in
the lattice.

In particular, the statement (ii) says thatX, Y) is an §,-distance function, and that the
flags of a semimodular lattice obey the axiom B1. We can relate the flags to other building
axioms using Proposition 2.2 (Proposition 7.1 in [9]).

Proposition 2.2 Let S be the set of reduced decompositions which take X to Y in some
semimodular lattice. Then S is nonempty and has the following properties.

R1. If frirjhisin S andyand r; commutethen frrihisin S.

R2. If fririyirihisin Sthen firaririihisin S.

To better describe the relation between these properties and the flags of semimodular lattice:
and other lattices, we develop the notion of semibuildings.

3. Semibuildings

We note that the flags of finite rank semimodular lattices obey axioms similar to those for
a building. We therefore make the following definitions.

Definitions A W -semibuildings a chamber system with\&/-distance functiord such
that:

S1. If §(X,Y) = 7, andé§(Y,Y') = rj, then eithers(X,Y’) = 7 or §(X,Y") = trj.
Furthermore, ift < tr; in the weak Bruhat order, thed{ X, Y’) = tr;.

S2. Forsome reduced decompositionf § (X, Y), there exists a gallery of typebetween
X andyY.

S3. Ifri andr; commute and (X, Y) = rirj, then there are galleries of typg; and of
typer;r; betweenX andY.

An upper($,)-semibuildings an S,-semibuilding with the additional property:
Ud. If8(X,Y) = (k k+ 2), then there is a gallery betweéhandY of typery 1rkrgii.

In particular, anS,-building is an uppefS,-semibuilding, since condition B1 implies S1
and condition B2 implies S2, S3 and U4.

We have chosen to include condition S3 in the definition of a semibuilding because our
applications all require this condition. We also focus almost entirely on theWases,,
so all semibuilding ar&,-semibuildings unless otherwise indicated. We do not define an
upperW-semibuilding forW # S,.

Proposition 3.1 The flags of an upper semimodular lattice form the chambers of an upper
semibuilding with distance functiar(X, Y) = 7 (X, Y), the Jordan-Hblder permutation.
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Proof: Properties S1, S2, S3 and U4 of upper semibuildings follow, respectively, from
Proposition 2.1 (ii), the fact thad is nonempty in Proposition 2.2, and properties R1 and
R2 from Proposition 2.2. a

Given anS,-semibuildingB, we construct a latticé (B) whose flags are in one-to-one
correspondence with the chamber®odind whose paths are in one-to-one correspondence
with galleries inB. We show that iB is an upper semibuilding, thdn(B) is semimodular,
and we relate other constraints Brio properties of (B). Using this approach, we develop
a flag-based axiomatization for semimodular, geometric, modular, and distributive lattices.

To construct (B) from the semibuildingd, we need some way to take a lattice whose
flags form anS,-semibuilding, and to recover the points of the lattice from the flags. We
make an observation: in a semimodular lattice, if the flAgsdZ’ both contain the rank
k pointz,, thenz(Z, Z')([K]) = [K]. Therefore, a reduced decompositionaiZ, Z’) has
norg’s, so all flags in every reduced path frafrto Z’ containz,. With this motivation, we
define the following equivalence relation f§-semibuildings.

Definition For everyj with 0 < j < n, we say the chambeps andY in a semibuilding
are j-equivalentand writeX ~; Y if there is gallery fromX to Y in which no consecutive
chambers arg¢-adjacent. In particular, all chambers are 0-equivalentaeduivalent. For
everyj, this is an equivalence relation on the chamberB .of

The j-equivalence classes are the rgnkoints of the lattice we are in the process of
constructing.

Proposition 3.2 For every pair of chambers X and Y in a semibuildittge following are
equivalent
(i) X~;Y.
(i) We haves (X, Y) in the*parabolic subgroup P; = (rm : m # j).
(iii) There is a chamber Z such that¥ Z fori < jand Z~¢ Y for k> j.

We use Lemma 3.3 to prove this.

Lemma 3.3 In asemibuildingif r; and r; commute and there is a gallery of type;rfiig
between the chambers X andtien there is also a gallery of type frfg between X and
Y . In an upper semibuildingf there is a gallery of type fury1rxg between X and Y there
is a gallery of type fg, 1rkrksi1g between X and Y.

Proof: Let X’ be the chamber reached after traversingand letY’ be the chamber
reached after traversinfyr; or friri1ry, respectively. Now by applying property S3 or
U4, we obtain a new path frorK’ to Y’, and we can follow this new path in our gallery
from Xto X'toY'toY. a

Proof of Proposition 3.2:

(i< ii). If X ~;Y,let(X = 2Zg,Z1,...,Zm=Y) be agallery fromX to Y in which no
consecutive chambers ajeadjacent. If8(X, Zy) is in Pj, thend(X, Zx41) is in P; as
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well, since by property SB,(X, Zx41) equals eithes (X, Zy) or §(X, Z)rp for p # |,
therefore, by induction§(X, Y) is in P;. Conversely, if§(X, Y) is in P;, a reduced
decomposition 08(X, Y) has norj’s in it. Therefore, by S2, there is a gallery froxh
to Y in which consecutive chambers are neyedjacent.

< iii). Suppose we have a minimal gallery of tygefrom X to Y. By the equivalence
of (i) and (ii), f has norj’s in it, since f is a reduced decomposition &¢X, Y). By
Lemma 3.3, ifam; withi < | precedes an withk > j in f, we may reverse the order.
Thus, we may assume that evegyin f with k > j occurs before every withi < j.

If Z is the chamber immediately after the lagtthenX ~; Z foralli < j andZ ~¢ Y
forallk > j. Conversely, if (iii) holds, we haviX ~; Z ~; Y. O

(.

We now define_(B).

Definition For a semibuildingB, let L (B) consist of thej-equivalence classes for€
j < nwith the order relation: ifv; andz; arei- and j-equivalence classes, then < z;
if w N z; #@andi < j.

Proposition 3.4 is a consequence of this definition.

Proposition 3.4 Let L be a semimodular latticeand let B be the upper semibuilding
whose chambers are the flags of L and whose distance function is the JoddiderH
permutation. Then (B) = L.

Proof: Let X andY be flags inL (or chambers irB). Now a path fromX to Y in which
consecutive flags are nevpradjacent exists if and only if we can go fro¥to Y without
changing the rank point. Hence, we havi ~; Y in B if and only if X andY contain the
same rank point, and thej -equivalence classes In(B) correspond to the rank points

in L. Furthermore, i < x; in L, let X be some flag that goes through both these points.
Then inB, the chambekX is in the intersection of the equivalence classes that correspond
to x; andx;. Hence, the equivalence classes are comparalhleBn. Conversely, ify; and

y; are comparable equivalence classels(B), then some flay is iny; N y;, and the rank

i andj points ofY are comparable ih. |

We know from Proposition 3.1 that an upper semimodular lattice gives rise to an upper
semibuilding. Proposition 3.4 implies thatB is a semibuilding that is constructed from
a semimodular lattice, the(l (B), <) is a poset isomorphic to the original lattice. We
show that for eveng,-semibuildingB (L (B), <) is a ranked lattice, and that the chamber
system ofL (B) is isomorphic toB for every semibuilding3. We begin by showing. (B)
is a poset with @ and1. We then show (B) is ranked, and that its flags form a chamber
system isomorphic tdB. After that, we define a labeling function on semibuildings and
use it to show that.(B) is a lattice. Finally, we relate various conditions Brto lattice
properties ol (B), including a proof that (B) is semimodular if and only iB is an upper
semibuilding.
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Proposition 3.5 If B js a §emibui|ding then (L(B), <) is a poset. Theé- and n-
equivalence classes aeand1 in the poset.

Proof: Reflexivity and antisymmetry are trivial, and the O- andquivalence classes are
obviouslyf) and1i in the poset ifL(B) is in fact a poset. For transitivity, suppose< z;
andz; < yx. Let X be achamberir; N z; and letY be a chamberig; N y,. Now X ~; Y,
so there is some chambgrin the j-equivalence clasg; such thatX ~; Z andZ ~ Y,
by Proposition 3.2. Thereforé, is in X; N Yk, SOX < Yk. a

Proposition 3.6 A collection of pointsF in L(B) is a flag in L(B) if and only if 7
consists of all equivalence classes of some chamber in B. Héme is a one-to-one
correspondence between flags itB) and chambers in B. Furthermaré (B) is ranked
since a j-equivalence class is a rank j point iiB). Two flags in (B) are i-adjacent
(i.e., they agree exceppossibly on rank i), if and only if the corresponding chambers in
B are i-adjacent in the chamber system. Thile flags in L(B) form a chamber system
which is isomorphic to B.

To prove this, we use Lemma 3.7. This lemma is a particular instance of a more general
result on parabolic subgroups of Coxeter groups (see [10], Corollary 5.10(c), for example).

Lemma 3.7 Let S be a subset @i — 1], and let R be the intersection

Ps=(")P.

jesS
Then R is given by
Ps=(rm:m¢g§5).

Proof of Proposition 3.6: To show the correspondence between flags and chambers, let
{z1 < 2, < --- < zy} be a chain inL(B), and suppose by induction that the intersection
z1NZN---NZzyis nonempty. LetX be a chamber in this intersection and Yebe a
chamber irep; N zp41. If Z, is @ j-equivalence class, thex ~; Y, so by Proposition 3.2,
there is a chambez such thatX ~; Zfori < j andY ~¢ Zfork > j. Thus,Z isin
71N --- N Zp N Zpy1, and by induction, the intersectian Nz, N - - - N zy IS NOnempty.
Hence, a maximal chain ib(B) consists of all the equivalence classes of some chamber.
In particular, a maximal chain ib (B) consists oh + 1 equivalence classes, apds the
rank of everyj-equivalence class.

To show that the chamber corresponding to a maximal chain is unique,detlY be
two chambers which correspond to the same maximal chain. Xnen Y for all j. Now
by Lemma 3.7§(X, Y) = 1 and soX = Y by S2. Conversely, given a chambgin B, if
we letz be thei-equivalence class df in B, then{z, z;, ..., z,} is @a maximal chain in
L(B). The intersectiomgNz; N - -- Nz, is nonempty since it contairs. Finally, suppose
two flags inL (B) agree on all ranks except rankand letX andY be the chambers iB
which correspond to these flags. Now by Lemma 3.7, e#bErY) = 1 or§(X,Y) =rj;



46 HERSCOVICI

henceX andY arei-adjacent. Conversely, K andY arei-adjacent inB, they will be
j-equivalent for allj # i, so the corresponding flags In(B) will agree on all ranks
excepti. O

We digress briefly to consider other Coxeter groups. The proof of Proposition 3.5 that
L (B) is a poset only uses Proposition 3.2 and Lemma 3.3. But all we requive-efS, for
these results is thatandr; commute ifij —i| = 1. The Proof of Proposition 3.6 tha(B)
is ranked and its chamber system is isomorphic to the original semibuilding requires the
additional Lemma 3.7, but this lemma can be generalized to all Coxeter groups. Thus, if the
each connected component of the Coxeter graphl &f a line, we can order the generating
reflections ofW so thatL (B) is a ranked poset for ariy/-semibuildingB. Furthermore,
the flags inL (B) form aW-chamber system isomorphic B These results and a converse
was shown for buildings by Bfher and Wachs. It appears as Proposition 4.18 in [5], and
we repeat the statement here.

Proposition 3.8 (Bjérner and Wachs) Let A be a Coxeter complex or building of finite
rank. ThenA = A(P), the simplicial complex of all finite chains of some poset P if and
only if the corresponding Coxeter diagram is linear.

To show thatl (B) is a lattice ifW = S,, we define a labeling function on its points,
the j-equivalence classes, with respect to a chamber. Motivated by Proposition 2.1(iii), we
make the following definition, which agrees with the definition of labels for semimodular
and modular lattices in Eq. (1).

Definition Let X be a chamber in a&,-semibuildingB. For everyj-equivalence class
z;, choose some representat&eThen thdabeling function with respect to is defined by

Ix(zj) = 8(X, 2)([jD.

Proposition 3.9 The labeling function as defined on semibuildings has the following
properties.
(i) The label k(z;) is independent of the equivalence class representative cheséne
function is well-defined.
(i) Ifz; <z, thenlk(zj) < Ix(z).
(i) We havdi] < Ix(z;) ifand only if ¥ < z;.

Proof: For (i), letZ and Z’ be two representatives af. SinceZ ~; Z', there is some
gallery(Z = Zo, Z1, ..., Zm = Z’) in which no two consecutive chambers gradjacent.
Since eithelB (X, Zp11) = 8(X, Zp) or §(X, Zpy1) = 8(X, Zp)rk for somek # j, and
8(X. Zps0)([§]1) = 8(X, Zp)([j]) in either case, we find(X, Z')([j]) = §(X, 2)([j]) by
induction. The statement (i) follows by choosing the same represeniafivebothz; and

z, since their intersection is nonempty. THerizj) = (X, 2)([j]) € §(X, Z2)([K]) =
Ix(Z)-

From (ii), we see thax; < z; implies [i] < Ix(z;). To prove the converse, choose a

representativeZ in z;, and use induction on the length pf= §(X, Z). Take a minimal
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gallery from X to Z and letZ’ be the last chamber in the gallery befafe Thus, Z
and Z' arek-adjacent for somé&. If k # j thenZ’ ~; Z, so by induction we have
X < z’j =1zj. Ifk=jweletp =§(X, Z") = prj < p since we started with a minimal
gallery fromX to Z. Butif[i] € p([j]) andpr; < p, thenp(j) > p(j +1) > i. Thus,
[i1 € p(j — 1) = p'([i — 1]). Now by induction, (iii) applies t&’, sox; < zj_; < z|
as desired. O

We need one more lemma to prolséB) is a lattice.

Lemma 3.10 Suppose the rank k pointg &nd y. are both upper bounds of &and y; in
L(B). Then either x = yi or there are rankk — 1) points %_; < Xx and ¥%_1 < Yk which
are also upper bounds of &and y;.

Proof: We findyi_1; to findxx_1, reverse the roles of andY. If xx # yk let X andY be
chambers i, N xc andy; N yi, respectively, and consider a minimal gallery frofiio Y.
LetY’ be the last chamber in the gallery which is not in the equivalence glasxl lety” be
the chamberimmediately following' in the gallery (sor” isin yi). Also, letp’ = §(X, Y’)
andp” = §(X, Y”). From (iii), we havei]] C Ix(yk) = po”"(K]) = p'rk([K]), sincex; < k.
But Y’ precedesy” in a minimal gallery, sq’ < p”, and so{] € p’([k]). Therefore,
[i]1 € o' ([k—1] = p”([k — 1]). Hence, lettingyk_; be the(k — 1)-equivalence class of
Y andY”, we havex; < yk_1 < Yk, though we still must show; < y«_;. Proceeding
by induction, we find thak; is less than th&-equivalence class of every chamber in the
minimal gallery, and therefore, less than or equal to(khe 1)-equivalence classes of the
chambers in the gallery. Similarly, we can use ¥abels to show thay; is less than or
equal to all thgk — 1)-equivalence classes in the gallery. Thys< V1. O

Theorem 3.11 (L(B), <) is a lattice.

Proof:  SinceL(B) has al, every pair of points has an upper bound. To show each pair
has a least upper bound, suppags@ndwm are upper bounds of andy;, with k < m.
Lemma 3.10 shows that if there are distinct upper bounds of the same rank, then neither one
is minimal. Thus, if we choose some ramkpoint z,, > z,, we find the only waywn, can

be minimal is ifwy, = zn = z. Thereforezx andwy, cannot be distinct minimal upper
bounds, and a least upper bound exists. Sln@®) is a finite rank poset with least upper
bounds and &, it must be a lattice. O

We now show that (B) is semimodular ifB is an upper semibuilding.

Theorem 3.12 B is an upper semibuilding if and only if(B) is an upper semimodular
lattice. Thus by virtue of Proposition8.4 and3.6, upper semibuildings are in one-to-one
correspondence with finite rank upper semimodular lattieesl the axiom$1, S2 S3
andU4 give us a flag-based axiom system of rank n semimodular lattices.

Proof: Since the chamber system formed by the flags(B) is isomorphic taB, Propo-
sition 3.1 says thaB is an upper semibuilding If (B) is semimodular. Conversely, suppose
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B is an upper semibuilding, and suppogeandy; both coverx;_; in L(B). Let X be a
flag containingx;_, andx; and letY be a flag that containg;_, andy;. We construct
a minimal gallery fromX to Y with exactly onerj. Then lettingX’ andY’ be the flags
immediately before and after tie in this minimal gallery, we havg' = x; andy, =
fori < j, andxj,; = Yj,1 = Xj v yj. Therefore, the join covers; andy;, andL(B) is
semimodular.

To construct the desired minimal gallery, start with any minimal gallery, and consider the
firstoccurrence afjrj,s . ..r¢inthe decomposition @f(X, Y). Ifthisis notatthe end of the
decomposition, lat, be the first simple reflection after this string.plf= k, the decomposi-
tionis notreduced. Ip = k+ 1, we can lengthen the string. pf < j or p > k+ 1, we can
choose a different gallery to replacg1...rrp by rorjrjis...re via repeated applica-
tionof S3. If] < p <k, wereplacerj 1...1dpbyrjrjia...ro_1(Fplpsalp)lps2. ..k
using S3. Then, we replace this string with the striptg 1 ... rp—1(F p+al pf p+) pg2 - - - Tk
using U4, and finally we replace this by, 1rjrj;1...rx, again using S3. When we reach
the end of the string, there is only ongin the type of the gallery. O

We now extend this characterization to modular and distributive lattices. To obtain an
upper semimodular lattice from a semibuilding, we needed condition U4, which requires a
gallery of typery,irkrkr1 betweenX andY wheneves (X, Y) = (k k+ 2). By duality,
we would get lower semimodular lattices by requiring a gallery of typg,1rk between
X andY. Hence, we obtain all modular lattices by requiring conditions S1, S2, S3, and
replacing U4 with the following condition M4.

M4. If 5(X,Y) = (k k+ 2), then there are galleries betweBrandY of typery irkrkii
and of typeryrgirk.

However, conditions S2, S3, and M4 are equivalent to condition B2, since we get all
reduced decompositions 6¢X, Y) by virtue of Lemma 3.3. Therefore, we characterize
semibuildings corresponding to finite rank modular lattices in Theorem 3.13.

Theorem 3.13 If Bisan $-semibuilding L (B) is modular ifand only if B obeys condition
B2. Inthis casewe call B amodular(,)-semibuilding or simply amodular semibuilding

Theorem 3.13 describds(B) for S,-semibuildings which obey B2. Theorem 3.14 de-
scribes the effects of BO.

Theorem 3.14 If B is an $-semibuilding L (B) is relatively complemented if and only
if B obeys conditiorB0.

Proof: If L(B) is relatively complemented, then every interval of length 2 is relatively
complemented; hence, to find a fl{gthat isi -adjacent toX, choosex’ to be a complement
of x; in the interval k; _1, X +1]. Thus, B satisfies BO.
Conversely, supposB is a semibuilding which obeys condition BO, and suppgse
Xj < X in L(B). We must show that; has a complement in the intervad [ x.]. Toward
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this end, letX be a flag througlx;, x;, andx, and letr be the permutation
t=12...1i kk—=1...i4+1 k+1k+2...n)

in one line notation. We show there is a fldghroughx; andxy such thatr (X, Y) = t.
Once we findY, the complement of; is the rank(i +k — j) point of Y, since theX-label
of this point is [] U ([K] \ [j]), the complement ofj[] in the interval{z : [i] < z < [K]}.
To find Y, note that ifZ is a flag which contains ak;, with m < i andm > k, then
eitherz (X, Z) = t so we can us&y = Z, or there is some@ withi < p < k such that
7(X, Z)rp > (X, Z). By condition BO, we may choose a new fldgthat is p-adjacent
to Z,and by Bl (X, Z') = n(X, Z)rp. We repeat this process until we filvd |

As one corollary of this result, we obtain Tits’ result ([16], Section 6.1.5, Proposition 6,
or in [2], Corollary 3.8). We also obtain an axiomatization of finite rank geometric lattice,
since a finite rank lattice is geometric if and only if it is relatively complemented and
semimodular (see [12], Proposition 3.3.3).

Corollary 3.15 (Tits) B isan $-building if and only if L(B) is a relatively complemented
modular lattice.

Corollary 3.16 L(B) is geometric if and only if B is an upper semibuilding which obeys
conditionBO0.

We now turn to distributive lattices. A modular lattice is distributive if and only if it
does not contain a sublattice which is isomorphidMe in Figure 1 ([3], Section II.8,
Theorem 13).

This condition lets us extend our work to distributive lattices; we show that all distributive
lattices can be obtained &¢B) for a modular semibuildind® which obeys condition DO.

DO. Every chamber is-adjacent to at most one other chamber for gaichthe indexing
set for the chamber system.

a

Figure L Mag: the unique five element modular nondistributive lattice.
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As part of Theorem 3.17 we show that for a modular semibuilding, the condition DO is
equivalent to the either of the conditions D1 or’'DITheorem 3.17 is similar to Abels’
Theorem 3.9 in [2]. He gives several flag-based conditions which describe when a finite
rank semimodular lattice can be embedded as a join sublattice into a distributive lattice of
the same rank.

D1. If §(X,Y) =7,ands(Y,Y") =rj, thens(X, Y') = zr;.
DY1. If §(X,Y) =1, ands(Y, Z) = p, thend (X, Z) = 1p,

Theorem 3.17 If B is a modular semibuilding the following are equivalent
(i) L(B) is distributive.

(i) L(B) does not contain a sublattice isomorphic tg.M

(i) L(B) does not have distinct points ¥, and z which all cover xx y A z and are
covered by x/ y v z.

(iv) B does not contain three distinct mutually adjacent chambiezs B obeys condi-
tion DO.

(V) f8(X,Y) =1, ands(Y,Y’) =rj, thens(X, Y') = zr;, i.e, D1 holds.

(vi) If8(X,Y) =17, ands(Y, Z) = p, thens(X, Z) = p, i.e, D1 holds.

We call anS,-semibuilding which obeys these conditiondistributive semibuilding
Proof:

(i  ii). This is well known as previously cited.

(ii = iii). Thisis clear.

(i = iv). If X, Y, andZ are distinct andj-adjacent, therx; A y; A z; = Xj_1 and
Xj VYj V Zj = Xj41, contrary to (jii).

(iv = v). Supposer = §(X,Y) andr; = 8(Y,Y’). If tr; < 7, then there is a reduced
decompositiorfr of r. Thus, by B2, there is a gallery of tyde ; from X toY. The last
chamber befor® in this gallery must be strictly-adjacent to¥, butY’ is the only such
chamber since no other chamber carj fmljacent to botly andY’ by (iv). Hence, there
is a gallery of typef from X to Y'. Sincef is a reduced expressiod (X, Y') = tr;. If
tr; > v and f is a reduced decomposition of there is a gallery of typé from X to
Y, and appending a step frovhto Y’ gives a gallery fronY to Y’ of type fr;. But fr;
is a reduced decomposition, $0X, Y’) = zr;. In either case, (v) holds.

(v=vi). Lett =8(X,Y)andp = §(Y, Z), and letp = 5%, - - - Sy be a reduced decom-
position ofp. By condition B2, there is a minimal galletyf = Yo, Y1, ..., Yn = 2Z) of
typesis; - - - Sm, @and by induction, (v) implies that(X, Yy) = 751 -+ - &, S08(X, Z) =
p = 8(X, Y)8(Y, 2).

(vi = ii). Suppose the pointa, x, y, z, andb in L(B) form a sublattice isomorphic
to M3. We may assuma = 0 andb = 1 by restricting our attention to the interval
[a, b]. We first note that if the lattice has rankthen rankx) = rank(y) =rank(z) = g
for which we use the symbal. This is so because ¥ andy are complements in a
modular lattice, then rarik) + rank(y) = rankQ) + rank1) = n. Similarly, we have
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rank(x) + rank(y) =rank(x) + rank(z) = rank(x) + rank(z) = n, which forces the rank
of each point to be.

Let X be any flag containing = X, and letY andZ be the flagsf = {0 =x Ay <
Xs1AY < - < XnAYy =y =0Vy <xVy < - <xVy=1}and
Z={0=XAZ<XpAZ< - <XgAZ=2=0VZ<XVZ<---<XVz=1}.
The inequalities are all strict since in the interval y] there are at most distinct
points, and the rank difference between consecutive points in these sets is at most 1 by
modularity, but the total difference in rank betwemndy isr. A similar argument
applies to the inequalities in the intervalg, i], [0, z], and [z, 1]. Now §(X,Y) =
r+1r+4+2...n1 2. ..r),sinceforj <r we havey; < X4j V Yj_1 = X4j, but
Vi € Xe4j-1V Yj—1 = Xr4j—1, @andx; < Yryi fori <r,sofi] € Ix(¥r4i). Similarly,
83X, Z) =(r+1r+2...n 1 2...r), butsinceY # Z andé(Y, Z) # 1, this
contradicts 3.17.6.

a
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